Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 401
Filtrar
1.
FEBS Lett ; 598(9): 1080-1093, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38523059

RESUMO

Recent developments in sequencing and bioinformatics have advanced our understanding of adenosine-to-inosine (A-to-I) RNA editing. Surprisingly, recent analyses have revealed the capability of adenosine deaminase acting on RNA (ADAR) to edit DNA:RNA hybrid strands. However, edited inosines in DNA remain largely unexplored. A precise biochemical method could help uncover these potentially rare DNA editing sites. We explore maleimide as a scaffold for inosine labeling. With fluorophore-conjugated maleimide, we were able to label inosine in RNA or DNA. Moreover, with biotin-conjugated maleimide, we purified RNA and DNA containing inosine. Our novel technique of inosine chemical labeling and affinity molecular purification offers substantial advantages and provides a versatile platform for further discovery of A-to-I editing sites in RNA and DNA.


Assuntos
Adenosina , Inosina , Edição de RNA , Inosina/química , Inosina/metabolismo , Adenosina/química , Adenosina/metabolismo , Adenosina/análogos & derivados , Desaminação , DNA/química , DNA/metabolismo , Maleimidas/química , Adenosina Desaminase/metabolismo , Adenosina Desaminase/química , RNA/química , RNA/metabolismo , Coloração e Rotulagem/métodos , Humanos , Corantes Fluorescentes/química , Biotina/química , Biotina/metabolismo
2.
Eur J Pharm Sci ; 193: 106672, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103658

RESUMO

Changes in RNA editing are closely associated with diseases such as cancer, viral infections, and autoimmune disorders. Adenosine deaminase (ADAR1), which acts on RNA 1, plays a key role in adenosine to inosine editing and is a potential therapeutic target for these various diseases. The p150 subtype of ADAR1 is the only one that contains a Zα domain that binds to both Z-DNA and Z-RNA. The Zα domain modulates immune responses and may be suitable targets for antiviral therapy and cancer immunotherapy. In this study, we attempted to utilize molecular docking to identify potential inhibitors that bind to the ADAR1 Zα domain. The virtual docking method screened the potential activity of more than 100,000 compounds on the Zα domain of ADAR1 and filtered to obtain the highest scoring results.We identified 71 compounds promising to bind to ADAR1 and confirmed that two of them, lithospermic acid and Regaloside B, interacts with the ADAR1 Zα domain by surface plasmonic resonance technique. The molecular dynamics calculation of the complex of lithospermic acid and ADAR1 also showed that the binding effect of lithospermic acid to ADAR1 was stable.This study provides a new perspective for the search of ADAR1 inhibitors, and further studies on the anti-ADAR11 activity of these compounds have broad prospects.


Assuntos
Benzofuranos , Depsídeos , Neoplasias , RNA , Humanos , Sítios de Ligação , Adenosina Desaminase/química , Adenosina Desaminase/metabolismo , Simulação de Acoplamento Molecular
3.
J Mol Biol ; 435(8): 168040, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36889460

RESUMO

The Zα domain of ADARp150 is critical for proper Z-RNA substrate binding and is a key factor in the type-I interferon response pathway. Two point-mutations in this domain (N173S and P193A), which cause neurodegenerative disorders, are linked to decreased A-to-I editing in disease models. To understand this phenomenon at the molecular level, we biophysically and structurally characterized these two mutated domains, revealing that they bind Z-RNA with a decreased affinity. Less efficient binding to Z-RNA can be explained by structural changes in beta-wing, part of the Z-RNA-protein interface, and alteration of conformational dynamics of the proteins.


Assuntos
Adenosina Desaminase , Doenças Autoimunes do Sistema Nervoso , Malformações do Sistema Nervoso , Humanos , Adenosina Desaminase/genética , Adenosina Desaminase/química , Adenosina Desaminase/metabolismo , Doenças Autoimunes do Sistema Nervoso/enzimologia , Doenças Autoimunes do Sistema Nervoso/genética , Sítios de Ligação , Malformações do Sistema Nervoso/enzimologia , Malformações do Sistema Nervoso/genética , RNA/química , Domínios Proteicos/genética , Mutação Puntual , Conformação de Ácido Nucleico
4.
Plant Physiol ; 192(2): 805-820, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36913253

RESUMO

RNA-binding proteins (RBPs) play essential roles in regulating gene expression. However, the RNA ligands of RBPs are poorly understood in plants, not least due to the lack of efficient tools for genome-wide identification of RBP-bound RNAs. An RBP-fused adenosine deaminase acting on RNA (ADAR) can edit RBP-bound RNAs, which allows efficient identification of RNA ligands of RBPs in vivo. Here, we report the RNA editing activities of the ADAR deaminase domain (ADARdd) in plants. Protoplast experiments indicated that RBP-ADARdd fusions efficiently edited adenosines within 41 nucleotides (nt) of their binding sites. We then engineered ADARdd to profile the RNA ligands of rice (Oryza sativa) Double-stranded RNA-Binding Protein 1 (OsDRB1). Overexpressing the OsDRB1-ADARdd fusion protein in rice introduced thousands of A-to-G and T-to-C RNA‒DNA variants (RDVs). We developed a stringent bioinformatic approach to identify A-to-I RNA edits from RDVs, which removed 99.7% to 100% of background single-nucleotide variants in RNA-seq data. This pipeline identified a total of 1,798 high-confidence RNA editing (HiCE) sites, which marked 799 transcripts as OsDRB1-binding RNAs, from the leaf and root samples of OsDRB1-ADARdd-overexpressing plants. These HiCE sites were predominantly located in repetitive elements, 3'-UTRs, and introns. Small RNA sequencing also identified 191 A-to-I RNA edits in miRNAs and other sRNAs, confirming that OsDRB1 is involved in sRNA biogenesis or function. Our study presents a valuable tool for genome-wide profiling of RNA ligands of RBPs in plants and provides a global view of OsDRB1-binding RNAs.


Assuntos
MicroRNAs , Oryza , Oryza/genética , Oryza/metabolismo , Edição de RNA/genética , MicroRNAs/genética , Adenosina/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/química , Adenosina Desaminase/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
5.
J Biomol Struct Dyn ; 41(2): 377-385, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34851227

RESUMO

Adenosine deaminase is a zinc+2 dependent key enzyme of purine metabolism which irreversibly converts adenosine to inosine and form ammonia. Overexpression of adenosine deaminase has been linked to a variety of pathophysiological conditions such as atherosclerosis, hypertension, and diabetes. In the case of a cell-mediated immune response, ADA is thought to be a marker, particularly in type II diabetes. Deoxycoformycin is the most potent ADA inhibitor that has been discovered so far, but it has several drawbacks, including being toxic and having poor pharmacokinetics. Taxifolin, a flavonoid derived from plants, was discovered to be a potent inhibitor of the human ADA (hADA) enzyme in the current study. Taxifolin bound at the active site of human ADA and showed fifty percent inhibition at a concentration of 400 µM against the enzyme. To better understand the interactions between taxifolin and human ADA, docking and molecular dynamic simulations were performed. In-silico studies using autodock revealed that taxifolin bound in the active site of human ADA with a binding energy of -7.4 kcal mol -1 and a theoretical Ki of 3.7 uM. Comparative analysis indicated that taxifolin and deoxycoformycin share a common binding space in the active site of human ADA and inhibit its catalytic activity similarly. The work emphasises the need of employing taxifolin as a lead chemical in order to produce a more precise and effective inhibitor of the human ADA enzyme with therapeutic potential.Communicated by Ramaswamy H. Sarma.


Assuntos
Adenosina Desaminase , Diabetes Mellitus Tipo 2 , Humanos , Adenosina Desaminase/química , Adenosina Desaminase/metabolismo , Pentostatina/farmacologia , Inibidores de Adenosina Desaminase/farmacologia , Inibidores de Adenosina Desaminase/química
6.
J Biomol Struct Dyn ; 41(4): 1437-1444, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34994283

RESUMO

Malaria is a life-threatening disease in humans caused by Plasmodium parasites. Plasmodium vivax (P. vivax) is one of the prevalent species found worldwide. An increase in an anti-malarial drug resistance suggests the urgent need for new drugs. Zn2+-containing adenosine deaminase (ADA) is a promising drug target because the ADA inhibition is fatal to the parasite. Malarial ADA accepts both adenosine (ADN) and 5'-methylthioadenosine (MTA) as substrates. The understanding of the substrate binding becomes crucial for an anti-malarial drug development. In this work, ADA from P. vivax (pvADA) is of interest due to its prevalence worldwide. The binding of ADN and MTA are studied here using Molecular Dynamics (MD) simulations. Upon binding, the open and closed states of pvADA are captured. The displacement of α7, linking loops of ß3/α12, ß4/α13, ß5/α15, and α10/α11 is involved in the cavity closure and opening. Also, the inappropriate substrate orientation induces a failure in a complete cavity closure. Interactions with D46, D172, S280, D310, and D311 are important for ADN binding, whereas only hydrogen bonds with D172 and D311 are sufficient to anchor MTA inside the pocket. No Zn2+-coordinated histidine residues is acquired for substrate binding. D172 is found to play a role in ribose moiety recognition, while D311 is crucial for trapping the amine group of an adenine ring towards the Zn2+ site. Comparing between ADN and MTA, the additional interaction between D310 and an amine nitrogen on ADN supports a tighter fit that may facilitate the deamination.Communicated by Ramaswamy H. Sarma.


Assuntos
Antimaláricos , Malária Vivax , Malária , Humanos , Adenosina , Plasmodium vivax/metabolismo , Adenosina Desaminase/química , Adenosina Desaminase/metabolismo , Antimaláricos/química , Plasmodium falciparum/metabolismo , Simulação de Dinâmica Molecular , Aminas , Malária Vivax/tratamento farmacológico
7.
J Biol Chem ; 298(9): 102350, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35933011

RESUMO

The analysis of hydrogen deuterium exchange by mass spectrometry as a function of temperature and mutation has emerged as a generic and efficient tool for the spatial resolution of protein networks that are proposed to function in the thermal activation of catalysis. In this work, we extend temperature-dependent hydrogen deuterium exchange from apo-enzyme structures to protein-ligand complexes. Using adenosine deaminase as a prototype, we compared the impacts of a substrate analog (1-deaza-adenosine) and a very tight-binding inhibitor/transition state analog (pentostatin) at single and multiple temperatures. At a single temperature, we observed different hydrogen deuterium exchange-mass spectrometry properties for the two ligands, as expected from their 106-fold differences in strength of binding. By contrast, analogous patterns for temperature-dependent hydrogen deuterium exchange mass spectrometry emerge in the presence of both 1-deaza-adenosine and pentostatin, indicating similar impacts of either ligand on the enthalpic barriers for local protein unfolding. We extended temperature-dependent hydrogen deuterium exchange to a function-altering mutant of adenosine deaminase in the presence of pentostatin and revealed a protein thermal network that is highly similar to that previously reported for the apo-enzyme (Gao et al., 2020, JACS 142, 19936-19949). Finally, we discuss the differential impacts of pentostatin binding on overall protein flexibility versus site-specific thermal transfer pathways in the context of models for substrate-induced changes to a distributed protein conformational landscape that act in synergy with embedded protein thermal networks to achieve efficient catalysis.


Assuntos
Adenosina Desaminase , Deutério , Adenosina/química , Adenosina Desaminase/química , Deutério/química , Medição da Troca de Deutério , Ligantes , Pentostatina/química , Conformação Proteica , Proteínas , Temperatura
8.
Nature ; 607(7920): 784-789, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35859175

RESUMO

The RNA-editing enzyme adenosine deaminase acting on RNA 1 (ADAR1) limits the accumulation of endogenous immunostimulatory double-stranded RNA (dsRNA)1. In humans, reduced ADAR1 activity causes the severe inflammatory disease Aicardi-Goutières syndrome (AGS)2. In mice, complete loss of ADAR1 activity is embryonically lethal3-6, and mutations similar to those found in patients with AGS cause autoinflammation7-12. Mechanistically, adenosine-to-inosine (A-to-I) base modification of endogenous dsRNA by ADAR1 prevents chronic overactivation of the dsRNA sensors MDA5 and PKR3,7-10,13,14. Here we show that ADAR1 also inhibits the spontaneous activation of the left-handed Z-nucleic acid sensor ZBP1. Activation of ZBP1 elicits caspase-8-dependent apoptosis and MLKL-mediated necroptosis of ADAR1-deficient cells. ZBP1 contributes to the embryonic lethality of Adar-knockout mice, and it drives early mortality and intestinal cell death in mice deficient in the expression of both ADAR and MAVS. The Z-nucleic-acid-binding Zα domain of ADAR1 is necessary to prevent ZBP1-mediated intestinal cell death and skin inflammation. The Zα domain of ADAR1 promotes A-to-I editing of endogenous Alu elements to prevent dsRNA formation through the pairing of inverted Alu repeats, which can otherwise induce ZBP1 activation. This shows that recognition of Alu duplex RNA by ZBP1 may contribute to the pathological features of AGS that result from the loss of ADAR1 function.


Assuntos
Adenosina Desaminase , Inflamação , Proteínas de Ligação a RNA , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Adenosina/metabolismo , Adenosina Desaminase/química , Adenosina Desaminase/deficiência , Adenosina Desaminase/metabolismo , Animais , Apoptose , Doenças Autoimunes do Sistema Nervoso , Caspase 8/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/prevenção & controle , Inosina/metabolismo , Intestinos/patologia , Camundongos , Necroptose , Malformações do Sistema Nervoso , Edição de RNA , RNA de Cadeia Dupla , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Pele/patologia
9.
Biophys Chem ; 286: 106820, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35468399

RESUMO

The presence of citrullinated adenosine deaminase (ADA) was reported in the synovial fluids of rheumatoid arthritis individuals. This work reports the effects of ADA citrullination on the formation/stabilization of ADA complex with dipeptidyl peptidase IV (DPPIV). The electrophoretic mobility of in vivo citrullinated ADA was diminished compared to the native one. The biosensor binding study demonstrated approximately four-fold lower affinity of both in vivo and in vitro citrullinated ADAs to DPPIV (KD = 161 ± 51.3 and 171 ± 52.2 nM, respectively) compared with wild ADA (KD = 38 ± 9.4 nM). These results were confirmed by examining the ADA interaction with DPPIV using size-exclusion chromatography and fluorescence anisotropy methods. The computational modeling of Arg142 â†’ Cit142 modification in ADA showed a local structural rearrangement and a less favorable binding affinity to DPPIV. According to these observations, citrullinated ADA being a possible target triggering autoimmunity hinders also the formation of ADA-DPPIV complex, essential in immune system function.


Assuntos
Adenosina Desaminase , Citrulinação , Dipeptidil Peptidase 4 , Adenosina Desaminase/química , Adenosina Desaminase/metabolismo , Dipeptidil Peptidase 4/química , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Humanos
10.
Acta Crystallogr D Struct Biol ; 78(Pt 1): 91-103, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34981765

RESUMO

Homo sapiens adenosine deaminase 1 (HsADA1; UniProt P00813) is an immunologically relevant enzyme with roles in T-cell activation and modulation of adenosine metabolism and signaling. Patients with genetic deficiency in HsADA1 suffer from severe combined immunodeficiency, and HsADA1 is a therapeutic target in hairy cell leukemias. Historically, insights into the catalytic mechanism and the structural attributes of HsADA1 have been derived from studies of its homologs from Bos taurus (BtADA) and Mus musculus (MmADA). Here, the structure of holo HsADA1 is presented, as well as biochemical characterization that confirms its high activity and shows that it is active across a broad pH range. Structurally, holo HsADA1 adopts a closed conformation distinct from the open conformation of holo BtADA. Comparison of holo HsADA1 and MmADA reveals that MmADA also adopts a closed conformation. These findings challenge previous assumptions gleaned from BtADA regarding the conformation of HsADA1 that may be relevant to its immunological interactions, particularly its ability to bind adenosine receptors. From a broader perspective, the structural analysis of HsADA1 presents a cautionary tale for reliance on homologs to make structural inferences relevant to applications such as protein engineering or drug development.


Assuntos
Adenosina Desaminase/metabolismo , Adenosina Desaminase/química , Adenosina Desaminase/deficiência , Animais , Catálise , Bovinos , Cristalografia por Raios X , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Modelos Moleculares , Estrutura Molecular , Doenças da Imunodeficiência Primária/genética , Conformação Proteica , Receptores Purinérgicos P1/química , Receptores Purinérgicos P1/metabolismo
11.
Biochem Biophys Res Commun ; 580: 63-66, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34624571

RESUMO

Z-DNA binding proteins (ZBPs) play important roles in RNA editing, innate immune responses, and viral infections. Numerous studies have implicated a role for conformational motions during ZBPs binding upon DNA, but the quantitative intrinsic conformational exchanges of ZBP have not been elucidated. To understand the correlation between the biological function and dynamic feature of the Zα domains of human ADAR1 (hZαADAR1), we have performed the 15N backbone amide Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments on the free hZαADAR1 at two different magnetic fields at 35 °C. The robust inter-dependence of parameters in the global fitting process using multi-magnetic field CPMG profiles allows us characterizing the dynamic properties of conformational changes in hZαADAR1. This study found that free hZαADAR1 exhibited the conformational exchange with a kex of 5784 s-1 between the states "A" (89% population) and "B" (11% population). The different hydrophobic interactions among helices α1, α2, and α3 between these two states might correlate with efficient Z-DNA binding achieved by the hydrogen bonding interactions between its side-chains and the phosphate backbone of Z-DNA.


Assuntos
Adenosina Desaminase/química , Proteínas de Ligação a RNA/química , Adenosina Desaminase/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Domínios Proteicos , Edição de RNA , Proteínas de Ligação a RNA/metabolismo
12.
J Chem Phys ; 154(18): 185101, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34241023

RESUMO

The effect of ligand binding on the conformational transitions of the add A-riboswitch in cellular environments is investigated theoretically within the framework of the generalized Langevin equation combined with steered molecular dynamics simulations. Results for the transition path time distribution provide an estimate of the transit times, which are difficult to determine experimentally. The time for the conformational transitions of the riboswitch aptamer is longer for the ligand bound state as compared to that of the unbound one. The transition path time of the riboswitch follows a counterintuitive trend as it decreases with an increase in the barrier height. The mean transition path time of either transitions of the riboswitch in the ligand bound/unbound state increases with an increase in the complexity of the surrounding environment due to the caging effect. The results of the probability density function, transition path time distribution, and mean transition path time obtained from the theory qualitatively agree with those obtained from the simulations and with earlier experimental and theoretical studies.


Assuntos
Adenosina Desaminase/química , Teoria da Densidade Funcional , Simulação de Dinâmica Molecular , Adenosina Desaminase/metabolismo , Ligantes
13.
Nucleic Acids Res ; 49(11): 6529-6548, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34057470

RESUMO

Post-transcriptional modification of tRNA wobble adenosine into inosine is crucial for decoding multiple mRNA codons by a single tRNA. The eukaryotic wobble adenosine-to-inosine modification is catalysed by the ADAT (ADAT2/ADAT3) complex that modifies up to eight tRNAs, requiring a full tRNA for activity. Yet, ADAT catalytic mechanism and its implication in neurodevelopmental disorders remain poorly understood. Here, we have characterized mouse ADAT and provide the molecular basis for tRNAs deamination by ADAT2 as well as ADAT3 inactivation by loss of catalytic and tRNA-binding determinants. We show that tRNA binding and deamination can vary depending on the cognate tRNA but absolutely rely on the eukaryote-specific ADAT3 N-terminal domain. This domain can rotate with respect to the ADAT catalytic domain to present and position the tRNA anticodon-stem-loop correctly in ADAT2 active site. A founder mutation in the ADAT3 N-terminal domain, which causes intellectual disability, does not affect tRNA binding despite the structural changes it induces but most likely hinders optimal presentation of the tRNA anticodon-stem-loop to ADAT2.


Assuntos
Adenosina Desaminase/química , Adenosina/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Animais , Domínio Catalítico , Linhagem Celular Tumoral , Movimento Celular , Cristalografia por Raios X , Ferredoxinas/química , Inosina/metabolismo , Camundongos , Modelos Moleculares , Mutação , Neurônios/fisiologia , Domínios Proteicos , RNA de Transferência/química , RNA de Transferência/metabolismo
14.
PLoS Genet ; 17(5): e1009513, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33983939

RESUMO

Double-stranded RNA (dsRNA) is produced both by virus and host. Its recognition by the melanoma differentiation-associated gene 5 (MDA5) initiates type I interferon responses. How can a host distinguish self-transcripts from nonself to ensure that responses are targeted correctly? Here, I discuss a role for MDA5 helicase in inducing Z-RNA formation by Alu inverted repeat (AIR) elements. These retroelements have highly conserved sequences that favor Z-formation, creating a site for the dsRNA-specific deaminase enzyme ADAR1 to dock. The subsequent editing destabilizes the dsRNA, ending further interaction with MDA5 and terminating innate immune responses directed against self. By enabling self-recognition, Alu retrotransposons, once invaders, now are genetic elements that keep immune responses in check. I also discuss the possible but less characterized roles of the other helicases in modulating innate immune responses, focusing on DExH-box helicase 9 (DHX9) and Mov10 RISC complex RNA helicase (MOV10). DHX9 and MOV10 function differently from MDA5, but still use nucleic acid structure, rather than nucleotide sequence, to define self. Those genetic elements encoding the alternative conformations involved, referred to as flipons, enable helicases to dynamically shape a cell's repertoire of responses. In the case of MDA5, Alu flipons switch off the dsRNA-dependent responses against self. I suggest a number of genetic systems in which to study interactions between flipons and helicases further.


Assuntos
Helicase IFIH1 Induzida por Interferon/metabolismo , Conformação de Ácido Nucleico , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo , Adenosina Desaminase/química , Adenosina Desaminase/metabolismo , Animais , RNA Helicases DEAD-box/metabolismo , Doença , Edição de Genes , Humanos , Proteínas de Neoplasias/metabolismo , RNA Helicases/metabolismo , RNA de Cadeia Dupla/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Especificidade por Substrato , Vírus
15.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805331

RESUMO

Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion spectroscopy is commonly used for quantifying conformational changes of protein in µs-to-ms timescale transitions. To elucidate the dynamics and mechanism of protein binding, parameters implementing CPMG relaxation dispersion results must be appropriately determined. Building an analytical model for multi-state transitions is particularly complex. In this study, we developed a new global search algorithm that incorporates a random search approach combined with a field-dependent global parameterization method. The robust inter-dependence of the parameters carrying out the global search for individual residues (GSIR) or the global search for total residues (GSTR) provides information on the global minimum of the conformational transition process of the Zα domain of human ADAR1 (hZαADAR1)-DNA complex. The global search results indicated that a α-helical segment of hZαADAR1 provided the main contribution to the three-state conformational changes of a hZαADAR1-DNA complex with a slow B-Z exchange process. The two global exchange rate constants, kex and kZB, were found to be 844 and 9.8 s-1, respectively, in agreement with two regimes of residue-dependent chemical shift differences-the "dominant oscillatory regime" and "semi-oscillatory regime". We anticipate that our global search approach will lead to the development of quantification methods for conformational changes not only in Z-DNA binding protein (ZBP) binding interactions but also in various protein binding processes.


Assuntos
Adenosina Desaminase/química , DNA de Forma B/química , DNA Forma Z/química , Modelos Moleculares , Proteínas de Ligação a RNA/química , Adenosina Desaminase/metabolismo , Algoritmos , DNA de Forma B/metabolismo , DNA Forma Z/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Conformação Proteica , Proteínas de Ligação a RNA/metabolismo , Termodinâmica
16.
Annu Rev Virol ; 8(1): 239-264, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33882257

RESUMO

C6 deamination of adenosine (A) to inosine (I) in double-stranded RNA (dsRNA) is catalyzed by a family of enzymes known as ADARs (adenosine deaminases acting on RNA) encoded by three genes in mammals. Alternative promoters and splicing produce two ADAR1 proteins, an interferon-inducible cytoplasmic p150 and a constitutively expressed p110 that like ADAR2 is a nuclear enzyme. ADAR3 lacks deaminase activity. A-to-I editing occurs with both viral and cellular RNAs. Deamination activity is dependent on dsRNA substrate structure and regulatory RNA-binding proteins and ranges from highly site selective with hepatitis D RNA and glutamate receptor precursor messenger RNA (pre-mRNA) to hyperediting of measles virus and polyomavirus transcripts and cellular inverted Alu elements. Because I base-pairs as guanosine instead of A, editing can alter mRNA decoding, pre-mRNA splicing, and microRNA silencing. Editing also alters dsRNA structure, thereby suppressing innate immune responses including interferon production and action.


Assuntos
Adenosina Desaminase , Viroses , Adenosina Desaminase/química , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Animais , Edição de RNA , RNA de Cadeia Dupla/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
17.
Genes Genomics ; 43(3): 295-301, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33575975

RESUMO

BACKGROUND: RNA editing is a widespread phenomenon in all metazoans. One of the common RNA editing event is the chemical conversion of adenosine to inosine (A-to-I) catalyzed by adenosine deaminases acting on tRNA (ADAT). During D. melanogaster development, the ADAT1 transcript was found to localize mainly to the central nervous system including brain and ventral nerve cord during brain development. Although an earthworm adenosine deaminases acting on mRNA (ADAR) has been identified and its possible implication in earthworm regeneration has been investigated, there is little accumulated information on ADAT and tRNA editing in the annelid including terrestrial earthworms. OBJECTIVE: This study aimed to investigate the molecular characteristics and the expression pattern of earthworm ADAT during tail regeneration to understand its physiological significance. METHODS: Nucleotide sequence of Ean-ADAT was retrieved from the genome assembly of Eisenia andrei via Basic Local Alignment Search Tool (BLAST). The genome assembly of Eisenia andrei was downloaded from National Genomics Data Center ( http://bigd.big.ac.cn/gwh/ ). The alignment and phylogenetic relationship of the core deaminase domains of ADATs and ADARs were analyzed. Its temporal expression during early tail regeneration was measured using real-time PCR. RESULTS: The open reading frame of Ean-ADAT consists of 1719 nucleotides encoding 573 amino acids. Domain analysis indicates that Ean-ADAT has a deaminase domain composed of 498 amino acids and a predicted nuclear localization signal at the N-terminal. Its subcellular localization was predicted to be nuclear. The core deaminase region of Ean-ADAT encompasses the three active-site motifs, including zinc-chelating residues and a glutamate residue for catalytic activity. In addition, Ean-ADAT shares highly conserved RNA recognition region flanking the third cysteine of the deaminase motif with other ADAT1s even from the yeast. Multiple sequence alignment and phylogenetic analysis indicate that Ean-ADAT shows greater similarity to vertebrate ADARs than to yeast Tad1p. Ean-ADAT mRNA expression began to remarkably decrease before 12 h post-amputation, showing a tendency to gradual decrease until 7 dpa and then it slightly rebounded at 10 dpa. CONCLUSIONS: Our results demonstrate that Ean-ADAT belongs to a class of ADAT1s and support the hypothesis of a common evolutionary origin for ADARs and ADATs. The temporal expression of Ean-ADAT could suggest that its activity is unrelated to the molecular mechanisms of dedifferentiation.


Assuntos
Adenosina Desaminase/genética , Oligoquetos/enzimologia , Regeneração/genética , Adenosina Desaminase/química , Adenosina Desaminase/classificação , Adenosina Desaminase/metabolismo , Animais , Oligoquetos/fisiologia , Filogenia , Domínios Proteicos , Edição de RNA , RNA de Transferência , Alinhamento de Sequência , Análise de Sequência de DNA , Análise de Sequência de Proteína , Cauda
19.
Crit Rev Biochem Mol Biol ; 56(1): 54-87, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33356612

RESUMO

Adenosine deaminases that act on RNA (ADARs) are present in all animals and function to both bind double-stranded RNA (dsRNA) and catalyze the deamination of adenosine (A) to inosine (I). As inosine is a biological mimic of guanosine, deamination by ADARs changes the genetic information in the RNA sequence and is commonly referred to as RNA editing. Millions of A-to-I editing events have been reported for metazoan transcriptomes, indicating that RNA editing is a widespread mechanism used to generate molecular and phenotypic diversity. Loss of ADARs results in lethality in mice and behavioral phenotypes in worm and fly model systems. Furthermore, alterations in RNA editing occur in over 35 human pathologies, including several neurological disorders, metabolic diseases, and cancers. In this review, a basic introduction to ADAR structure and target recognition will be provided before summarizing how ADARs affect the fate of cellular RNAs and how researchers are using this knowledge to engineer ADARs for personalized medicine. In addition, we will highlight the important roles of ADARs and RNA editing in innate immunity and cancer biology.


Assuntos
Adenosina Desaminase/metabolismo , Carcinogênese/metabolismo , Imunidade Inata , Neoplasias/metabolismo , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/metabolismo , Adenosina/metabolismo , Adenosina Desaminase/química , Adenosina Desaminase/genética , Animais , Desaminação , Humanos , Inosina/metabolismo , Edição de RNA , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética
20.
J Am Chem Soc ; 142(47): 19936-19949, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33181018

RESUMO

Proteins are intrinsically flexible macromolecules that undergo internal motions with time scales spanning femtoseconds to milliseconds. These fluctuations are implicated in the optimization of reaction barriers for enzyme catalyzed reactions. Time, temperature, and mutation dependent hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) has been previously employed to identify spatially resolved, catalysis-linked dynamical regions of enzymes. We now extend this technique to pursue the correlation of protein flexibility and chemical reactivity within the diverse and widespread TIM barrel proteins, targeting murine adenosine deaminase (mADA) that catalyzes the irreversible deamination of adenosine to inosine and ammonia. Following a structure-function analysis of rate and activation energy for a series of mutations at a second sphere phenylalanine positioned in proximity to the bound substrate, the catalytically impaired Phe61Ala with an elevated activation energy (Ea = 7.5 kcal/mol) and the wild type (WT) mADA (Ea = 5.0 kcal/mol) were selected for HDX-MS experiments. The rate constants and activation energies of HDX for peptide segments are quantified and used to assess mutation-dependent changes in local and distal motions. Analyses reveal that approximately 50% of the protein sequence of Phe61Ala displays significant changes in the temperature dependence of HDX behaviors, with the dominant change being an increase in protein flexibility. Utilizing Phe61Ile, which displays the same activation energy for kcat as WT, as a control, we were able to further refine the HDX analysis, highlighting the regions of mADA that are altered in a functionally relevant manner. A map is constructed that illustrates the regions of protein that are proposed to be essential for the thermal optimization of active site configurations that dominate reaction barrier crossings in the native enzyme.


Assuntos
Adenosina Desaminase/metabolismo , Espectrometria de Massa com Troca Hidrogênio-Deutério , Adenosina/metabolismo , Adenosina Desaminase/química , Adenosina Desaminase/genética , Animais , Sítios de Ligação , Biocatálise , Desaminação , Cinética , Camundongos , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA