Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 757: 110040, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38750922

RESUMO

Purine salvage enzymes have been of significant interest in anti-Leishmanial drug development due to the parasite's critical dependence on this pathway for the supply of nucleotides in the absence of a de novo purine synthesis pathway. Adenylosuccinate lyase (ADSL) one of the key enzymes in this pathway is a homo-tetramer, where the active site is formed by residues from three distinct subunits. Analysis of the subunit interfaces of LdADSL, revealed a conserved Arg40 forming critical inter-subunit interactions and also involved in substrate binding. We hypothesized that mutating this residue can affect both the structural stability and activity of the enzyme. In our study, we used biochemical, biophysical, and computational simulation approaches to understand the structural and functional role of Arg40 in LdADSL. We have replaced Arg40 with an Ala and Glu using site directed mutagenesis. The mutant enzymes were similar to wild-type enzyme in secondary structure and subunit association. Thermal shift assays indicated that the mutations affected the protein stability. Both mutants showed decreased specific activities in both forward and reverse directions with significantly weakened affinities towards succinyl-adenosine monophosphate (SAMP). The mutations resulted in changes in C3 loop conformation and D3 domain rotation. Consequently, the orientation of the active site amino acid residues changed resulting in compromised activity and stability. Studies so far have majorly focused on the ADSL active site for designing drugs against it. Our work indicates that an alternative inhibitory mechanism for the enzyme can be designed by targeting the inter-subunit interface.


Assuntos
Adenilossuccinato Liase , Arginina , Estabilidade Enzimática , Leishmania donovani , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/química , Adenilossuccinato Liase/metabolismo , Leishmania donovani/enzimologia , Leishmania donovani/genética , Arginina/metabolismo , Arginina/química , Purinas/metabolismo , Purinas/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Mutagênese Sítio-Dirigida , Domínio Catalítico , Simulação de Dinâmica Molecular
2.
Cancer Gene Ther ; 29(12): 1878-1894, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35840668

RESUMO

In EGFR-mutant lung cancer, drug-tolerant persister cells (DTPCs) show prolonged survival when receiving EGFR tyrosine kinase inhibitor (TKI) treatments. They are a likely source of drug resistance, but little is known about how these cells tolerate drugs. Ribonucleic acids (RNAs) molecules control cell growth and stress responses. Nucleic acid metabolism provides metabolites, such as purines, supporting RNA synthesis and downstream functions. Recently, noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), have received attention due to their capacity to repress gene expression via inhibitory binding to downstream messenger RNAs (mRNAs). Here, our study links miRNA expression to purine metabolism and drug tolerance. MiR-21-5p (guide strand) is a commonly upregulated miRNA in disease states, including cancer and drug resistance. However, the expression and function of miR-21-3p (passenger strand) are not well understood. We found that upregulation of miR-21-5p and miR-21-3p tune purine metabolism leading to increased drug tolerance. Metabolomics data demonstrated that purine metabolism was the top pathway in the DTPCs compared with the parental cells. The changes in purine metabolites in the DTPCs were partially rescued by targeting miR-21. Analysis of protein levels in the DTPCs showed that reduced expression of adenylosuccinate lyase (ADSL) was reversed after the miR-21 knockdown. ADSL is an essential enzyme in the de novo purine biosynthesis pathway by converting succino-5-aminoimidazole-4-carboxamide riboside (succino-AICAR or SAICAR) to AICAR (or acadesine) as well as adenylosuccinate to adenosine monophosphate (AMP). In the DTPCs, miR-21-5p and miR-21-3p repress ADSL expression. The levels of top decreased metabolite in the DTPCs, AICAR was reversed when miR-21 was blocked. AICAR induced oxidative stress, evidenced by increased reactive oxygen species (ROS) and reduced expression of nuclear factor erythroid-2-related factor 2 (NRF2). Concurrently, miR-21 knockdown induced ROS generation. Therapeutically, a combination of AICAR and osimertinib increased ROS levels and decreased osimertinib-induced NRF2 expression. In a MIR21 knockout mouse model, MIR21 loss-of-function led to increased purine metabolites but reduced ROS scavenging capacity in lung tissues in physiological conditions. Our data has established a link between ncRNAs, purine metabolism, and the redox imbalance pathway. This discovery will increase knowledge of the complexity of the regulatory RNA network and potentially enable novel therapeutic options for drug-resistant patients.


Assuntos
Adenilossuccinato Liase , MicroRNAs , Camundongos , Animais , Adenilossuccinato Liase/química , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Fator 2 Relacionado a NF-E2 , Espécies Reativas de Oxigênio , MicroRNAs/genética , Purinas , RNA Mensageiro/química , Receptores ErbB/genética
3.
Mol Biochem Parasitol ; 214: 27-35, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28347672

RESUMO

Schistosoma mansoni is the parasite responsible for schistosomiasis, a disease that affects about 218 million people worldwide. Currently, both direct treatment and disease control initiatives rely on chemotherapy using a single drug, praziquantel. Concerns over the possibility of resistance developing to praziquantel, have stimulated efforts to develop new drugs for the treatment of schistosomiasis. Schistosomes do not have the de novo purine biosynthetic pathway, and instead depend entirely on the purine salvage pathway to supply its need for purines. The purine salvage pathway has been reported as a potential target for developing new drugs against schistosomiasis. Adenylosuccinate lyase (SmADSL) is an enzyme in this pathway, which cleaves adenylosuccinate (ADS) into adenosine 5'-monophosphate (AMP) and fumarate. SmADSL kinetic characterization was performed by isothermal titration calorimetry (ITC) using both ADS and SAICAR as substrates. Structures of SmADSL in Apo form and in complex with AMP were elucidated by x-ray crystallography revealing a highly conserved tetrameric structure required for their function since the active sites are formed from residues of three different subunits. The active sites are also highly conserved between species and it is difficult to identify a potent species-specific inhibitor for the development of new therapeutic agents. In contrast, several mutagenesis studies have demonstrated the importance of dimeric interface residues in the stability of the quaternary structure of the enzyme. The lower conservation of these residues between SmADSL and human ADSL could be used to lead the development of anti-schistosomiasis drugs based on disruption of subunit interfaces. These structures and kinetics data add another layer of information to Schistosoma mansoni purine salvage pathway.


Assuntos
Adenilossuccinato Liase/química , Adenilossuccinato Liase/metabolismo , Schistosoma mansoni/enzimologia , Monofosfato de Adenosina/metabolismo , Adenilossuccinato Liase/genética , Animais , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , Fumaratos/metabolismo , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Estabilidade Proteica
4.
Biochemistry ; 51(33): 6701-13, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22812634

RESUMO

Adenylosuccinate lyase (ADSL) deficiency is a rare autosomal recessive disorder, which causes a defect in purine metabolism resulting in neurological and physiological symptoms. ADSL executes two nonsequential steps in the de novo synthesis of AMP: the conversion of phosphoribosylsuccinyl-aminoimidazole carboxamide (SAICAR) to phosphoribosylaminoimidazole carboxamide, which occurs in the de novo synthesis of IMP, and the conversion of adenylosuccinate to AMP, which occurs in the de novo synthesis of AMP and also in the purine nucleotide cycle, using the same active site. Mutation of ADSL's arginine 303 to a cysteine is known to lead to ADSL deficiency. Interestingly, unlike other mutations leading to ADSL deficiency, the R303C mutation has been suggested to more significantly affect the enzyme's ability to catalyze the conversion of succinyladenosine monophosphate than that of SAICAR to their respective products. To better understand the causation of disease due to the R303C mutation, as well as to gain insights into why the R303C mutation potentially has a disproportional decrease in activity toward its substrates, the wild type (WT) and the R303C mutant of ADSL were investigated enzymatically and thermodynamically. Additionally, the X-ray structures of ADSL in its apo form as well as with the R303C mutation were elucidated, providing insight into ADSL's cooperativity. By utilizing this information, a model for the interaction between ADSL and SAICAR is proposed.


Assuntos
Adenilossuccinato Liase/química , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/metabolismo , Adenilossuccinato Liase/deficiência , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Sequência de Aminoácidos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/metabolismo , Transtorno Autístico , Humanos , Mutação de Sentido Incorreto , Ribonucleotídeos/metabolismo , Alinhamento de Sequência
5.
Artigo em Inglês | MEDLINE | ID: mdl-19724117

RESUMO

Adenylosuccinate lyase (ASL) is an enzyme from the purine-biosynthetic pathway that catalyzes the cleavage of 5-aminoimidazole-4-(N-succinylcarboxamide) ribonucleotide (SAICAR) to 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) and fumarate. ASL is also responsible for the conversion of succinyladenosine monophosphate (SAMP) to adenosine monophosphate (AMP) and fumarate. Here, the crystal structure of adenylosuccinate lyase from Escherichia coli was determined to 1.9 A resolution. The enzyme adopts a substrate-bound conformation as a result of the presence of two phosphate ions bound in the active site. Comparison with previously solved structures of the apoenzyme and an SAMP-bound H171A mutant reveals a conformational change at His171 associated with substrate binding and confirms the role of this residue as a catalytic acid.


Assuntos
Adenilossuccinato Liase/química , Biocatálise , Escherichia coli/enzimologia , Histidina/metabolismo , Fosfatos/metabolismo , Ácidos , Cristalografia por Raios X , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Especificidade por Substrato
6.
Biochim Biophys Acta ; 1794(4): 642-54, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19111634

RESUMO

Adenylosuccinate lyase (ASL) catalyzes two distinct but chemically similar reactions in purine biosynthesis. The first, exclusive to the de novo pathway involves the cleavage of 5-aminoimidazole-4-(N-succinylcarboxamide) ribonucleotide (SAICAR) to 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) and fumarate and the second common to both de novo and the salvage pathways involves the cleavage of succinyl-adenosine monophosphate (SAMP) to AMP and fumarate. A detailed kinetic and catalytic mechanism of the recombinant His-tagged ASL from Plasmodium falciparum (PfASL) is presented here. Initial velocity kinetics, product inhibition studies and transient kinetics indicate a Uni-Bi rapid equilibrium ordered mechanism. Substrate and solvent isotope effect studies implicate the process of C(gamma)-N bond cleavage to be rate limiting. Interestingly, the effect of pH on k(cat) and k(cat)/K(m) highlight ionization of the base only in the enzyme substrate complex and not in the enzyme alone, thereby implicating the pivotal role of the substrate in the activation of the catalytic base. Site-directed mutagenesis implicates a key role for the conserved serine (S298) in catalysis. Despite the absence of a de novo pathway for purine synthesis and most importantly, the absence of other enzymes that can metabolise AICAR in P. falciparum, PfASL catalyzes the SAICAR cleavage reaction with kinetic parameters similar to those of SAMP reaction and binds AICAR with affinity similar to that of AMP. The presence of this catalytic feature allows the use of AICAR or its analogues as inhibitors of PfASL and hence, as novel putative anti-parasitic agents. In support of this, we do see a dose dependent inhibition of parasite growth in the presence of 5-aminoimidazole-4-carboxamide ribonucleoside (AICAriboside) with half-maximal inhibition at 167+/-5 microM.


Assuntos
Adenilossuccinato Liase/metabolismo , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/metabolismo , Monofosfato de Adenosina/metabolismo , Adenilossuccinato Liase/química , Adenilossuccinato Liase/genética , Sequência de Aminoácidos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/metabolismo , Aminoimidazol Carboxamida/farmacologia , Animais , Biocatálise , AMP Cíclico/análogos & derivados , AMP Cíclico/metabolismo , Escherichia coli/genética , Humanos , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleotídeos/metabolismo , Ribonucleotídeos/farmacologia , Alinhamento de Sequência , Especificidade por Substrato , Termodinâmica
7.
Protein Sci ; 17(7): 1162-74, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18469177

RESUMO

Adenylosuccinate lyase (ASL) catalyzes two beta-elimination reactions in purine biosynthesis, leading to the question of whether the two substrates occupy the same or different active sites. Kinetic studies of Bacillus subtilis and human ASL with a new substrate analog, adenosine phosphonobutyric acid, 2'(3'), 5'-diphosphate (APBADP), show that it acts as a competitive inhibitor with respect to either substrate (K(I) approximately 0.1 microM), indicating that the two substrates occupy the same active site. Binding studies show that both the B. subtilis and human ASLs bind up to 4 mol of APBADP per mole of enzyme tetramer and that both enzymes exhibit cooperativity: negative for B. subtilis ASL and positive for human ASL. Mutant B. subtilis ASLs, with replacements for residues previously identified as critical for catalysis, bind the substrate analog similarly to wild-type ASL. Two serines in a flexible loop of ASL have been proposed to play roles in catalysis because they are close to the substrate in the crystal structure of Escherichia coli ASL. We have now mutated the corresponding serines to alanines in B. subtilis and human ASL to evaluate their involvement in enzyme function. Kinetic data reveal that human Ser(289) and B. subtilis Ser(262) and Ser(263) are essential for catalysis, while the ability of these Ser mutants to bind APBADP suggests that they do not contribute to substrate affinity. Although these serines are not visible in the crystal structure of human adenylosuccinate lyase complexed with substrate or products (PDB #2VD6), they may be interacting with the active sites.


Assuntos
Adenilossuccinato Liase/metabolismo , Bacillus subtilis/enzimologia , Serina/genética , Adenilossuccinato Liase/química , Adenilossuccinato Liase/genética , Sequência de Aminoácidos , Catálise , Dicroísmo Circular , Humanos , Hidrólise , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Especificidade por Substrato
8.
J Mol Biol ; 370(3): 541-54, 2007 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-17531264

RESUMO

Adenylosuccinate lyase (ADL) catalyzes the breakdown of 5-aminoimidazole- (N-succinylocarboxamide) ribotide (SAICAR) to 5-aminoimidazole-4-carboxamide ribotide (AICAR) and fumarate, and of adenylosuccinate (ADS) to adenosine monophosphate (AMP) and fumarate in the de novo purine biosynthetic pathway. ADL belongs to the argininosuccinate lyase (ASL)/fumarase C superfamily of enzymes. Members of this family share several common features including: a mainly alpha-helical, homotetrameric structure; three regions of highly conserved amino acid residues; and a general acid-base catalytic mechanism with the overall beta-elimination of fumarate as a product. The crystal structures of wild-type Escherichia coli ADL (ec-ADL), and mutant-substrate (H171A-ADS) and -product (H171N-AMP.FUM) complexes have been determined to 2.0, 1.85, and 2.0 A resolution, respectively. The H171A-ADS and H171N-AMP.FUM structures provide the first detailed picture of the ADL active site, and have enabled the precise identification of substrate binding and putative catalytic residues. Contrary to previous suggestions, the ec-ADL structures implicate S295 and H171 in base and acid catalysis, respectively. Furthermore, structural alignments of ec-ADL with other superfamily members suggest for the first time a large conformational movement of the flexible C3 loop (residues 287-303) in ec-ADL upon substrate binding and catalysis, resulting in its closure over the active site. This loop movement has been observed in other superfamily enzymes, and has been proposed to be essential for catalysis. The ADL catalytic mechanism is re-examined in light of the results presented here.


Assuntos
Adenilossuccinato Liase/química , Adenilossuccinato Liase/metabolismo , Escherichia coli/enzimologia , Estrutura Terciária de Proteína , Adenilossuccinato Liase/genética , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Mutação
9.
Biochemistry ; 43(23): 7391-402, 2004 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15182182

RESUMO

In adenylosuccinate lyase from Bacillus subtilis, Gln(212), Asn(270), and Arg(301) are conserved and located close to the succinyl moiety of docked adenylosuccinate. We constructed mutant enzymes with Gln(212) replaced by Glu and Met, Asn(270) by Asp and Leu, and Arg(301) by Gln or Lys. The wild-type and mutant enzymes were expressed in Escherichia coli and purified to homogeneity. The specific activities of the Q212M and the 270 and 301 mutant enzymes were decreased more than 3000-fold as compared to the wild type. Only Q212E retained sufficient activity for determination of its kinetic parameters: V(max) was decreased approximately 1000-fold, and K(m) was increased 6-fold, as compared to the wild-type enzyme. Adenylosuccinate binding studies of the other mutants revealed greatly weakened affinities that contributed to, but did not account entirely for, the loss of activity. These mutant enzymes did not differ greatly from the wild-type enzyme in secondary structure or subunit association state, as shown by circular dichroism spectroscopy and light-scattering photometry. Incubation of pairs of inactive mutant enzymes led to reconstitution of some functional sites by subunit complementation, with recovery of up to 25% of the specific activity of the wild-type enzyme. Subunit complementation occurs only if the two mutations are contributed to the active site by different subunits. Thus, mixing Q212E with N270L enzyme yielded a specific activity of approximately 20% of the wild-type enzyme, while mixing Q212M with R301K enzyme did not restore activity. As supported by computer modeling, the studies presented here indicate that Gln(212), Asn(270), and Arg(301) are indispensable to catalysis by adenylosuccinate lyase and probably interact noncovalently with the carboxylate anions of the substrates 5-aminoimidazole-4(N-succinylocarboxamide)ribonucleotide and adenylosuccinate, optimizing their bound orientations.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Adenilossuccinato Liase/química , Adenilossuccinato Liase/metabolismo , Arginina/metabolismo , Asparagina/metabolismo , Bacillus subtilis/enzimologia , Glutamina/metabolismo , Monofosfato de Adenosina/metabolismo , Adenilossuccinato Liase/genética , Sequência de Aminoácidos , Animais , Arginina/genética , Asparagina/genética , Bacillus subtilis/genética , Sítios de Ligação , Catálise , Dicroísmo Circular , Glutamina/genética , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Peso Molecular , Mutagênese Sítio-Dirigida/genética , Estrutura Terciária de Proteína , Alinhamento de Sequência , Termodinâmica
10.
Biochemistry ; 42(7): 1831-41, 2003 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-12590570

RESUMO

Adenylosuccinate lyase, an enzyme catalyzing two reactions in purine biosynthesis (the cleavage of either adenylosuccinate or succinylaminoimidazole carboxamide ribotide), has been implicated in a human disease arising from point mutations in the gene encoding the enzyme. Asn(276) of Bacillus subtilis adenylosuccinate lyase, a residue corresponding to the location of a human enzyme mutation, was replaced by Cys, Ser, Ala, Arg, and Glu. The mutant enzymes exhibit decreased V(max) values (2-400-fold lower) for both substrates compared to the wild-type enzyme and some changes in the pH dependence of V(max) but no loss in affinity for adenylosuccinate. Circular dichroism reveals no difference in secondary structure between the wild-type and mutant enzymes. We show here for the first time that wild-type adenylosuccinate lyase exhibits a protein concentration dependence of molecular weight, secondary structure, and specific activity. An equilibrium constant between the dimer and tetramer was measured by light scattering for the wild-type and mutant enzymes. The equilibrium is somewhat shifted toward the tetramer in the mutant enzymes. The major difference between the wild-type and mutant enzymes appears to be in quaternary structure, with many mutant enzymes exhibiting marked thermal instability relative to the wild-type enzyme. We propose that mutations at position 276 result in structurally impaired adenylosuccinate lyases which are assembled into defective tetramers.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Adenilossuccinato Liase/química , Adenilossuccinato Liase/deficiência , Aminoimidazol Carboxamida/análogos & derivados , Asparagina/química , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Mutagênese Sítio-Dirigida , Monofosfato de Adenosina/química , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/isolamento & purificação , Sequência de Aminoácidos , Aminoimidazol Carboxamida/química , Arginina/genética , Asparagina/genética , Asparagina/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Dicroísmo Circular , Ativação Enzimática/genética , Humanos , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Peso Molecular , Mutação Puntual , Estrutura Secundária de Proteína/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Ribonucleotídeos/química , Especificidade por Substrato/genética , Treonina/genética
11.
Int J Parasitol ; 32(12): 1487-95, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12392914

RESUMO

Adenylosuccinate lyase is an enzyme used in parasite nucleotide salvage pathways that cleaves adenylosuccinate into adenosine 5'-monophosphate and fumarate. A cDNA encoding adenylosuccinate lyase from the trematode parasite Schistosoma mansoni has been cloned for analysis. Sequencing of the cDNA revealed an open reading frame of 1454 nucleotides that codes for a protein with a predicted mass of about 54.5 kDa. Comparative analysis of the predicted protein sequence shows that S. mansoni adenylosuccinate lyase has a lot of similarity with human adenylosuccinate lyase. Genomic analysis using S. mansoni adenylosuccinate lyase-containing bacterial artificial chromosome (BAC) clones revealed a gene of approximately 19.4 kb consisting of eight exons and seven introns. Intron 6 was found to contain a novel 2.9 kb long terminal repeat retrotransposon with direct terminal repeats of 500 nucleotides. Fluorescence in situ hybridisation mapping localised S. mansoni adenylosuccinate lyase to the Z and W chromosomes. Analysis of S. mansoni adenylosuccinate lyase mRNA expression levels using real time reverse transcriptase (RT)-PCR showed that S. mansoni adenylosuccinate lyase is expressed at higher levels in the female worms than in the male worms and is expressed at different levels than other purine nucleotide salvage enzymes. Male homogenate showed a specific activity of 10.3 units/mg protein while the female showed a specific activity of 24.2 units/mg protein. These data indicate that S. mansoni adenylosuccinate lyase is an important parasite enzyme and should be examined as a potential chemotherapeutic target.


Assuntos
Adenilossuccinato Liase/química , Adenilossuccinato Liase/genética , Antineoplásicos/química , Desenho de Fármacos , Schistosoma mansoni/enzimologia , Schistosoma mansoni/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , Éxons/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Íntrons/genética , Masculino , Dados de Sequência Molecular , Peso Molecular , Mapeamento Físico do Cromossomo , Purinas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retroelementos/genética , Homologia de Sequência de Aminoácidos , Caracteres Sexuais , Sequências Repetidas Terminais/genética
12.
Am J Hum Genet ; 71(1): 14-21, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12016589

RESUMO

Adenylosuccinate lyase (ADSL; also called "adenylosuccinase") catalyzes two steps in the synthesis of purine nucleotides: (1) the conversion of succinylaminoimidazolecarboxamide ribotide into aminoimidazolecarboxamide ribotide and (2) the conversion of adenylosuccinate into adenosine monophosphate. ADSL deficiency, a recessively inherited disorder, causes variable-but most often severe-mental retardation, frequently accompanied by epilepsy and/or autism. It is characterized by the accumulation, in body fluids, of succinylaminoimidazolecarboxamide riboside and succinyladenosine, the dephosphorylated derivatives of the two substrates of the enzyme. Analysis of the ADSL gene of three unrelated patients with ADSL deficiency, in whom one of the ADSL alleles displayed a normal coding sequence, revealed a -49T-->C mutation in the 5' untranslated region of this allele. Measurements of the amount of mRNA transcribed from the latter allele showed that it was reduced to approximately 33% of that transcribed from the alleles mutated in their coding sequence. Further investigations showed that the -49T-->C mutation provokes a reduction to 25% of wild-type control of promoter function, as evaluated by luciferase activity and mRNA level in transfection experiments. The mutation also affects the binding of nuclear respiratory factor 2 (NRF-2), a known activator of transcription, as assessed by gel-shift studies. Our findings indicate that a mutation of a regulatory region of the ADSL gene might be an unusually frequent cause of ADSL deficiency, and they suggest a role for NRF-2 in the gene regulation of the purine biosynthetic pathway.


Assuntos
Adenilossuccinato Liase/deficiência , Adenilossuccinato Liase/genética , Proteínas de Ligação a DNA/metabolismo , Mutação , Fatores de Transcrição/metabolismo , Regiões 5' não Traduzidas , Adenilossuccinato Liase/química , Adenilossuccinato Liase/metabolismo , Alelos , Sequência de Bases , Sítios de Ligação/genética , Mapeamento Cromossômico , Clonagem Molecular , DNA Complementar/genética , Epilepsia/enzimologia , Epilepsia/genética , Feminino , Fator de Transcrição de Proteínas de Ligação GA , Humanos , Deficiência Intelectual/enzimologia , Deficiência Intelectual/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Biochemistry ; 41(7): 2217-26, 2002 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-11841213

RESUMO

Tetrameric adenylosuccinate lyase (ASL) of Bacillus subtilis catalyzes the cleavage of adenylosuccinate to form AMP and fumarate. We previously reported that two distinct subunits contribute residues to each active site, including the His68 and His89 from one and His141 from a second subunit [Brosius, J. L., and Colman, R. F. (2000) Biochemistry 39, 13336-13343]. Glu(275) is 2.8 A from His141 in the ASL crystal structure, and Lys268 is also in the active site region; Glu275 and Lys268 come from a third, distinct subunit. Using site-directed mutagenesis, we have replaced Lys268 by Arg, Gln, Glu, and Ala, with specific activities of the purified mutant enzymes being 0.055, 0.00069, 0.00028, and 0.0, respectively, compared to 1.56 units/mg for wild-type (WT) enzyme. Glu275 was substituted by Gln, Asp, Ala, and Arg; none of these homogeneous mutant enzymes has detectable activity. Circular dichroism and light scattering reveal that neither the secondary structure nor the oligomeric state of the Lys268 mutant enzymes has been perturbed. Native gel electrophoresis and circular dichroism indicate that the Glu275 mutant enzymes are tetramers, but their conformation is altered slightly. For K268R, the K(m)s for all substrates are similar to WT enzyme. Binding studies using [2-3H]-adenylosuccinate reveal that none of the Glu275 mutant enzymes, nor inactive K268A, can bind substrate. We propose that Lys268 participates in binding substrate and that Glu275 is essential for catalysis because of its interaction with His141. Incubation of H89Q with K268Q or E275Q leads to restoration of up to 16% WT activity, while incubation of H141Q with K268Q or E275Q results in 6% WT activity. These complementation studies provide the first functional evidence that a third subunit contributes residues to each intersubunit active site of ASL. Thus, adenylosuccinate lyase has four active sites per enzyme tetramer, each of which is formed from regions of three subunits.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Adenilossuccinato Liase/metabolismo , Substituição de Aminoácidos , Ácido Glutâmico/metabolismo , Lisina/metabolismo , Fragmentos de Peptídeos/metabolismo , Monofosfato de Adenosina/metabolismo , Adenilossuccinato Liase/química , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/isolamento & purificação , Alanina/genética , Substituição de Aminoácidos/genética , Arginina/genética , Bacillus subtilis/enzimologia , Sítios de Ligação/genética , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática/genética , Teste de Complementação Genética , Ácido Glutâmico/genética , Cinética , Luz , Lisina/genética , Peso Molecular , Mutagênese Sítio-Dirigida , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Estrutura Secundária de Proteína , Espalhamento de Radiação , Trítio/metabolismo
14.
Infect Genet Evol ; 1(4): 297-301, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12798008

RESUMO

Phylogenetic studies of the genus Plasmodium have been performed using sequences of the nuclear, mitochondrial and plastid genes. Here we have analyzed the adenylosuccinate lyase (ASL) gene, which encodes an enzyme involved in the salvage of host purines needed by malaria parasites for DNA synthesis. The ASL gene is present in several eukaryotic as well as prokaryotic organisms and does not have repeat regions, which facilitates the accuracy of the alignment. Furthermore, it has been shown that ASL is not subject to positive natural selection. We have sequenced the ASL gene of several different Plasmodium species infecting humans, rodents, monkeys and birds and used the obtained sequences along with the previously known P. falciparum ASL sequence, for structural and phylogenetic analysis of the genus Plasmodium. The genetic divergence of ASL is comparable with that observed in other nuclear genes such as cysteine proteinase, although ASL cannot be considered conserved when compared to aldolase or superoxide dismutase, which exhibit a slower rate of evolution. Nevertheless, a protein like ASL has a rate of evolution that provides enough information for elucidating evolutionary relationships. We modeled 3D structures of the ASL protein based on sequences used in the phylogenetic analysis and obtained a consistent structure for four different species despite the divergence observed. Such models would facilitate alignment in further studies with a greater number of plasmodial species or other Apicomplexa.


Assuntos
Adenilossuccinato Liase/genética , Genes de Protozoários , Filogenia , Plasmodium/genética , Adenilossuccinato Liase/química , Sequência de Aminoácidos , Animais , Evolução Molecular , Variação Genética , Humanos , Imageamento Tridimensional , Modelos Moleculares , Dados de Sequência Molecular , Plasmodium/isolamento & purificação , Plasmodium/patogenicidade , Distribuição de Poisson , Conformação Proteica , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
15.
Hum Mol Genet ; 9(14): 2159-65, 2000 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-10958654

RESUMO

Adenylosuccinate lyase (ADSL) deficiency (MIM 103050) is an autosomal recessive inborn error of purine synthesis characterized by the accumulation in body fluids of succinylaminoimidazolecarboxamide (SAICA) riboside and succinyladenosine (S-Ado), the dephosphorylated derivatives of the two substrates of the enzyme. Because ADSL-deficient patients display widely variable degrees of psychomotor retardation, we have expressed eight mutated ADSL enzymes as thioredoxin fusions and compared their properties with the clinical and biochemical characteristics of 10 patients. Three expressed mutated ADSL enzymes (M26L, R426H and T450S) were thermolabile, four (A2V, R141W, R303C and S395R) were thermostable and one (del206-218), was inactive. Thermolabile mutations decreased activities with SAICA ribotide (SAICAR) and adenylosuccinate (S-AMP) in parallel, or more with SAICAR than with S-AMP. Patients homozygous for one of these mutations, R426H, displayed similarly decreased ADSL activities in their fibroblasts, S-Ado:SAICA riboside ratios of approximately 1 in their cerebrospinal fluid and were profoundly retarded. With the exception of A2V, thermostable mutations decreased activity with S-AMP to a much more marked extent than with SAICAR. Two unrelated patients homozygous for one of the thermostable mutations, R303C, also displayed a much more marked decrease in the activity of fibroblast ADSL with S-AMP than with SAICAR, had S-Ado:SAICA riboside ratios between 3 and 4 in their cerebrospinal fluid and were mildly retarded. These results suggest that, in some cases, the genetic lesion of ADSL determines the ratio of its activities with S-AMP versus SAICAR, which in turn defines the S-Ado:SAICA riboside ratio and the patients' mental status.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Adenilossuccinato Liase/deficiência , Aminoimidazol Carboxamida/análogos & derivados , Deficiência Intelectual/genética , Erros Inatos do Metabolismo/genética , Regiões 5' não Traduzidas , Monofosfato de Adenosina/líquido cefalorraquidiano , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/urina , Adenilossuccinato Liase/química , Adenilossuccinato Liase/genética , Aminoimidazol Carboxamida/líquido cefalorraquidiano , Aminoimidazol Carboxamida/metabolismo , Aminoimidazol Carboxamida/urina , Cromatografia em Gel , Eletroforese em Gel de Poliacrilamida , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Genótipo , Homozigoto , Humanos , Cinética , Mutação , Mutação de Sentido Incorreto , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/metabolismo , Ribonucleosídeos/líquido cefalorraquidiano , Ribonucleosídeos/metabolismo , Ribonucleosídeos/urina , Temperatura , Fatores de Tempo
16.
Structure ; 8(2): 163-74, 2000 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-10673438

RESUMO

BACKGROUND: Adenylosuccinate lyase is an enzyme that plays a critical role in both cellular replication and metabolism via its action in the de novo purine biosynthetic pathway. Adenylosuccinate lyase is the only enzyme in this pathway to catalyze two separate reactions, enabling it to participate in the addition of a nitrogen at two different positions in adenosine monophosphate. Both reactions catalyzed by adenylosuccinate lyase involve the beta-elimination of fumarate. Enzymes that catalyze this type of reaction belong to a superfamily, the members of which are homotetramers. Because adenylosuccinate lyase plays an integral part in maintaining proper cellular metabolism, mutations in the human enzyme can have severe clinical consequences, including mental retardation with autistic features. RESULTS: The 1.8 A crystal structure of adenylosuccinate lyase from Thermotoga maritima has been determined by multiwavelength anomalous dispersion using the selenomethionine-substituted enzyme. The fold of the monomer is reminiscent of other members of the beta-elimination superfamily. However, its active tetrameric form exhibits striking differences in active-site architecture and cleft size. CONCLUSIONS: This first structure of an adenylosuccinate lyase reveals that, along with the catalytic base (His141) and the catalytic acid (His68), Gln212 and Asn270 might play a vital role in catalysis by properly orienting the succinyl moiety of the substrates. We propose a model for the dual activity of adenylosuccinate lyase: a single 180 degrees bond rotation must occur in the substrate between the first and second enzymatic reactions. Modeling of the pathogenic human S413P mutation indicates that the mutation destabilizes the enzyme by disrupting the C-terminal extension.


Assuntos
Adenilossuccinato Liase/química , Purinas/biossíntese , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , Primers do DNA , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação Proteica , Homologia de Sequência de Aminoácidos , Thermotoga maritima/enzimologia , Thermotoga maritima/metabolismo
17.
Biochemistry ; 38(1): 22-32, 1999 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-9890879

RESUMO

Mutant adenylosuccinate lyases of Bacillus subtilis were prepared by site-directed mutagenesis with replacements for His141, previously identified by affinity labeling as being in the active site [Lee, T. T., Worby, C., Dixon, J. E., and Colman, R. F. (1997) J. Biol. Chem. 272, 458-465]. Four substitutions (A, L, E, Q) yield mutant enzyme with no detectable catalytic activity, while the H141R mutant is about 10(-)5 as active as the wild-type enzyme. Kinetic studies show, for the H141R enzyme, a Km that is only 3 times that of the wild-type enzyme. Minimal activity was also observed for mutant enzymes with replacements for His68 [Lee, T. T., Worby, C., Bao, Z. -Q., Dixon, J. E., and Colman, R. F. (1998) Biochemistry 37, 8481-8489]. Measurement of the reversible binding of radioactive adenylosuccinate by inactive mutant enzymes with substitutions at either position 68 or 141 shows that their affinities for substrate are decreased by only 10-40-fold. These results suggest that His141, like His68, plays an important role in catalysis, but not in substrate binding. Evidence is consistent with the hypothesis that His141 and His68 function, respectively, as the catalytic base and acid. Circular dichroism spectroscopy and gel filtration chromatography conducted on wild-type and all His141 and His68 mutants reveal that none of the mutant enzymes exhibits major structural changes and that all the enzymes are tetramers. Mixing inactive His141 with inactive His68 mutant enzymes leads to striking increases in catalytic activity. This complementation of mutant enzymes indicates that His141 and His68 come from different subunits to form the active site. A tetrameric structure of adenylosuccinate lyase was constructed by homology modeling based on the known structures in the fumarase superfamily, including argininosuccinate lyase, delta-crystallin, fumarase, and aspartase. The model suggests that each active site is constituted by residues from three subunits, and that His141 and His68 come from two different subunits.


Assuntos
Adenilossuccinato Liase/metabolismo , Bacillus subtilis/enzimologia , Histidina/metabolismo , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/metabolismo , Adenilossuccinato Liase/química , Adenilossuccinato Liase/genética , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Animais , Sítios de Ligação/genética , Catálise , Cromatografia em Gel , Dicroísmo Circular , Teste de Complementação Genética , Histidina/genética , Humanos , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
18.
Biochemistry ; 37(23): 8481-9, 1998 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-9622500

RESUMO

Adenylosuccinate lyase of Bacillus subtilis is inactivated by 2-[(4-bromo-2,3-dioxobutyl)thio]adenosine 5'-monophosphate (2-BDB-TAMP) at pH 7.0. As the reagent concentration is increased, a maximum rate constant is approached, indicative of reversible enzyme-reagent complex formation (KR = 68 +/- 9 microM) prior to irreversible modification (kmax = 0.081 +/- 0.004 min-1). Complete inactivation occurs concomitant with about 1 mol of 2-BDB-[14C]TAMP incorporated/mol of enzyme subunit. Adenylosuccinate, or a combination of AMP and fumarate, decreases the inactivation rate and reduces incorporation of [14C] reagent, whereas either AMP or fumarate alone is much less effective. These observations suggest that 2-BDB-TAMP attacks the adenylosuccinate binding site. Proteolytic digestion of inactivated enzyme, followed by purification of the digest by HPLC, yields the radioactive peptide Ile62-Ala72, in which Arg67 and His68 are the most likely targets. Thus 2-BDB-TAMP reacts with adenylosuccinate lyase at a site distinct from the His141 attacked by 6-BDB-TAMP (Lee, Worby, Dixon, and Colman (1997) J. Biol. Chem. 272, 458-465). Site-directed mutagenesis was used to construct mutant enzymes with replacements for both Arg67 and His68, and either Arg67 or His68. The R67M mutant enzyme has almost the same specific activity as the wild-type enzyme under standard assay conditions, whereas the single mutant H68Q and double mutant R67M-H68Q enzymes exhibit specific activities that are decreased more than 100-fold. These results indicate that while Arg67 and His68 may both be in the region of the substrate site, only His68 is important for the catalytic activity of B. subtilis adenylosuccinate lyase. A role is proposed for His68 as a general acid-base catalyst.


Assuntos
Adenilossuccinato Liase/metabolismo , Marcadores de Afinidade/metabolismo , Bacillus subtilis/enzimologia , AMP Cíclico/análogos & derivados , Histidina/metabolismo , Mutagênese Sítio-Dirigida , Tionucleotídeos/metabolismo , Adenilossuccinato Liase/química , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/isolamento & purificação , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Arginina/genética , Sítios de Ligação/efeitos dos fármacos , Radioisótopos de Carbono , AMP Cíclico/metabolismo , AMP Cíclico/farmacologia , Ativação Enzimática/efeitos dos fármacos , Histidina/genética , Dados de Sequência Molecular , Mapeamento de Peptídeos , Especificidade por Substrato , Tionucleotídeos/farmacologia
19.
Genetics ; 147(2): 383-97, 1997 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9335580

RESUMO

In response to an external source of adenine, yeast cells repress the expression of purine biosynthesis pathway genes. To identify necessary components of this signalling mechanism, we have isolated mutants that are constitutively active for expression. These mutants were named bra (for bypass of repression by adenine). BRA7 is allelic to FCY2, the gene encoding the purine cytosine permease and BRA9 is ADE12, the gene encoding adenylosuccinate synthetase. BRA6 and BRA1 are new genes encoding, respectively, hypoxanthine guanine phosphoribosyl transferase and adenylosuccinate lyase. These results indicate that uptake and salvage of adenine are important steps in regulating expression of purine biosynthetic genes. We have also shown that two other salvage enzymes, adenine phosphoribosyl transferase and adenine deaminase, are involved in activating the pathway. Finally, using mutant strains affected in AMP kinase or ribonucleotide reductase activities, we have shown that AMP needs to be phosphorylated to ADP to exert its regulatory role while reduction of ADP into dADP by ribonucleotide reductase is not required for adenine repression. Together these data suggest that ADP or a derivative of ADP is the effector molecule in the signal transduction pathway.


Assuntos
Adenina/biossíntese , Genes Fúngicos , Mutação , Saccharomyces cerevisiae/genética , Adenina/metabolismo , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/biossíntese , Adenilossuccinato Liase/química , Adenilossuccinato Liase/genética , Sequência de Aminoácidos , Teste de Complementação Genética , Hipoxantina Fosforribosiltransferase/química , Hipoxantina Fosforribosiltransferase/genética , Dados de Sequência Molecular , Fenótipo , Saccharomyces cerevisiae/isolamento & purificação , Homologia de Sequência de Aminoácidos , Transdução de Sinais
20.
Biochemistry ; 35(8): 2658-67, 1996 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-8611571

RESUMO

Rabbit muscle adenylosuccinate lyase upon incubation with 7.5-50 muM 2 -[(4-bromo-2.3-dioxobutyl)thio]adenosine 5'-monophosphate (2-BDB-TAMP) in 0.05 M PIPES buffer, ph 7.0 and 10 degrees C, gives a time dependent biphasic inactivation. The rate of inactivation exhibits a nonlinear dependence on the concentration 2-BDB-TAMP, which can be described by reversible binding of reagent to the enzyme (K1=8.5 microM. 5.2 microM) prior to the irreversible reaction, with maximum rate constants of 0.319 and 0.027 min-1 for the fast and slow phases, respectively. The enzyme is a tetramer, with subunits of 50 000 Da. When the enzyme was 90% inactivated, 0.84 mol of reagent/mol of subunit was incorporated as measured by protein-bound phosphate analysis; similar results were obtained using 2-BDB-[14C]TAMP. Complete protection against inactivation and incorporation was afforded by 1 mM 5'-AMP and by 0.1 mM 5'-AMP + 5 mM fumarate (the natural products of adenylosuccinate hydrolysis) but not by 0.1 mM 5'-AMP alone, 5 mM fumarate alone, or 0.1 mM 5'-AMP + 5 mM maleate or 5 mM succinate. These studies suggest that 2-BDB-TAMP inactivates adenylosuccinate lyase by specific reaction at the substrate binding site, with negative cooperativity between subunits accounting for the appearance of two phases of inactivation. Cleavage of 2-BDB-TAMP-modified enzyme with cyanogen bromide and subsequent separation of peptides by reverse phase HPLC gave only one radioactive peak. This radioactive peptide was further digested with papain and the target site of the 2-BDB-TAMP reaction was identified as Arg112. We conclude that Arg112 is located in the substrate binding site of rabbit muscle adenylosuccinate lyase.


Assuntos
Adenilossuccinato Liase/química , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Adenilossuccinato Liase/antagonistas & inibidores , Adenilossuccinato Liase/genética , Marcadores de Afinidade , Sequência de Aminoácidos , Animais , Bacillus subtilis/enzimologia , Sítios de Ligação , Galinhas , Ácidos Dicarboxílicos/farmacologia , Humanos , Técnicas In Vitro , Dados de Sequência Molecular , Músculos/enzimologia , Fragmentos de Peptídeos , Coelhos , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Tionucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA