Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 482
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38359644

RESUMO

Adenine phosphoribosyltransferase (APRT) deficiency is a rare , hereditary disorder characterized by renal excretion of 2,8-dihydroxyadenine (DHA), leading to kidney stone formation and chronic kidney disease (CKD). Treatment with a xanthine oxidoreductase inhibitor, allopurinol or febuxostat, reduces urinary DHA excretion and slows the progression of CKD. The method currently used for therapeutic monitoring of APRT deficiency lacks specificity and thus, a more reliable measurement technique is needed. In this study, an ultra-performance liquid chromatography-tandem mass spectrometry method for simultaneous quantification of DHA, adenine, allopurinol, oxypurinol and febuxostat in human plasma was optimized and validated. Plasma samples were prepared with protein precipitation using acetonitrile followed by evaporation. The chemometric approach design of experiments was implemented to optimize gradient steepness, amount of organic solvent, flow rate, column temperature, cone voltage, desolvation temperature and desolvation flow rate. Experimental screening was conducted using fractional factorial design with addition of complementary experiments at the axial points for optimization of peak area, peak resolution and peak width. The assay was validated according to the US Food and Drug Administration guidelines for bioanalytical method validation over the concentration range of 50 to 5000 ng/mL for DHA, allopurinol and febuxostat, 100 to 5000 ng/mL for adenine and 50 to 12,000 ng/mL for oxypurinol, with r2 ≥ 0.99. The analytical assay achieved acceptable performance of accuracy (-10.8 to 8.3 %) and precision (CV < 15 %). DHA, adenine, allopurinol, oxypurinol and febuxostat were stable in plasma samples after five freeze-thaw cycles at -80 °C and after storage at -80 °C for 12 months. The assay was evaluated for quantification of the five analytes in clinical plasma samples from six APRT deficiency patients and proved to be both efficient and accurate. The proposed assay will be valuable for guiding pharmacotherapy and thereby contribute to improved and more personalized care for patients with APRT deficiency.


Assuntos
Adenina Fosforribosiltransferase/deficiência , Adenina/análogos & derivados , Alopurinol , Erros Inatos do Metabolismo , Insuficiência Renal Crônica , Urolitíase , Humanos , Alopurinol/uso terapêutico , Oxipurinol , Febuxostat , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massa com Cromatografia Líquida , Adenina/metabolismo , Adenina Fosforribosiltransferase/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico
3.
ACS Chem Biol ; 18(1): 102-111, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36623177

RESUMO

Guvermectin is a novel plant growth regulator that has been registered as a new agrochemical in China. It is an adenosine analogue with an unusual psicofuranose instead of ribose. Herein, the gene cluster responsible for guvermectin biosynthesis in Streptomyces caniferus NEAU6 is identified using gene interruption and heterologous expression experiments. A key intermediate psicofuranine 6'-phosphate (PMP) is chemically synthesized, and the functions of GvmB, C, D, and E are verified by individual stepwise enzyme reactions in vitro. The results also show that the biosynthesis of guvermectin is coupled with adenosine production by a single cluster. The higher catalytic efficiency of GvmB on PMP than AMP ensures the effective biosynthesis of guvermectin. Moreover, a phosphoribohydrolase GvmA is employed in the pathway that can hydrolyze AMP but not PMP and shows higher catalytic efficiency for the AMP hydrolysis than that of the AMP dephosphorylation by GvmB, leading to shunting of adenosine biosynthesis toward the production of guvermectin. Finally, the crystal structure of GvmE in complex with the product PMP has been solved. Glu160 at the C-terminal is identified as the acid/base for protonation/deprotonation of N7 of the adenine ring, demonstrating that GvmE is a noncanonical adenine phosphoribosyltransferase.


Assuntos
Adenina Fosforribosiltransferase , Ácido Glutâmico , Adenina Fosforribosiltransferase/química , Adenosina , Monofosfato de Adenosina/química , Modelos Moleculares
4.
CEN Case Rep ; 12(3): 329-334, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36576711

RESUMO

Adenine phosphoribosyltransferase (APRT) deficiency is a rare autosomal recessive disorder that leads to the accumulation of poorly soluble 2,8-dihydroxyadenine (DHA) in the kidneys, resulting in a variety of renal presentations including nephrolithiasis, acute kidney injury, and chronic kidney disease (CKD) caused by crystal nephropathy. Here, we report a case of a 43-year-old man with 2,8-DHA crystalline nephropathy caused by APRT deficiency strongly suspected by renal biopsy results and definitively diagnosed by a urine gas chromatography-mass spectrometry (GC/MS)-based plasma metabolomic assessment. This case represents the importance of awareness and recognition of the signs and symptoms of this rare condition and its progression to CKD, which can be prevented by the early administration of xanthine oxidoreductase inhibitors.


Assuntos
Cálculos Renais , Insuficiência Renal Crônica , Urolitíase , Masculino , Humanos , Adulto , Adenina Fosforribosiltransferase , Urolitíase/etiologia , Urolitíase/complicações , Cálculos Renais/etiologia , Insuficiência Renal Crônica/complicações
5.
Eur J Haematol ; 110(3): 296-304, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36433728

RESUMO

Long-term disease control in multiple myeloma (MM) is typically an unmet medical need, and most patients experience multiple relapses. Fluorescence in situ hybridization (FISH) is the standard technique to detect chromosomal abnormalities (CAs), which are important to estimate the prognosis of MM and the allocation of risk adapted therapies. In advanced stages, the importance of CAs needs further investigation. From 148 MM patients, two or more paired samples, at least one of which was collected at relapse, were analyzed by FISH. Using targeted next-generation sequencing, we molecularly investigated samples harboring relapse-associated CAs. Sixty-one percent of the patients showed a change in the cytogenetic profile during the disease course, including 10% who acquired high-risk cytogenetics. Amp(1q) (≥4 copies of 1q21), driven by an additional increase in copy number in patients who already had 3 copies of 1q21, was the most common acquired CA with 16% affected patients. Tetraploidy, found in 10% of the samples collected at the last time-point, was unstable over the course of the disease and was associated with TP53 lesions. Our results indicate that cytogenetic progression is common in relapsed patients. The relatively high frequency of amp(1q) suggests an active role for this CA in disease progression.


Assuntos
Adenina Fosforribosiltransferase , Mieloma Múltiplo , Tetraploidia , Humanos , Adenina Fosforribosiltransferase/genética , Aberrações Cromossômicas , Hibridização in Situ Fluorescente , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Recidiva Local de Neoplasia , Prognóstico
6.
Tunis Med ; 100(5): 410-415, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36206091

RESUMO

OBJECTIVE: To describe the clinical, biochemical and evolutive profile of monogenic urinary lithiasis in Tunisian children followed up in a reference service, during a 25 years period. METHODS: This was a single-center retrospective observational study of children with urolithiasis, conducted in the pediatric nephrology department in Charles Nicolle Hospital, Tunis, Tunisia over 25 years (January 1st, 1996 to December 31, 2020). Children≤18 of age with urolithiasis with or without nephrocalcinosis related to a monogenic disease were included in our study. RESULTS: A total of 66 children were included in our study. Patients were 5.92±3.48 years of age at the time of urolithiasis diagnosis, and 5.33±3.66 years of age at the time of the underlying pathology diagnosis. The inherited urolithiasis disorders found in our series were: primary hyperoxaluria in 44 cases, cystinuria in 9 cases, Lesch Nyhan syndrome in 5 cases. Renal tubular acidosis was found in 3 cases, and hereditary xanthinuria in 2 cases. Bartter syndrome, adenine phosphoribosyltransferase deficiency and Hereditary hypophosphatemic rickets with hypercalciuria were found in 1 case each. After an average follow-up of 6.45±3.79 years, six patients were in end-stage renal disease. Three patients had died, all of them being followed for primary hyperoxaluria type 1. CONCLUSIONS: Monogenic urinary lithiasis, although rare, are most likely under-diagnosed in countries with high consanguinity such as Tunisia. The screening of these diseases seems to be of primary importance because of their significant morbidity.


Assuntos
Falência Renal Crônica , Urolitíase , Adenina Fosforribosiltransferase , Criança , Pré-Escolar , Humanos , Encaminhamento e Consulta , Estudos Retrospectivos , Urolitíase/diagnóstico , Urolitíase/epidemiologia , Urolitíase/genética
7.
Methods Mol Biol ; 2546: 421-430, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36127609

RESUMO

Inborn errors of purine metabolism, either deficiencies of synthesis or catabolism pathways, lead to a wide spectrum of clinical presentations: urolithiasis (adenine phosphoribosyltransferase), primary immune deficiency (adenosine deaminase deficiency and purine nucleoside phosphorylase deficiency), severe intellectual disability, and other neurological symptoms (Lesch-Nyhan disease, adenylosuccinase deficiency, and molybdenum cofactor deficiency). A rapid quantitative purine assay was developed using UPLC-MS/MS to determine purine nucleoside and base concentrations in urine. Taking advantages of ultra-performance liquid chromatography, we achieved satisfactory analyte separation and recovery with a polar T3 column in a short run time with no requirement of time-consuming sample preparation or derivatization. This targeted assay is intended for diagnosis and management of purine diseases, newborn screening follow-up of SCID, and evaluation of autism spectrum disorders.


Assuntos
Erros Inatos do Metabolismo da Purina-Pirimidina , Espectrometria de Massas em Tandem , Adenina Fosforribosiltransferase , Cromatografia Líquida , Humanos , Recém-Nascido , Nucleosídeos de Purina , Erros Inatos do Metabolismo da Purina-Pirimidina/diagnóstico , Erros Inatos do Metabolismo da Purina-Pirimidina/urina
8.
Sheng Wu Gong Cheng Xue Bao ; 38(9): 3453-3465, 2022 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-36151813

RESUMO

Chinese hamster ovary (CHO) cells are the preferred host cells for the production of complex recombinant therapeutic proteins. Adenine phosphoribosyltransferase (APRT) is a key enzyme in the purine biosynthesis step that catalyzes the condensation of adenine with phosphoribosylate to form adenosine phosphate AMP. In this study, the gene editing technique was used to knock out the aprt gene in CHO cells. Subsequently, the biological properties of APRT-KO CHO cell lines were investigated. A control vector expressed an enhanced green fluorescent protein (EGFP) and an attenuation vector (containing an aprt-attenuated expression cassette and EGFP) were constructed and transfected into APRT-deficient and wild-type CHO cells, respectively. The stable transfected cell pools were subcultured for 60 generations and the mean fluorescence intensity of EGFP in the recombinant CHO cells was detected by flow cytometry to analyze the EGFP expression stability. PCR amplification and sequencing showed that the aprt gene in CHO cell was successfully knocked out. The obtained APRT-deficient CHO cell line had no significant difference from the wild-type CHO cells in terms of cell morphology, growth, proliferation, and doubling time. The transient expression results indicated that compared with the wild-type CHO cells, the expression of EGFP in the APRT-deficient CHO cells transfected with the control vector and the attenuation vector increased by 42%±6% and 56%±9%, respectively. Especially, the EGFP expression levels in APRT-deficient cells transfected with the attenuation vector were significantly higher than those in wild-type CHO cells (P < 0.05). The findings suggest that the APRT-deficient CHO cell line can significantly improve the long-term expression stability of recombinant proteins. This may provide an effective cell engineering strategy for establishing an efficient and stable CHO cell expression system.


Assuntos
Adenina Fosforribosiltransferase , Adenina , Adenina/metabolismo , Nucleotídeos de Adenina , Adenina Fosforribosiltransferase/genética , Monofosfato de Adenosina , Animais , Células CHO , Cricetinae , Cricetulus , Proteínas Recombinantes/genética
9.
PLoS Negl Trop Dis ; 16(2): e0009926, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35104286

RESUMO

Human African Trypanosomiasis (HAT), also known as sleeping sickness, is a Neglected Tropical Disease endemic to 36 African countries, with approximately 70 million people currently at risk for infection. Current therapeutics are suboptimal due to toxicity, adverse side effects, and emerging resistance. Thus, both effective and affordable treatments are urgently needed. The causative agent of HAT is the protozoan Trypanosoma brucei ssp. Annotation of its genome confirms previous observations that T. brucei is a purine auxotroph. Incapable of de novo purine synthesis, these protozoan parasites rely on purine phosphoribosyltransferases to salvage purines from their hosts for the synthesis of purine monophosphates. Complete and accurate genome annotations in combination with the identification and characterization of the catalytic activity of purine salvage enzymes enables the development of target-specific therapies in addition to providing a deeper understanding of purine metabolism in T. brucei. In trypanosomes, purine phosphoribosyltransferases represent promising drug targets due to their essential and central role in purine salvage. Enzymes involved in adenine and adenosine salvage, such as adenine phosphoribosyltransferases (APRTs, EC 2.4.2.7), are of particular interest for their potential role in the activation of adenine and adenosine-based pro-drugs. Analysis of the T. brucei genome shows two putative aprt genes: APRT1 (Tb927.7.1780) and APRT2 (Tb927.7.1790). Here we report studies of the catalytic activity of each putative APRT, revealing that of the two T. brucei putative APRTs, only APRT1 is kinetically active, thereby signifying a genomic misannotation of Tb927.7.1790 (putative APRT2). Reliable genome annotation is necessary to establish potential drug targets and identify enzymes involved in adenine and adenosine-based pro-drug activation.


Assuntos
Adenina Fosforribosiltransferase/genética , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/genética , Adenina Fosforribosiltransferase/metabolismo , Escherichia coli , Isoformas de Proteínas , Proteínas de Protozoários/metabolismo , Purinas/metabolismo , Saccharomycetales , Trypanosoma brucei brucei/metabolismo
10.
Chembiochem ; 23(3): e202100596, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34859954

RESUMO

AICA (5'-aminoimidazole-4-carboxamide) ribonucleotides with different phosphorylation levels are the pharmaceutically active metabolites of AICA nucleoside-based drugs. The chemical synthesis of AICA ribonucleotides with defined phosphorylation is challenging and expensive. In this study, we describe two enzymatic cascades to synthesize AICA derivatives with defined phosphorylation levels from the corresponding nucleobase and the co-substrate phosphoribosyl pyrophosphate. The cascades are composed of an adenine phosphoribosyltransferase from Escherichia coli (EcAPT) and different polyphosphate kinases: polyphosphate kinase from Acinetobacter johnsonii (AjPPK), and polyphosphate kinase from Meiothermus ruber (MrPPK). The role of the EcAPT is to bind the nucleobase to the sugar moiety, while the kinases are responsible for further phosphorylation of the nucleotide to produce the desired phosphorylated AICA ribonucleotide. The selected enzymes were characterized, and conditions were established for two enzymatic cascades. The diphosphorylated AICA ribonucleotide derivative ZDP, synthesized from the cascade EcAPT/AjPPK, was produced with a conversion up to 91 %. The EcAPT/MrPPK cascade yielded ZTP with conversion up to 65 % with ZDP as a side product.


Assuntos
Adenina Fosforribosiltransferase/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Polifosfatos/metabolismo , Ribonucleotídeos/biossíntese , Acinetobacter/enzimologia , Aminoimidazol Carboxamida/química , Bactérias/enzimologia , Escherichia coli/enzimologia , Concentração de Íons de Hidrogênio , Polifosfatos/química , Ribonucleotídeos/química , Temperatura
11.
Eur J Med Chem ; 225: 113798, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34482272

RESUMO

Some pathogens, including parasites of the genus Trypanosoma causing Human and Animal African Trypanosomiases, cannot synthesize purines de novo and they entirely rely on the purine salvage pathway (PSP) for their nucleotide generation. Thus, their PSP enzymes are considered as promising drug targets, sparsely explored so far. Recently, a significant role of acyclic nucleoside phosphonates (ANPs) as inhibitors of key enzymes of PSP, namely of 6-oxopurine phosphoribosyltransferases (PRTs), has been discovered. Herein, we designed and synthesized two series of new ANPs branched at the C1' position as mimics of adenosine monophosphate. The novel ANPs efficaciously inhibited Trypanosoma brucei adenine PRT (TbrAPRT1) activity in vitro and it was shown that the configuration on the C1' chiral centre strongly influenced their activity: the (R)-enantiomers proved to be more potent compared to the (S)-enantiomers. Two ANPs, with Ki values of 0.39 µM and 0.57 µM, represent the most potent TbrAPRT1 inhibitors reported to date and they are an important tool to further study purine metabolism in various parasites.


Assuntos
Adenina Fosforribosiltransferase/antagonistas & inibidores , Monofosfato de Adenosina/farmacologia , Antiprotozoários/farmacologia , Inibidores Enzimáticos/farmacologia , Nucleosídeos/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Adenina Fosforribosiltransferase/metabolismo , Monofosfato de Adenosina/síntese química , Monofosfato de Adenosina/química , Antiprotozoários/síntese química , Antiprotozoários/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Estrutura Molecular , Nucleosídeos/síntese química , Nucleosídeos/química , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Trypanosoma brucei brucei/enzimologia
12.
Sci Rep ; 11(1): 13317, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172767

RESUMO

All medically important unicellular protozoans cannot synthesize purines de novo and they entirely rely on the purine salvage pathway (PSP) for their nucleotide generation. Therefore, purine derivatives have been considered as a promising source of anti-parasitic compounds since they can act as inhibitors of the PSP enzymes or as toxic products upon their activation inside of the cell. Here, we characterized a Trypanosoma brucei enzyme involved in the salvage of adenine, the adenine phosphoribosyl transferase (APRT). We showed that its two isoforms (APRT1 and APRT2) localize partly in the cytosol and partly in the glycosomes of the bloodstream form (BSF) of the parasite. RNAi silencing of both APRT enzymes showed no major effect on the growth of BSF parasites unless grown in artificial medium with adenine as sole purine source. To add into the portfolio of inhibitors for various PSP enzymes, we designed three types of acyclic nucleotide analogs as potential APRT inhibitors. Out of fifteen inhibitors, four compounds inhibited the activity of the recombinant APRT1 with Ki in single µM values. The ANP phosphoramidate membrane-permeable prodrugs showed pronounced anti-trypanosomal activity in a cell-based assay, despite the fact that APRT enzymes are dispensable for T. brucei growth in vitro. While this suggests that the tested ANP prodrugs exert their toxicity by other means in T. brucei, the newly designed inhibitors can be further improved and explored to identify their actual target(s).


Assuntos
Nucleotídeos de Adenina/metabolismo , Adenina Fosforribosiltransferase/metabolismo , Nucleosídeos/metabolismo , Organofosfonatos/metabolismo , Trypanosoma brucei brucei/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células HeLa , Humanos , Purinas/metabolismo
13.
Nephron ; 145(5): 503-507, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34044400

RESUMO

Adenine phosphoribosyltransferase (APRT) deficiency is a rare disorder caused by an autosomal recessive genetic disease leading to the deposition of 2,8-dihydroxyadenine (2,8-DHA) in the kidney. The disease remains under-recognized, oftentimes diagnosed in late stages of renal insufficiency or a failed kidney allograft with biopsy-proven disease recurrence. Here, we present the case of a 59-year-old middle eastern male patient diagnosed with 2,8-DHA nephropathy after a very unusual presentation, and we show how the initiation of an appropriate therapy slowed down his evolution toward kidney replacement therapies. His disease was found to be secondary to a specific APRT gene variant c.188G>A p (Gly63Asp) also described in 4 other patients, all from middle eastern origins.


Assuntos
Adenina Fosforribosiltransferase/deficiência , Erros Inatos do Metabolismo/fisiopatologia , Urolitíase/fisiopatologia , Cristalização , Febuxostat/uso terapêutico , Supressores da Gota/uso terapêutico , Humanos , Masculino , Erros Inatos do Metabolismo/tratamento farmacológico , Pessoa de Meia-Idade , Urolitíase/tratamento farmacológico
14.
FASEB J ; 35(3): e21296, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33675115

RESUMO

Adenine phosphoribosyltransferase (APRT) is the key enzyme involved in purine salvage by the incorporation of adenine and phosphoribosyl pyrophosphate to provide adenylate nucleotides. To evaluate the role of APRT in the repair processes of cutaneous wounds in healthy skin and in diabetic patients, a diabetic mouse model (db/db) and age-matched wild-type mice were used. Moreover, the topical application of adenine was assessed. In vitro studies, analytical, histological, and immunohistochemical methods were used. Diabetic mice treated with adenine exhibited elevated ATP levels in organismic skin and accelerated wound healing. In vitro studies showed that APRT utilized adenine to rescue cellular ATP levels and proliferation from hydrogen peroxide-induced oxidative damage. HPLC-ESI-MS/MS-based analysis of total adenylate nucleotides in NIH-3T3 fibroblasts demonstrated that adenine addition enlarged the cellular adenylate pool, reduced the adenylate energy charge, and provided additional AMP for the further generation of ATP. These data indicate an upregulation of APRT in skin wounds, highlighting its role during the healing of diabetic wounds through regulation of the nucleotide pool after injury. Furthermore, topical adenine supplementation resulted in an enlargement of the adenylate pool needed for the generation of ATP, an important molecule for wound repair.


Assuntos
Adenina Fosforribosiltransferase/fisiologia , Diabetes Mellitus Experimental/fisiopatologia , Cicatrização/fisiologia , Adenina/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Metabolismo Energético/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Cicatrização/efeitos dos fármacos
15.
Intern Med ; 60(16): 2651-2657, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33678741

RESUMO

We herein report the case of a kidney transplant patient with recurrence of obstructive nephropathy that was not diagnosed as adenine phosphoribosyltransferase (APRT) deficiency until gene testing identified a pathogenic homozygous variant three years after renal transplantation. Subsequently, the patient was treated with allopurinol, and the allograft function increased progressively to normal. In addition, 20 cases of APRT deficiency in renal transplant recipients were also reviewed. We hope this case increases awareness of APRT deficiency in repeated obstructive nephropathy post-transplantation, which is a treatable disease for which the misdiagnosis or delayed diagnosis should be avoided.


Assuntos
Transplante de Rim , Urolitíase , Adenina/efeitos adversos , Adenina/análogos & derivados , Adenina Fosforribosiltransferase/genética , Humanos , Transplante de Rim/efeitos adversos
16.
Sci Rep ; 10(1): 13330, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770053

RESUMO

Metabolism and signaling of cytokinins was first established in plants, followed by cytokinin discoveries in all kingdoms of life. However, understanding of their role in mammalian cells is still scarce. Kinetin is a cytokinin that mitigates the effects of oxidative stress in mammalian cells. The effective concentrations of exogenously applied kinetin in invoking various cellular responses are not well standardized. Likewise, the metabolism of kinetin and its cellular targets within the mammalian cells are still not well studied. Applying vitality tests as well as comet assays under normal and hyper-oxidative states, our analysis suggests that kinetin concentrations of 500 nM and above cause cytotoxicity as well as genotoxicity in various cell types. However, concentrations below 100 nM do not cause any toxicity, rather in this range kinetin counteracts oxidative burst and cytotoxicity. We focus here on these effects. To get insights into the cellular targets of kinetin mediating these pro-survival functions and protective effects we applied structural and computational approaches on two previously testified targets for these effects. Our analysis deciphers vital residues in adenine phosphoribosyltransferase (APRT) and adenosine receptor (A2A-R) that facilitate the binding of kinetin to these two important human cellular proteins. We finally discuss how the therapeutic potential of kinetin against oxidative stress helps in various pathophysiological conditions.


Assuntos
Cinetina/metabolismo , Mamíferos/metabolismo , Estresse Oxidativo/fisiologia , Adenina Fosforribosiltransferase/metabolismo , Animais , Linhagem Celular Tumoral , Células HL-60 , Humanos , Oxirredução , Receptores Purinérgicos P1/metabolismo
17.
J Am Soc Nephrol ; 31(4): 799-816, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32086278

RESUMO

BACKGROUND: Hereditary deficiency of adenine phosphoribosyltransferase causes 2,8-dihydroxyadenine (2,8-DHA) nephropathy, a rare condition characterized by formation of 2,8-DHA crystals within renal tubules. Clinical relevance of rodent models of 2,8-DHA crystal nephropathy induced by excessive adenine intake is unknown. METHODS: Using animal models and patient kidney biopsies, we assessed the pathogenic sequelae of 2,8-DHA crystal-induced kidney damage. We also used knockout mice to investigate the role of TNF receptors 1 and 2 (TNFR1 and TNFR2), CD44, or alpha2-HS glycoprotein (AHSG), all of which are involved in the pathogenesis of other types of crystal-induced nephropathies. RESULTS: Adenine-enriched diet in mice induced 2,8-DHA nephropathy, leading to progressive kidney disease, characterized by crystal deposits, tubular injury, inflammation, and fibrosis. Kidney injury depended on crystal size. The smallest crystals were endocytosed by tubular epithelial cells. Crystals of variable size were excreted in urine. Large crystals obstructed whole tubules. Medium-sized crystals induced a particular reparative process that we term extratubulation. In this process, tubular cells, in coordination with macrophages, overgrew and translocated crystals into the interstitium, restoring the tubular luminal patency; this was followed by degradation of interstitial crystals by granulomatous inflammation. Patients with adenine phosphoribosyltransferase deficiency showed similar histopathological findings regarding crystal morphology, crystal clearance, and renal injury. In mice, deletion of Tnfr1 significantly reduced tubular CD44 and annexin two expression, as well as inflammation, thereby ameliorating the disease course. In contrast, genetic deletion of Tnfr2, Cd44, or Ahsg had no effect on the manifestations of 2,8-DHA nephropathy. CONCLUSIONS: Rodent models of the cellular and molecular mechanisms of 2,8-DHA nephropathy and crystal clearance have clinical relevance and offer insight into potential future targets for therapeutic interventions.


Assuntos
Adenina Fosforribosiltransferase/deficiência , Adenina/análogos & derivados , Nefropatias/etiologia , Nefropatias/patologia , Erros Inatos do Metabolismo/etiologia , Erros Inatos do Metabolismo/patologia , Urolitíase/etiologia , Urolitíase/patologia , Adenina/fisiologia , Adenina Fosforribosiltransferase/metabolismo , Adulto , Animais , Estudos de Coortes , Dieta , Modelos Animais de Doenças , Feminino , Humanos , Lactente , Masculino , Erros Inatos do Metabolismo/metabolismo , Camundongos , Pessoa de Meia-Idade , Urolitíase/metabolismo
18.
Transplantation ; 104(10): 2120-2128, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31880754

RESUMO

BACKGROUND: Adenine phosphoribosyltransferase (APRT) deficiency is a rare, hereditary cause of kidney stones and chronic kidney disease (CKD) which is characterized by 2,8-dihydroxyadenine renal parenchymal crystal deposition. The aim of this study was to examine outcomes of kidney transplantation in APRT deficiency patients. METHODS: Included were 13 patients in the APRT Deficiency Registry of the Rare Kidney Stone Consortium, 2 from Westmead Hospital in Sydney, Australia, and 2 from Necker Hospital in Paris, France. The CKD-EPI and CKiD equations were used to calculate glomerular filtration rate estimates. Allograft survival was analyzed employing the Kaplan-Meier method. The Wilcoxon-Mann-Whitney test was used to compare alllograft outcomes according to xanthine oxidoreductase (XOR) inhibitor treatment status at transplantation. RESULTS: Seventeen patients (9 females) received 22 kidney transplants. Age at first transplantation was 47.2 (14.9-67.0) years. Ten patients received XOR inhibitor therapy pretransplant (11 allografts), while 8 patients did not receive such treatment before transplantation (11 allografts). Two-year allograft survival was 91% and 55% in the 2 groups, respectively (P = 0.16). The median (range) estimated glomerular filtration rate at 2 years posttransplant was 61.3 (24.0-90.0) mL/min/1.73 m when XOR inhibitor therapy was initiated before transplantation, and 16.2 (10.0-39.0) mL/min/1.73 m (P = 0.009) when such treatment was not administered pretransplant. CONCLUSIONS: Kidney allograft outcomes are good in APRT deficiency patients beginning XOR inhibitor therapy pretransplant. Delay in such treatment is a major cause of premature graft loss in these patients. Increased awareness among clinicians is imperative, promoting early diagnosis of APRT deficiency and pharmacotherapy initiation before kidney transplantation.


Assuntos
Adenina Fosforribosiltransferase/deficiência , Falência Renal Crônica/cirurgia , Transplante de Rim , Erros Inatos do Metabolismo/complicações , Urolitíase/complicações , Adolescente , Adulto , Idoso , Alopurinol/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Europa (Continente) , Febuxostat/uso terapêutico , Feminino , Sobrevivência de Enxerto , Humanos , Índia , Falência Renal Crônica/diagnóstico , Falência Renal Crônica/etiologia , Transplante de Rim/efeitos adversos , Masculino , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/tratamento farmacológico , Pessoa de Meia-Idade , New South Wales , Estudos Retrospectivos , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento , Estados Unidos , Urolitíase/diagnóstico , Urolitíase/tratamento farmacológico , Xantina Oxidase/antagonistas & inibidores , Adulto Jovem
19.
BMC Nephrol ; 20(1): 428, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31752739

RESUMO

BACKGROUND: Adenine phosphoribosyl transferase (APRT) deficiency is a rare genetic form of kidney stones and/or kidney failure characterized by intratubular precipitation of 2,8 dihydroxyadenine crystals. Early diagnosis and prompt management can completely reverse the kidney injury. CASE PRESENTATION: 44 year old Indian male, renal transplant recipient got admitted with acute graft dysfunction. Graft biopsy showed light brown refractile intratubular crystals with surrounding giant cell reaction, consistent with APRT deficiency. Patient improved after receiving allopurinol and hydration. CONCLUSION: APRT forms a reversible cause of crystalline nephropathy. High index of suspicion is required for the correct diagnosis as timely diagnosis has therapeutic implications.


Assuntos
Adenina Fosforribosiltransferase/deficiência , Adenina/análogos & derivados , Transplante de Rim , Erros Inatos do Metabolismo/complicações , Disfunção Primária do Enxerto/etiologia , Urolitíase/complicações , Adenina/metabolismo , Adulto , Alopurinol/uso terapêutico , Antimetabólitos/uso terapêutico , Biópsia , Cristalização , Humanos , Hidroterapia , Masculino , Erros Inatos do Metabolismo/patologia , Erros Inatos do Metabolismo/terapia , Disfunção Primária do Enxerto/patologia , Disfunção Primária do Enxerto/terapia , Urolitíase/patologia , Urolitíase/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA