Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gene ; 923: 148587, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-38768877

RESUMO

High levels of purine and uric acid, which are associated with health issues such as gout and cardiovascular disease, are found in the meat of fast-growing broiler chickens, which raises concerns about the quality of chicken meat and the health of the consumers who consume it. High genetic homogeneity and uniformity, particularly in genes involved in the synthesis of inosine monophosphate (IMP) and subsequent process of purine synthesis, which are associated with the meat quality, are exhibited in commercial broiler chickens owing to intensive inbreeding programs. Adenosine succinate lyase (ADSL) is a key enzyme involved in de novo purine biosynthetic pathway and its genetic polymorphisms affect IMP metabolism and purine content. In this study, we investigated the polymorphism of the ADSL gene in indigenous and local chicken breeds and red junglefowl in Thailand, using metabarcoding and genetic diversity analyses. Five alleles with 73 single nucleotide polymorphisms in exon 2, including missense and silent mutations, which may act on the synthesis efficiency of IMP and purine. Their protein structures revealed changes in amino acid composition that may affect ADSL enzyme activity. Weak purifying selection in these ADSL alleles was observed in the chicken population studied, implying that the variants have minor fitness impacts and a greater probability of fixation of beneficial mutations than strong purifying selection. A potential selective sweep was observed in Mae Hong Son chickens, whose purine content was lower than that in other breeds. This suggests a potential correlation between variations of the ADSL gene and reduced purine content and an impact of ADSL expression on the quality of chicken meat. However, further studies are required to validate its potential availability as a genetic marker for selecting useful traits that are beneficial to human health and well-being.


Assuntos
Adenilossuccinato Liase , Galinhas , Polimorfismo de Nucleotídeo Único , Seleção Genética , Animais , Galinhas/genética , Adenilossuccinato Liase/genética , Tailândia , Alelos , Inosina Monofosfato/metabolismo , Cruzamento , Carne , Variação Genética , Purinas/metabolismo , Purinas/biossíntese
2.
Am J Med Genet A ; 191(1): 234-237, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36271826

RESUMO

Adenylosuccinase deficiency is a rare inborn error of metabolism. We present a newborn who died at 52 days of age with clinical features suggestive of severe epileptic encephalopathy and leukodystrophy of unknown cause. Post-mortem examination showed an unusual vacuolar appearance of the brain. A molecular autopsy performed via singleton clinical exome analysis revealed a known pathogenic and a variant of uncertain significance in ADSL that encodes adenylosuccinase. Tests on previously stored plasma samples showed elevated succinyladenosine and succinylaminoimidazole carboxamide riboside levels. Adenylosuccinase activity in stored fibroblasts was only ~5% of control confirming the diagnosis of adenylosuccinase deficiency in the child. The parents opted for a chorionic villus biopsy in a subsequent pregnancy and had a child unaffected by adenylosuccinase deficiency. This report adds vacuolating leukodystrophy as a novel feature of adenylosuccinase deficiency and shows the power of biochemical investigations directed by genomic studies to achieve accurate diagnosis. Importantly, this case demonstrates the importance of anticipatory banking of biological samples for reverse biochemical phenotyping in individuals with undiagnosed disorders who may not survive.


Assuntos
Adenilossuccinato Liase , Transtorno Autístico , Erros Inatos do Metabolismo da Purina-Pirimidina , Criança , Recém-Nascido , Lactente , Humanos , Autopsia , Adenilossuccinato Liase/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/genética
3.
Cancer Gene Ther ; 29(12): 1878-1894, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35840668

RESUMO

In EGFR-mutant lung cancer, drug-tolerant persister cells (DTPCs) show prolonged survival when receiving EGFR tyrosine kinase inhibitor (TKI) treatments. They are a likely source of drug resistance, but little is known about how these cells tolerate drugs. Ribonucleic acids (RNAs) molecules control cell growth and stress responses. Nucleic acid metabolism provides metabolites, such as purines, supporting RNA synthesis and downstream functions. Recently, noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), have received attention due to their capacity to repress gene expression via inhibitory binding to downstream messenger RNAs (mRNAs). Here, our study links miRNA expression to purine metabolism and drug tolerance. MiR-21-5p (guide strand) is a commonly upregulated miRNA in disease states, including cancer and drug resistance. However, the expression and function of miR-21-3p (passenger strand) are not well understood. We found that upregulation of miR-21-5p and miR-21-3p tune purine metabolism leading to increased drug tolerance. Metabolomics data demonstrated that purine metabolism was the top pathway in the DTPCs compared with the parental cells. The changes in purine metabolites in the DTPCs were partially rescued by targeting miR-21. Analysis of protein levels in the DTPCs showed that reduced expression of adenylosuccinate lyase (ADSL) was reversed after the miR-21 knockdown. ADSL is an essential enzyme in the de novo purine biosynthesis pathway by converting succino-5-aminoimidazole-4-carboxamide riboside (succino-AICAR or SAICAR) to AICAR (or acadesine) as well as adenylosuccinate to adenosine monophosphate (AMP). In the DTPCs, miR-21-5p and miR-21-3p repress ADSL expression. The levels of top decreased metabolite in the DTPCs, AICAR was reversed when miR-21 was blocked. AICAR induced oxidative stress, evidenced by increased reactive oxygen species (ROS) and reduced expression of nuclear factor erythroid-2-related factor 2 (NRF2). Concurrently, miR-21 knockdown induced ROS generation. Therapeutically, a combination of AICAR and osimertinib increased ROS levels and decreased osimertinib-induced NRF2 expression. In a MIR21 knockout mouse model, MIR21 loss-of-function led to increased purine metabolites but reduced ROS scavenging capacity in lung tissues in physiological conditions. Our data has established a link between ncRNAs, purine metabolism, and the redox imbalance pathway. This discovery will increase knowledge of the complexity of the regulatory RNA network and potentially enable novel therapeutic options for drug-resistant patients.


Assuntos
Adenilossuccinato Liase , MicroRNAs , Camundongos , Animais , Adenilossuccinato Liase/química , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Fator 2 Relacionado a NF-E2 , Espécies Reativas de Oxigênio , MicroRNAs/genética , Purinas , RNA Mensageiro/química , Receptores ErbB/genética
4.
Mol Genet Metab ; 136(3): 190-198, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34998670

RESUMO

Purines are essential molecules that are components of vital biomolecules, such as nucleic acids, coenzymes, signaling molecules, as well as energy transfer molecules. The de novo biosynthesis pathway starts from phosphoribosylpyrophosphate (PRPP) and eventually leads to the synthesis of inosine monophosphate (IMP) by means of 10 sequential steps catalyzed by six different enzymes, three of which are bi-or tri-functional in nature. IMP is then converted into guanosine monophosphate (GMP) or adenosine monophosphate (AMP), which are further phosphorylated into nucleoside di- or tri-phosphates, such as GDP, GTP, ADP and ATP. This review provides an overview of inborn errors of metabolism pertaining to purine synthesis in humans, including either phosphoribosylpyrophosphate synthetase (PRS) overactivity or deficiency, as well as adenylosuccinate lyase (ADSL), 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC), phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS), and adenylosuccinate synthetase (ADSS) deficiencies. ITPase deficiency is being described as well. The clinical spectrum of these disorders is broad, including neurological impairment, such as psychomotor retardation, epilepsy, hypotonia, or microcephaly; sensory involvement, such as deafness and visual disturbances; multiple malformations, as well as muscle presentations or consequences of hyperuricemia, such as gouty arthritis or kidney stones. Clinical signs are often nonspecific and, thus, overlooked. It is to be hoped that this is likely to be gradually overcome by using sensitive biochemical investigations and next-generation sequencing technologies.


Assuntos
Adenilossuccinato Liase , Erros Inatos do Metabolismo da Purina-Pirimidina , Adenilossuccinato Liase/deficiência , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Transtorno Autístico , Humanos , Inosina Monofosfato , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/metabolismo , Purinas
5.
Theranostics ; 11(9): 4011-4029, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33754045

RESUMO

Rationale: Adenylosuccinate lyase (ADSL) is an essential enzyme for de novo purine biosynthesis. Here we sought to investigate the putative role of ADSL in colorectal carcinoma (CRC) carcinogenesis and response to antimetabolites. Methods: ADSL expression levels were assessed by immunohistochemistry or retrieved from The Cancer Genome Atlas (TCGA) dataset. The effects of ADSL silencing or overexpression were evaluated on CRC cell proliferation, cell migration and cell-cycle. In vivo tumor growth was assessed by the chicken chorioallantoic membrane (CAM). Transfected cell lines or patient-derived organoids (PDO) were treated with 5-fluorouracil (5-FU) and 6-mercaptopurine (6-MP) and drug response was correlated with ADSL expression levels. Metabolomic and transcriptomic profiling were performed to identify dysregulated pathways and ADSL downstream effectors. Mitochondrial respiration and glycolytic capacity were measured using Seahorse; mitochondrial membrane potential and the accumulation of ROS were measured by FACS using MitoTracker Red and MitoSOX staining, respectively. Activation of canonical pathways was assessed by immunohistochemistry and immunoblotting. Results: ADSL expression is significantly increased in CRC tumors compared to non-tumor tissue. ADSL-high CRCs show upregulation of genes involved in DNA synthesis, DNA repair and cell cycle. Accordingly, ADSL overexpression accelerated progression through the cell cycle and significantly increased proliferation and migration in CRC cell lines. Additionally, ADSL expression increased tumor growth in vivo and sensitized CRCs to 6-MP in vitro, ex vivo (PDOs) and in vivo (CAM model). ADSL exerts its oncogenic function by affecting mitochondrial function via alteration of the TCA cycle and impairment of mitochondrial respiration. The KEAP1-NRF2 and mTORC1-cMyc axis are independently activated upon ADSL overexpression and may favor the survival and proliferation of ROS-accumulating cells, favoring DNA damage and tumorigenesis. Conclusions: Our results suggest that ADSL is a novel oncogene in CRC, modulating mitochondrial function, metabolism and oxidative stress, thus promoting cell cycle progression, proliferation and migration. Our results also suggest that ADSL is a predictive biomarker of response to 6-mercaptopurine in the pre-clinical setting.


Assuntos
Adenilossuccinato Liase/genética , Neoplasias Colorretais/genética , Mitocôndrias/genética , Fator 2 Relacionado a NF-E2/genética , Oncogenes/genética , Proteínas Proto-Oncogênicas c-myc/genética , Serina-Treonina Quinases TOR/genética , Células CACO-2 , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Respiração Celular/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica/genética , Células HT29 , Humanos , Mitocôndrias/patologia
6.
Hepatology ; 74(1): 233-247, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33336367

RESUMO

BACKGROUND AND AIMS: Hepatocellular carcinoma (HCC) is among the most common cancer types worldwide, yet patients with HCC have limited treatment options. There is an urgent need to identify drug targets that specifically inhibit the growth of HCC cells. APPROACH AND RESULTS: We used a CRISPR library targeting ~2,000 druggable genes to perform a high-throughput screen and identified adenylosuccinate lyase (ADSL), a key enzyme involved in the de novo purine synthesis pathway, as a potential drug target for HCC. ADSL has been implicated as a potential oncogenic driver in some cancers, but its role in liver cancer progression remains unknown. CRISPR-mediated knockout of ADSL impaired colony formation of liver cancer cells by affecting AMP production. In the absence of ADSL, the growth of liver tumors is retarded in vivo. Mechanistically, we found that ADSL knockout caused S-phase cell cycle arrest not by inducing DNA damage but by impairing mitochondrial function. Using data from patients with HCC, we also revealed that high ADSL expression occurs during tumorigenesis and is linked to poor survival rate. CONCLUSIONS: Our findings uncover the role of ADSL-mediated de novo purine synthesis in fueling mitochondrial ATP production to promote liver cancer cell growth. Targeting ADSL may be a therapeutic approach for patients with HCC.


Assuntos
Adenilossuccinato Liase/antagonistas & inibidores , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Purinas/biossíntese , Trifosfato de Adenosina/biossíntese , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Humanos , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Taxa de Sobrevida
7.
Nat Commun ; 10(1): 5177, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729379

RESUMO

Protein hydroxylation affects protein stability, activity, and interactome, therefore contributing to various diseases including cancers. However, the transiency of the hydroxylation reaction hinders the identification of hydroxylase substrates. By developing an enzyme-substrate trapping strategy coupled with TAP-TAG or orthogonal GST- purification followed by mass spectrometry, we identify adenylosuccinate lyase (ADSL) as an EglN2 hydroxylase substrate in triple negative breast cancer (TNBC). ADSL expression is higher in TNBC than other breast cancer subtypes or normal breast tissues. ADSL knockout impairs TNBC cell proliferation and invasiveness in vitro and in vivo. An integrated transcriptomics and metabolomics analysis reveals that ADSL activates the oncogenic cMYC pathway by regulating cMYC protein level via a mechanism requiring ADSL proline 24 hydroxylation. Hydroxylation-proficient ADSL, by affecting adenosine levels, represses the expression of the long non-coding RNA MIR22HG, thus upregulating cMYC protein level. Our findings highlight the role of ADSL hydroxylation in controlling cMYC and TNBC tumorigenesis.


Assuntos
Adenilossuccinato Liase/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Neoplasias de Mama Triplo Negativas/enzimologia , Adenosina/metabolismo , Adenilossuccinato Liase/genética , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/fisiopatologia
8.
J Proteome Res ; 18(5): 2078-2087, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30964683

RESUMO

Purines represent a class of essential metabolites produced by the cell to maintain cellular homeostasis and facilitate cell proliferation. In times of high purine demand, the de novo purine biosynthetic pathway is activated; however, the mechanisms that facilitate this process are largely unknown. One plausible mechanism is through intracellular signaling, which results in enzymes within the pathway becoming post-translationally modified to enhance their individual enzyme activities and the overall pathway metabolic flux. Here, we employ a proteomic strategy to investigate the extent to which de novo purine biosynthetic pathway enzymes are post-translationally modified in 293T cells. We identified 7 post-translational modifications on 135 residues across the 6 human pathway enzymes. We further asked whether there were differences in the post-translational modification state of each pathway enzyme isolated from cells cultured in the presence or absence of purines. Of the 174 assigned modifications, 67% of them were only detected in one experimental growth condition in which a significant number of serine and threonine phosphorylations were noted. A survey of the most-probable kinases responsible for these phosphorylation events uncovered a likely AKT phosphorylation site at residue Thr397 of PPAT, which was only detected in cells under purine-supplemented growth conditions. These data suggest that this modification might alter enzyme activity or modulate its interaction(s) with downstream pathway enzymes. Together, these findings propose a role for post-translational modifications in pathway regulation and activation to meet intracellular purine demand.


Assuntos
Amidofosforribosiltransferase/metabolismo , Mapeamento de Peptídeos/métodos , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Purinas/metabolismo , Acetilação , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Amidofosforribosiltransferase/genética , Sequência de Aminoácidos , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Peptídeos/síntese química , Peptídeos/metabolismo , Fosforribosilglicinamido Formiltransferase/genética , Fosforribosilglicinamido Formiltransferase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Serina/metabolismo , Transdução de Sinais , Treonina/metabolismo , Ubiquitinação
9.
Mol Biochem Parasitol ; 214: 27-35, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28347672

RESUMO

Schistosoma mansoni is the parasite responsible for schistosomiasis, a disease that affects about 218 million people worldwide. Currently, both direct treatment and disease control initiatives rely on chemotherapy using a single drug, praziquantel. Concerns over the possibility of resistance developing to praziquantel, have stimulated efforts to develop new drugs for the treatment of schistosomiasis. Schistosomes do not have the de novo purine biosynthetic pathway, and instead depend entirely on the purine salvage pathway to supply its need for purines. The purine salvage pathway has been reported as a potential target for developing new drugs against schistosomiasis. Adenylosuccinate lyase (SmADSL) is an enzyme in this pathway, which cleaves adenylosuccinate (ADS) into adenosine 5'-monophosphate (AMP) and fumarate. SmADSL kinetic characterization was performed by isothermal titration calorimetry (ITC) using both ADS and SAICAR as substrates. Structures of SmADSL in Apo form and in complex with AMP were elucidated by x-ray crystallography revealing a highly conserved tetrameric structure required for their function since the active sites are formed from residues of three different subunits. The active sites are also highly conserved between species and it is difficult to identify a potent species-specific inhibitor for the development of new therapeutic agents. In contrast, several mutagenesis studies have demonstrated the importance of dimeric interface residues in the stability of the quaternary structure of the enzyme. The lower conservation of these residues between SmADSL and human ADSL could be used to lead the development of anti-schistosomiasis drugs based on disruption of subunit interfaces. These structures and kinetics data add another layer of information to Schistosoma mansoni purine salvage pathway.


Assuntos
Adenilossuccinato Liase/química , Adenilossuccinato Liase/metabolismo , Schistosoma mansoni/enzimologia , Monofosfato de Adenosina/metabolismo , Adenilossuccinato Liase/genética , Animais , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , Fumaratos/metabolismo , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Estabilidade Proteica
10.
Cell Rep ; 13(1): 157-167, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26411681

RESUMO

Pancreatic islet failure, involving loss of glucose-stimulated insulin secretion (GSIS) from islet ß cells, heralds the onset of type 2 diabetes (T2D). To search for mediators of GSIS, we performed metabolomics profiling of the insulinoma cell line 832/13 and uncovered significant glucose-induced changes in purine pathway intermediates, including a decrease in inosine monophosphate (IMP) and an increase in adenylosuccinate (S-AMP), suggesting a regulatory role for the enzyme that links the two metabolites, adenylosuccinate synthase (ADSS). Inhibition of ADSS or a more proximal enzyme in the S-AMP biosynthesis pathway, adenylosuccinate lyase, lowers S-AMP levels and impairs GSIS. Addition of S-AMP to the interior of patch-clamped human ß cells amplifies exocytosis, an effect dependent upon expression of sentrin/SUMO-specific protease 1 (SENP1). S-AMP also overcomes the defect in glucose-induced exocytosis in ß cells from a human donor with T2D. S-AMP is, thus, an insulin secretagogue capable of reversing ß cell dysfunction in T2D.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Diabetes Mellitus Tipo 2/metabolismo , Glucose/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/farmacologia , Adenilossuccinato Liase/antagonistas & inibidores , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Adenilossuccinato Sintase/antagonistas & inibidores , Adenilossuccinato Sintase/genética , Adenilossuccinato Sintase/metabolismo , Animais , Linhagem Celular Tumoral , Cisteína Endopeptidases , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Endopeptidases/genética , Endopeptidases/metabolismo , Inibidores Enzimáticos/farmacologia , Exocitose/efeitos dos fármacos , Regulação da Expressão Gênica , Glucose/metabolismo , Guanina/farmacologia , Humanos , Inosina Monofosfato/metabolismo , Insulina/biossíntese , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Metaboloma/genética , Ácido Micofenólico/farmacologia , Técnicas de Patch-Clamp , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
11.
Dev Med Child Neurol ; 55(11): 1060-4, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23937257

RESUMO

AIM: The aim of this study was to develop a high-throughput urine screening technique for adenylosuccinate lyase (ADSL) deficiency and to evaluate S-adenosyl-l-methionine (SAMe) as a potential treatment for this disorder. METHOD: Testing for succinyladenosine (S-Ado), a marker of ADSL deficiency, was incorporated into a screening panel for urine biomarkers for inborn errors of metabolism using electrospray tandem mass spectrometry. Liquid chromatography-mass spectrometry and high-performance liquid chromatography were used to confirm and monitor the response of metabolites to oral SAMe treatment. RESULTS: Increased levels of S-Ado were detected in a 3-month-old male infant with hypotonia and seizures. ADSL gene sequencing revealed a previously described c.-49T>C mutation and a novel c.889_891dupAAT mutation, which was likely to disrupt enzyme function. After 9 months of SAMe treatment, there was no clear response evidenced in urine metabolite levels or clinical parameters. INTERPRETATION: These results demonstrate proof of the principle for the high-throughput urine screening technique, allowing earlier diagnosis of patients with ADSL deficiency. However, early treatment with SAMe does not appear to be effective in ADSL deficiency. It is suggested that although SAMe treatment may ameliorate purine nucleotide deficiency, it cannot correct metabolic syndromes in which a toxic nucleotide is present, in this case presumed to be succinylaminoimidazole carboxamide ribotide.


Assuntos
Adenilossuccinato Liase/deficiência , Ensaios de Triagem em Larga Escala , Erros Inatos do Metabolismo da Purina-Pirimidina/diagnóstico , S-Adenosilmetionina/administração & dosagem , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenilossuccinato Liase/efeitos dos fármacos , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/urina , Administração Oral , Transtorno Autístico , Pré-Escolar , Cromatografia Líquida , Eletroencefalografia , Genótipo , Humanos , Estudos Longitudinais , Masculino , Mutação/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/urina , Espectrometria de Massas por Ionização por Electrospray
12.
Biochim Biophys Acta ; 1834(8): 1545-53, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23714113

RESUMO

Adenylosuccinate lyase (ADSL) is a homotetrameric enzyme involved in the de novo purine biosynthesis pathway and purine nucleotide cycle. Missense mutations in the protein lead to ADSL deficiency, an inborn error of purine metabolism characterized by neurological and physiological symptoms. ADSL deficiency is biochemically diagnosed by elevated levels of succinylaminoimidazolecarboxamide riboside (SAICAr) and succinyladenosine (S-Ado), the dephosphorylated derivatives of the substrates. S-Ado/SAICAr ratios have been associated with three phenotypic groups. Different hypotheses to explain these ratios have been proposed. Recent studies have focused on measuring activity on the substrates independently. However, it is important to examine mixtures of the substrates to determine if mutations affect enzyme activity on both substrates similarly in these conditions. The two substrates may experience an indirect communication due to being acted upon by the same enzyme, altering their activities from the non-competitive case. In this study, we investigate this hidden coupling between the two substrates. We chose two mutations that represent extremes of the phenotype, R426H and R303C. We describe a novel electrochemical-detection method of measuring the kinetic activity of ADSL in solution with its two substrates at varying concentration ratios. Furthermore, we develop an enzyme kinetic model to predict substrate activity from a given ratio of substrate concentrations. Our findings indicate a non-linear dependence of the activities on the substrate ratios due to competitive binding, distinct differences in the behaviors of the different mutations, and S-Ado/SAICAr ratios in patients could be explained by inherent properties of the mutant enzyme.


Assuntos
Adenosina/análogos & derivados , Adenilossuccinato Liase/genética , Aminoimidazol Carboxamida/análogos & derivados , Mutação de Sentido Incorreto/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Ribonucleotídeos/metabolismo , Adenosina/metabolismo , Adenilossuccinato Liase/deficiência , Adenilossuccinato Liase/metabolismo , Aminoimidazol Carboxamida/metabolismo , Transtorno Autístico , Cromatografia Líquida de Alta Pressão , Eletroquímica , Homozigoto , Humanos , Cinética , Mutagênese Sítio-Dirigida , Erros Inatos do Metabolismo da Purina-Pirimidina/diagnóstico , Especificidade por Substrato
13.
Handb Clin Neurol ; 113: 1827-36, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23622405

RESUMO

The purines are a group of molecules used by all cells for many vital biochemical processes including energy-requiring enzymatic reactions, cofactor-requiring reactions, synthesis of DNA or RNA, signaling pathways within and between cells, and other processes. Defects in some of the enzymes of purine metabolism are known to be associated with specific clinical disorders, and neurological problems may be a presenting sign or the predominant clinical problem for several of them. This chapter describes three disorders for which the clinical features and metabolic basis are well characterized. Deficiency of adenylosuccinate-lyase (ADSL) causes psychomotor retardation, epilepsy, and autistic features. Lesch-Nyhan disease is caused by deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT) and is characterized by hyperuricemia, motor and cognitive disability, and self-injurious behavior. Deficiency of myoadenylate deaminase (mAMPD) is associated with myopathic features. In addition to these disorders, several other disorders are briefly summarized. These include defects of phosphoribosylpyrophosphate synthase, adenosine deaminase (ADA), purine nucleoside phosphorylase (PND), deoxyguanosine kinase (dGK), or IMP dehydrogenase (IMPDH). Each of these disorders provides an unusual window on the unique importance of purine metabolism for function of different parts of the nervous system.


Assuntos
AMP Desaminase/deficiência , Adenilossuccinato Liase/deficiência , Síndrome de Lesch-Nyhan/diagnóstico , Erros Inatos do Metabolismo da Purina-Pirimidina/diagnóstico , AMP Desaminase/genética , AMP Desaminase/metabolismo , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Transtorno Autístico , Criança , Humanos , Síndrome de Lesch-Nyhan/genética , Síndrome de Lesch-Nyhan/metabolismo , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/metabolismo
14.
J Biol Chem ; 288(13): 8977-90, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23404497

RESUMO

Leishmania are auxotrophic for purines, and consequently purine acquisition from the host is a requisite nutritional function for the parasite. Both adenylosuccinate synthetase (ADSS) and adenylosuccinate lyase (ASL) have been identified as vital components of purine salvage in Leishmania donovani, and therefore Δadss and Δasl null mutants were constructed to test this hypothesis. Unlike wild type L. donovani, Δadss and Δasl parasites in culture exhibited a profoundly restricted growth phenotype in which the only permissive growth conditions were a 6-aminopurine source in the presence of 2'-deoxycoformycin, an inhibitor of adenine aminohydrolase activity. Although both knock-outs showed a diminished capacity to infect murine peritoneal macrophages, only the Δasl null mutant was profoundly incapacitated in its ability to infect mice. The enormous discrepancy in parasite loads observed in livers and spleens from mice infected with either Δadss or Δasl parasites can be explained by selective accumulation of adenylosuccinate in the Δasl knock-out and consequent starvation for guanylate nucleotides. Genetic complementation of a Δasl lesion in Escherichia coli implied that the L. donovani ASL could also recognize 5-aminoimidazole-(N-succinylocarboxamide) ribotide as a substrate, and purified recombinant ASL displayed an apparent Km of ∼24 µm for adenylosuccinate. Unlike many components of the purine salvage pathway of L. donovani, both ASL and ADSS are cytosolic enzymes. Overall, these data underscore the paramount importance of ASL to purine salvage by both life cycle stages of L. donovani and authenticate ASL as a potential drug target in Leishmania.


Assuntos
Adenilossuccinato Liase/fisiologia , Adenilossuccinato Sintase/fisiologia , Leishmania donovani/genética , Leishmania donovani/patogenicidade , Leishmaniose Visceral/tratamento farmacológico , Adenilossuccinato Liase/deficiência , Adenilossuccinato Liase/genética , Adenilossuccinato Sintase/deficiência , Adenilossuccinato Sintase/genética , Animais , Transtorno Autístico , Clonagem Molecular , Desenho de Fármacos , Feminino , Teste de Complementação Genética , Cinética , Leishmania donovani/fisiologia , Fígado/metabolismo , Fígado/parasitologia , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Fases de Leitura Aberta , Fenótipo , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Purinas/metabolismo , RNA Mensageiro/metabolismo , Frações Subcelulares/metabolismo
15.
J Magn Reson Imaging ; 37(4): 974-80, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23055421

RESUMO

Adenylosuccinate lyase (ADSL) deficiency is a rare inborn error of metabolism resulting in accumulation of metabolites including succinylaminoimidazole carboxamide riboside (SAICAr) and succinyladenosine (S-Ado) in the brain and other tissues. Patients with ADSL have progressive psychomotor retardation, neonatal seizures, global developmental delay, hypotonia, and autistic features, although variable clinical manifestations may make the initial diagnosis challenging. Two cases of the severe form of the disease are reported here: an 18-month-old boy with global developmental delay, intractable neonatal seizures, progressive cerebral atrophy, and marked hypomyelination, and a 3-month-old girl presenting with microcephaly, neonatal seizures, and marked psychomotor retardation. In both patients in vivo proton magnetic resonance spectroscopy (MRS) showed the presence of S-Ado signal at 8.3 ppm, consistent with a prior report. Interestingly, SAICAr signal was also detectable at 7.5 ppm in affected white matter, which has not been reported in vivo before. A novel splice-site mutation, c.IVS12 + 1/G > C, in the ADSL gene was identified in the second patient. Our findings confirm the utility of in vivo proton MRS in suggesting a specific diagnosis of ADSL deficiency, and also demonstrate an additional in vivo resonance (7.5 ppm) of SAICAr in the cases of severe disease.


Assuntos
Encéfalo/enzimologia , Deficiências do Desenvolvimento/diagnóstico , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Espectroscopia de Ressonância Magnética/métodos , Transtornos Psicomotores/diagnóstico , Erros Inatos do Metabolismo da Purina-Pirimidina/diagnóstico , Adenosina/análogos & derivados , Adenosina/análise , Adenilossuccinato Liase/deficiência , Adenilossuccinato Liase/genética , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/análise , Transtorno Autístico , Análise Mutacional de DNA , Deficiências do Desenvolvimento/enzimologia , Deficiências do Desenvolvimento/genética , Feminino , Humanos , Lactente , Masculino , Transtornos Psicomotores/enzimologia , Transtornos Psicomotores/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/enzimologia , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Ribonucleosídeos/análise
16.
Biochemistry ; 51(33): 6701-13, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22812634

RESUMO

Adenylosuccinate lyase (ADSL) deficiency is a rare autosomal recessive disorder, which causes a defect in purine metabolism resulting in neurological and physiological symptoms. ADSL executes two nonsequential steps in the de novo synthesis of AMP: the conversion of phosphoribosylsuccinyl-aminoimidazole carboxamide (SAICAR) to phosphoribosylaminoimidazole carboxamide, which occurs in the de novo synthesis of IMP, and the conversion of adenylosuccinate to AMP, which occurs in the de novo synthesis of AMP and also in the purine nucleotide cycle, using the same active site. Mutation of ADSL's arginine 303 to a cysteine is known to lead to ADSL deficiency. Interestingly, unlike other mutations leading to ADSL deficiency, the R303C mutation has been suggested to more significantly affect the enzyme's ability to catalyze the conversion of succinyladenosine monophosphate than that of SAICAR to their respective products. To better understand the causation of disease due to the R303C mutation, as well as to gain insights into why the R303C mutation potentially has a disproportional decrease in activity toward its substrates, the wild type (WT) and the R303C mutant of ADSL were investigated enzymatically and thermodynamically. Additionally, the X-ray structures of ADSL in its apo form as well as with the R303C mutation were elucidated, providing insight into ADSL's cooperativity. By utilizing this information, a model for the interaction between ADSL and SAICAR is proposed.


Assuntos
Adenilossuccinato Liase/química , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/metabolismo , Adenilossuccinato Liase/deficiência , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Sequência de Aminoácidos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/metabolismo , Transtorno Autístico , Humanos , Mutação de Sentido Incorreto , Ribonucleotídeos/metabolismo , Alinhamento de Sequência
17.
Hum Mol Genet ; 21(7): 1534-43, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22180458

RESUMO

The purinosome is a multienzyme complex composed by the enzymes active in de novo purine synthesis (DNPS) that cells transiently assemble in their cytosol upon depletion or increased demand of purines. The process of purinosome formation has thus far been demonstrated and studied only in human epithelial cervical cancer cells (HeLa) and human liver carcinoma cells (C3A) transiently expressing recombinant fluorescently labeled DNPS proteins. Using parallel immunolabeling of various DNPS enzymes and confocal fluorescent microscopy, we proved purinosome assembly in HeLa, human hepatocellular liver carcinoma cell line (HepG2), sarcoma osteogenic cells (Saos-2), human embryonic kidney cells (HEK293), human skin fibroblasts (SF) and primary human keratinocytes (KC) cultured in purine-depleted media. Using the identical approach, we proved in cultured skin fibroblasts from patients with AICA-ribosiduria and ADSL deficiency that various mutations of ATIC and ADSL destabilize to various degrees of purinosome assembly and found that the ability to form purinosomes correlates with clinical phenotypes of individual ADSL patients. Our results thus shown that the assembly of functional purinosomes is fully dependent on the presence of structurally unaffected ATIC and ADSL complexes and presumably also on the presence of all the other DNPS proteins. The results also corroborate the hypothesis that the phenotypic severity of ADSL deficiency is mainly determined by structural stability and residual catalytic capacity of the corresponding mutant ADSL protein complexes, as this is prerequisite for the formation and stability of the purinosome and at least partial channeling of succinylaminoimidazolecarboxamide riboside-ADSL enzyme substrates-through the DNPS pathway.


Assuntos
Adenilossuccinato Liase/genética , Hidroximetil e Formil Transferases/genética , Complexos Multienzimáticos/genética , Nucleotídeo Desaminases/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/enzimologia , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Adenilossuccinato Liase/deficiência , Transtorno Autístico , Linhagem Celular Tumoral , Células Cultivadas , Fibroblastos/enzimologia , Células HeLa , Humanos , Hidroximetil e Formil Transferases/análise , Queratinócitos/enzimologia , Complexos Multienzimáticos/análise , Mutação , Nucleotídeo Desaminases/análise , Purinas/metabolismo , Pele/citologia
18.
J Inherit Metab Dis ; 33 Suppl 3: S159-62, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20177786

RESUMO

Most cases of adenylosuccinate lyase (ADSL OMIM 103050) deficiency reported to date are confined to the various European ethnic groups. We report on the first Malaysian case of ADSL deficiency, which appears also to be the first reported Asian case. The case was diagnosed among a cohort of 450 patients with clinical features of psychomotor retardation, global developmental delay, seizures, microcephaly and/or autistic behaviour. The patient presented with frequent convulsions and severe myoclonic jerk within the first few days of life and severe psychomotor retardation. The high performance liquid chromatography (HPLC) profile of the urine revealed the characteristic biochemical markers of succinyladenosine (S-Ado) and succinyl-aminoimidazole carboximide riboside (SAICAr). The urinary S-Ado/SAICAr ratio was found to be 1.02 (type I ADSL deficiency). The patient was compound heterozygous for two novel mutations, c.445C > G (p.R149G) and c.774_778insG (p.A260GfsX24).


Assuntos
Monofosfato de Adenosina/análogos & derivados , Adenilossuccinato Liase/deficiência , Análise Mutacional de DNA , Testes Genéticos/métodos , Mutação , Erros Inatos do Metabolismo da Purina-Pirimidina/diagnóstico , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Adenosina/análogos & derivados , Adenosina/urina , Monofosfato de Adenosina/deficiência , Monofosfato de Adenosina/genética , Adenilossuccinato Liase/genética , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/urina , Transtorno Autístico , Biomarcadores/urina , Desenvolvimento Infantil , Cromatografia Líquida de Alta Pressão , Predisposição Genética para Doença , Heterozigoto , Humanos , Lactente , Recém-Nascido , Malásia , Masculino , Mioclonia/diagnóstico , Mioclonia/genética , Fenótipo , Valor Preditivo dos Testes , Transtornos Psicomotores/diagnóstico , Transtornos Psicomotores/genética , Desempenho Psicomotor , Erros Inatos do Metabolismo da Purina-Pirimidina/complicações , Erros Inatos do Metabolismo da Purina-Pirimidina/enzimologia , Ribonucleosídeos/urina , Convulsões/diagnóstico , Convulsões/genética , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
19.
Biochim Biophys Acta ; 1794(4): 642-54, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19111634

RESUMO

Adenylosuccinate lyase (ASL) catalyzes two distinct but chemically similar reactions in purine biosynthesis. The first, exclusive to the de novo pathway involves the cleavage of 5-aminoimidazole-4-(N-succinylcarboxamide) ribonucleotide (SAICAR) to 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) and fumarate and the second common to both de novo and the salvage pathways involves the cleavage of succinyl-adenosine monophosphate (SAMP) to AMP and fumarate. A detailed kinetic and catalytic mechanism of the recombinant His-tagged ASL from Plasmodium falciparum (PfASL) is presented here. Initial velocity kinetics, product inhibition studies and transient kinetics indicate a Uni-Bi rapid equilibrium ordered mechanism. Substrate and solvent isotope effect studies implicate the process of C(gamma)-N bond cleavage to be rate limiting. Interestingly, the effect of pH on k(cat) and k(cat)/K(m) highlight ionization of the base only in the enzyme substrate complex and not in the enzyme alone, thereby implicating the pivotal role of the substrate in the activation of the catalytic base. Site-directed mutagenesis implicates a key role for the conserved serine (S298) in catalysis. Despite the absence of a de novo pathway for purine synthesis and most importantly, the absence of other enzymes that can metabolise AICAR in P. falciparum, PfASL catalyzes the SAICAR cleavage reaction with kinetic parameters similar to those of SAMP reaction and binds AICAR with affinity similar to that of AMP. The presence of this catalytic feature allows the use of AICAR or its analogues as inhibitors of PfASL and hence, as novel putative anti-parasitic agents. In support of this, we do see a dose dependent inhibition of parasite growth in the presence of 5-aminoimidazole-4-carboxamide ribonucleoside (AICAriboside) with half-maximal inhibition at 167+/-5 microM.


Assuntos
Adenilossuccinato Liase/metabolismo , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/metabolismo , Monofosfato de Adenosina/metabolismo , Adenilossuccinato Liase/química , Adenilossuccinato Liase/genética , Sequência de Aminoácidos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/metabolismo , Aminoimidazol Carboxamida/farmacologia , Animais , Biocatálise , AMP Cíclico/análogos & derivados , AMP Cíclico/metabolismo , Escherichia coli/genética , Humanos , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleotídeos/metabolismo , Ribonucleotídeos/farmacologia , Alinhamento de Sequência , Especificidade por Substrato , Termodinâmica
20.
Eur J Hum Genet ; 17(1): 133-6, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18830228

RESUMO

Adenylosuccinate lyase deficiency is a rare autosomal disorder of de novo purine synthesis, which results in the accumulation of succinylpurines in body fluids. Patients with adenylosuccinate lyase deficiency show a variable combination of mental retardation, epilepsy and autistic features and are usually discovered during screens for unexplained encephalopathy using the Bratton-Marshall assay that reveals the excretion of the succinylaminoimidazolecarboxamide riboside (SAICAr). Here, we report on two sisters aged 11 and 12 years presented with global developmental delay, motor apraxia, severe speech deficits, seizures and behavioural features, which combined excessive laughter, a very happy disposition, hyperactivity, a short attention span, the mouthing of objects, tantrums and stereotyped movements that gave a behavioural profile mimicking Angelman syndrome. Both patients had an increased succinyladenosine/SAICAr ratio of 1.6, and exhibited a novel homozygous missense mutation (c.674T>C; p.Met225Thr) in the exon 6 of the ADSL gene. We suggest that these clinical features might be a new presentation of adenylosuccinate lyase deficiency. On the basis of this observation, although adenylosuccinate lyase deficiency is a rare disorder, this diagnosis should be considered in patients with mental retardation and a behavioural profile suggestive of Angelman syndrome.


Assuntos
Adenilossuccinato Liase/deficiência , Adenilossuccinato Liase/genética , Comportamento , Deficiência Intelectual/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Adenosina/análogos & derivados , Adenosina/urina , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/urina , Síndrome de Angelman/diagnóstico , Criança , Cromatografia Líquida de Alta Pressão , Consanguinidade , Feminino , Humanos , Deficiência Intelectual/psicologia , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Erros Inatos do Metabolismo da Purina-Pirimidina/diagnóstico , Erros Inatos do Metabolismo da Purina-Pirimidina/psicologia , Ribonucleotídeos/urina , Análise de Sequência de DNA , Comportamento Estereotipado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA