Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 255
Filtrar
1.
Br J Pharmacol ; 181(23): 4920-4936, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39256947

RESUMO

BACKGROUND AND PURPOSE: Adenosine receptor activation induces delayed, sustained cardioprotection against ischaemia-reperfusion (IR) injury (24-72 h), but the mechanisms underlying extended cardioprotection duration remain unresolved. We hypothesized that a positive feedback loop involving adenosine receptor-induced proteasomal degradation of adenosine kinase (ADK) and decreased myocardial adenosine metabolism extends the duration of cardioprotection. EXPERIMENTAL APPROACH: Mice were administered an ADK inhibitor, ABT-702, to induce endogenous adenosine signalling. Cardiac ADK protein and mRNA levels were analysed 24-120 h later. Theophylline or bortezomib was administered 24 h after ABT-702 to examine the late roles of adenosine receptors or proteasomal activity, respectively, in ADK expression and cardioprotection at 72 h. Coronary flow and IR tolerance were analysed by Langendorff technique. The potential for continuous adenosinergic cardioprotection was examined using heterozygous, cardiac-specific ADK KO (cADK+/-) mice. Cardiac ADK expression was also examined after A1 or A3 receptor agonist, phenylephrine, lipopolysaccharide or sildenafil administration. KEY RESULTS: ABT-702 treatment decreased ADK protein content and provided cardioprotection from 24 to 72 h. ADK mRNA upregulation restored ADK protein after 96-120 h. Adenosine receptor or proteasome inhibition at 24 h reversed ABT-702-induced ADK protein deficit and cardioprotection at 72 h. cADK+/- hearts exhibited continuous cardioprotection. Diverse preconditioning agents also diminished cardiac ADK protein expression. CONCLUSION AND IMPLICATIONS: A positive feedback loop driven by adenosine receptor-induced ADK degradation and renewed adenosine signalling extends the duration of cardioprotection by ABT-702 and possibly other preconditioning agents. The therapeutic potential of continuous adenosinergic cardioprotection is demonstrated in cADK+/- hearts.


Assuntos
Adenosina Quinase , Adenosina , Cardiotônicos , Retroalimentação Fisiológica , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica , Animais , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/farmacologia , Masculino , Cardiotônicos/farmacologia , Camundongos , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Adenosina Quinase/metabolismo , Adenosina Quinase/antagonistas & inibidores , Retroalimentação Fisiológica/efeitos dos fármacos , Camundongos Knockout , Receptores Purinérgicos P1/metabolismo , Miocárdio/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Morfolinas , Pirimidinas
2.
Exp Neurol ; 381: 114930, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39173898

RESUMO

Traumatic brain injury (TBI) presents a significant public health challenge, necessitating innovative interventions for effective treatment. Recent studies have challenged conventional perspectives on neurogenesis, unveiling endogenous repair mechanisms within the adult brain following injury. However, the intricate mechanisms governing post-TBI neurogenesis remain unclear. The microenvironment of an injured brain, characterized by astrogliosis, neuroinflammation, and excessive cell death, significantly influences the fate of newly generated neurons. Adenosine kinase (ADK), the key metabolic regulator of adenosine, emerges as a crucial factor in brain development and cell proliferation after TBI. This study investigates the hypothesis that targeting ADK could enhance brain repair, promote neuronal survival, and facilitate differentiation. In a TBI model induced by controlled cortical impact, C57BL/6 male mice received intraperitoneal injections of the small molecule ADK inhibitor 5-iodotubercidin (ITU) for three days following TBI. To trace the fate of TBI-associated proliferative cells, animals received intraperitoneal injections of BrdU for seven days, beginning immediately after TBI. Our results show that ADK inhibition by ITU improved brain repair 14 days after injury as evidenced by a diminished injury size. Additionally, the number of mature neurons generated after TBI was increased in ITU-treated mice. Remarkably, the TBI-associated pathological events including astrogliosis, neuroinflammation, and cell death were arrested in ITU-treated mice. Finally, ADK inhibition modulated cell death by regulating the PERK signaling pathway. Together, these findings demonstrate a novel therapeutic approach to target multiple pathological mechanisms involved in TBI. This research contributes valuable insights into the intricate molecular mechanisms underlying neurogenesis and gliosis after TBT.


Assuntos
Adenosina Quinase , Lesões Encefálicas Traumáticas , Diferenciação Celular , Sobrevivência Celular , Camundongos Endogâmicos C57BL , Neurogênese , Neurônios , Animais , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Masculino , Camundongos , Adenosina Quinase/antagonistas & inibidores , Adenosina Quinase/metabolismo , Diferenciação Celular/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Tubercidina/análogos & derivados
3.
Cardiovasc Res ; 120(10): 1202-1217, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38722818

RESUMO

AIMS: Abdominal aortic aneurysm (AAA) is a common, serious vascular disease with no effective pharmacological treatment. The nucleoside adenosine plays an important role in modulating vascular homeostasis, which prompted us to determine whether adenosine kinase (ADK), an adenosine metabolizing enzyme, modulates AAA formation via control of the intracellular adenosine level, and to investigate the underlying mechanisms. METHODS AND RESULTS: We used a combination of genetic and pharmacological approaches in murine models of AAA induced by calcium chloride (CaCl2) application or angiotensin II (Ang II) infusion to study the role of ADK in the development of AAA. In vitro functional assays were performed by knocking down ADK with adenovirus-short hairpin RNA in human vascular smooth muscle cells (VSMCs), and the molecular mechanisms underlying ADK function were investigated using RNA-sequencing, isotope tracing, and chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR). The heterozygous deficiency of ADK protected mice from CaCl2- and Ang II-induced AAA formation. Moreover, specific knockout of ADK in VSMCs prevented Ang II-induced AAA formation, as evidenced by reduced aortic extracellular elastin fragmentation, neovascularization, and aortic inflammation. Mechanistically, ADK knockdown in VSMCs markedly suppressed the expression of inflammatory genes associated with AAA formation, and these effects were independent of adenosine receptors. The metabolic flux and ChIP-qPCR results showed that ADK knockdown in VSMCs decreased S-adenosylmethionine (SAM)-dependent transmethylation, thereby reducing H3K4me3 binding to the promoter regions of the genes that are associated with inflammation, angiogenesis, and extracellular elastin fragmentation. Furthermore, the ADK inhibitor ABT702 protected mice from CaCl2-induced aortic inflammation, extracellular elastin fragmentation, and AAA formation. CONCLUSION: Our findings reveal a novel role for ADK inhibition in attenuating AAA via epigenetic modulation of key inflammatory genes linked to AAA pathogenesis.


Assuntos
Adenosina Quinase , Aorta Abdominal , Aneurisma da Aorta Abdominal , Músculo Liso Vascular , Miócitos de Músculo Liso , Animais , Humanos , Masculino , Camundongos , Adenosina/metabolismo , Adenosina/análogos & derivados , Adenosina Quinase/antagonistas & inibidores , Angiotensina II/metabolismo , Aorta Abdominal/patologia , Aorta Abdominal/metabolismo , Aorta Abdominal/enzimologia , Aneurisma da Aorta Abdominal/prevenção & controle , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/enzimologia , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/genética , Aortite/prevenção & controle , Aortite/enzimologia , Aortite/patologia , Aortite/metabolismo , Aortite/induzido quimicamente , Aortite/genética , Cloreto de Cálcio , Células Cultivadas , Modelos Animais de Doenças , Metilação de DNA , Epigênese Genética , Mediadores da Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Morfolinas , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas , Transdução de Sinais
4.
Eur J Pharmacol ; 927: 175050, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35618039

RESUMO

Pharmacological inhibition of adenosine kinase (ADK), the major route of myocardial adenosine metabolism, can elicit acute cardioprotection against ischemia-reperfusion (IR) by increasing adenosine signaling. Here, we identified a novel, extended effect of the ADK inhibitor, ABT-702, on cardiac ADK protein longevity and investigated its impact on sustained adenosinergic cardioprotection. We found that ABT-702 treatment significantly reduced cardiac ADK protein content in mice 24-72 h after administration (IP or oral). ABT-702 did not alter ADK mRNA levels, but strongly diminished (ADK-L) isoform protein content through a proteasome-dependent mechanism. Langendorff perfusion experiments revealed that hearts from ABT-702-treated mice maintain higher adenosine release long after ABT-702 tissue elimination, accompanied by increased basal coronary flow (CF) and robust tolerance to IR. Sustained cardioprotection by ABT-702 did not involve increased nitric oxide synthase expression, but was completely dependent upon increased adenosine release in the delayed phase (24 h), as indicated by the loss of cardioprotection and CF increase upon perfusion of adenosine deaminase or adenosine receptor antagonist, 8-phenyltheophylline. Importantly, blocking adenosine receptor activity with theophylline during ABT-702 administration prevented ADK degradation, preserved late cardiac ADK activity, diminished CF increase and abolished delayed cardioprotection, indicating that early adenosine receptor signaling induces late ADK degradation to elicit sustained adenosine release. Together, these results indicate that ABT-702 induces a distinct form of delayed cardioprotection mediated by adenosine receptor-dependent, proteasomal degradation of cardiac ADK and enhanced adenosine signaling in the late phase. These findings suggest ADK protein stability may be pharmacologically targeted to achieve sustained adenosinergic cardioprotection.


Assuntos
Adenosina Quinase , Morfolinas , Pirimidinas , Adenosina Quinase/antagonistas & inibidores , Adenosina Quinase/metabolismo , Animais , Cardiotônicos/farmacologia , Coração/diagnóstico por imagem , Camundongos , Morfolinas/farmacologia , Miocárdio/enzimologia , Proteólise/efeitos dos fármacos , Pirimidinas/farmacologia , Receptores Purinérgicos P1/metabolismo
5.
J Cell Mol Med ; 25(6): 2931-2943, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33523568

RESUMO

Increased adenosine helps limit infarct size in ischaemia/reperfusion-injured hearts. In cardiomyocytes, 90% of adenosine is catalysed by adenosine kinase (ADK) and ADK inhibition leads to higher concentrations of both intracellular adenosine and extracellular adenosine. However, the role of ADK inhibition in myocardial ischaemia/reperfusion (I/R) injury remains less obvious. We explored the role of ADK inhibition in myocardial I/R injury using mouse left anterior ligation model. To inhibit ADK, the inhibitor ABT-702 was intraperitoneally injected or AAV9 (adeno-associated virus)-ADK-shRNA was introduced via tail vein injection. H9c2 cells were exposed to hypoxia/reoxygenation (H/R) to elucidate the underlying mechanisms. ADK was transiently increased after myocardial I/R injury. Pharmacological or genetic ADK inhibition reduced infarct size, improved cardiac function and prevented cell apoptosis and necroptosis in I/R-injured mouse hearts. In vitro, ADK inhibition also prevented cell apoptosis and cell necroptosis in H/R-treated H9c2 cells. Cleaved caspase-9, cleaved caspase-8, cleaved caspase-3, MLKL and the phosphorylation of MLKL and CaMKII were decreased by ADK inhibition in reperfusion-injured cardiomyocytes. X-linked inhibitor of apoptosis protein (XIAP), which is phosphorylated and stabilized via the adenosine receptors A2B and A1/Akt pathways, should play a central role in the effects of ADK inhibition on cell apoptosis and necroptosis. These data suggest that ADK plays an important role in myocardial I/R injury by regulating cell apoptosis and necroptosis.


Assuntos
Adenosina Quinase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Apoptose/efeitos dos fármacos , Biomarcadores , Gerenciamento Clínico , Modelos Animais de Doenças , Suscetibilidade a Doenças , Camundongos , Mitocôndrias/efeitos dos fármacos , Morfolinas/farmacologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/etiologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Necroptose/efeitos dos fármacos , Pirimidinas/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo
6.
Biochem Pharmacol ; 187: 114321, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33161022

RESUMO

Adenosine (ADO) is an essential biomolecule for life that provides critical regulation of energy utilization and homeostasis. Adenosine kinase (ADK) is an evolutionary ancient ribokinase derived from bacterial sugar kinases that is widely expressed in all forms of life, tissues and organ systems that tightly regulates intracellular and extracellular ADO concentrations. The facile ability of ADK to alter ADO availability provides a "site and event" specificity to the endogenous protective effects of ADO in situations of cellular stress. In addition to modulating the ability of ADO to activate its cognate receptors (P1 receptors), nuclear ADK isoform activity has been linked to epigenetic mechanisms based on transmethylation pathways. Previous drug discovery research has targeted ADK inhibition as a therapeutic approach to manage epilepsy, pain, and inflammation. These efforts generated multiple classes of highly potent and selective inhibitors. However, clinical development of early ADK inhibitors was stopped due to apparent mechanistic toxicity and the lack of suitable translational markers. New insights regarding the potential role of the nuclear ADK isoform (ADK-Long) in the epigenetic modulation of maladaptive DNA methylation offers the possibility of identifying novel ADK-isoform selective inhibitors and new interventional strategies that are independent of ADO receptor activation.


Assuntos
Adenosina Quinase/fisiologia , Receptores Purinérgicos P1/fisiologia , Receptores Purinérgicos/fisiologia , Adenosina Quinase/antagonistas & inibidores , Animais , Inibidores Enzimáticos/administração & dosagem , Humanos , Agonistas Purinérgicos/administração & dosagem , Antagonistas Purinérgicos/administração & dosagem
7.
Life Sci ; 265: 118834, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33249096

RESUMO

Renal injury might originate from multiple factors like ischemia reperfusion (I/R), drug toxicity, cystic fibrosis, radio contrast agent etc. The four adenosine receptor subtypes have been identified and found to show diverse physiological and pathological roles in kidney diseases. The activation of A1 adenosine receptor (A1) protects against acute kidney injury by improving renal hemodynamic alterations, decreasing tubular necrosis and its inhibition might facilitate removal of toxin or drug metabolite in chronic kidney disease models. Furthermore, recent findings revealed that A2A receptor subtype activation regulates macrophage phenotype in experimental models of nephritis. Interestingly the emerging role of adenosine kinase inhibitors in kidney diseases has been discussed which act by increasing adenosine availability at target sites and thereby promote A2A receptor stimulation. In addition, the least explored adenosine receptor subtype A3 inhibition was observed to exert anti- oxidant, immunosuppressive and anti-fibrotic effects, but more studies are required to confirm its benefits in other renal injury models. The clinical studies targeting A1 receptor in patients with pre-existing kidney disease have yielded disappointing results, perhaps owing to the origin of unexpected neurological complications during the course of trial. Importantly, conducting well designed clinical trials and testing adenosine modulators with lesser brain penetrability could clear the way for clinical approval of these agents for patients with renal functional impairments.


Assuntos
Adenosina/metabolismo , Nefropatias/fisiopatologia , Receptores Purinérgicos P1/metabolismo , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/fisiopatologia , Adenosina Quinase/antagonistas & inibidores , Adenosina Quinase/metabolismo , Animais , Humanos , Nefropatias/tratamento farmacológico , Traumatismo por Reperfusão/fisiopatologia
8.
Neuropharmacology ; 184: 108405, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33212114

RESUMO

Sudden unexpected death in epilepsy (SUDEP) is a leading cause of death in patients with refractory epilepsy. Centrally-mediated respiratory dysfunction has been identified as one of the principal mechanisms responsible for SUDEP. Seizures generate a surge in adenosine release. Elevated adenosine levels suppress breathing. Insufficient metabolic clearance of a seizure-induced adenosine surge might be a precipitating factor in SUDEP. In order to deliver targeted therapies to prevent SUDEP, reliable biomarkers must be identified to enable prompt intervention. Because of the integral role of the phrenic nerve in breathing, we hypothesized that suppression of phrenic nerve activity could be utilized as predictive biomarker for imminent SUDEP. We used a rat model of kainic acid-induced seizures in combination with pharmacological suppression of metabolic adenosine clearance to trigger seizure-induced death in tracheostomized rats. Recordings of EEG, blood pressure, and phrenic nerve activity were made concomitant to the seizure. We found suppression of phrenic nerve burst frequency to 58.9% of baseline (p < 0.001, one-way ANOVA) which preceded seizure-induced death; importantly, irregularities of phrenic nerve activity were partly reversible by the adenosine receptor antagonist caffeine. Suppression of phrenic nerve activity may be a useful biomarker for imminent SUDEP. The ability to reliably detect the onset of SUDEP may be instrumental in the timely administration of potentially lifesaving interventions.


Assuntos
Adenosina Quinase/antagonistas & inibidores , Nervo Frênico/enzimologia , Nervo Frênico/fisiopatologia , Convulsões/enzimologia , Convulsões/fisiopatologia , Morte Súbita Inesperada na Epilepsia , Adenosina Quinase/metabolismo , Animais , Ácido Caínico/toxicidade , Masculino , Nervo Frênico/efeitos dos fármacos , Valor Preditivo dos Testes , Ratos , Ratos Wistar , Convulsões/induzido quimicamente , Tubercidina/análogos & derivados , Tubercidina/farmacologia
9.
Life Sci ; 256: 117972, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32544464

RESUMO

Acute kidney injury (AKI) has a high morbidity and mortality, and there is no targeted treatment yet. One of the main causes of AKI is ischemia-reperfusion (IR). Increased release of adenosine under stress and hypoxia exerts anti-inflammatory and antioxidant effects. Adenosine kinase (ADK) is an important enzyme that eliminates adenosine in cells, and can maintain low adenosine concentration in cells. Our previous studies have shown that pretreatment of adenosine kinase inhibitor ABT-702 could markedly attenuate cisplatin-induced nephrotoxicity both in vivo and in vitro. This study is designed to investigate the effect of ADK inhibition on IR-induced AKI. The results showed that ADK expression was positively correlated with the degree of renal tubular injury, which suggested that the degree of ADK inhibition reflected the severity of acute tubular necrosis. In vivo, ADK inhibitor could reduce IR-induced renal injury, which might play a protective role by increasing tissue adenosine level, inhibiting oxidative stress, and reducing cell apoptosis. In HK2 cells, cobaltous dichloride (CoCl2) increased the level of oxidative stress, up-regulated the production of pro-inflammatory factor, and induced apoptosis, ADK inhibition could alleviate the above damaging effects. Moreover, the anti-apoptotic effect exerted by ADK inhibition was independent of inosine. In summary, our results support the idea that ADK inhibition has protective effects on IR-induced AKI. Adenosine kinase inhibition might provide a new target for AKI prevention and treatment.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Adenosina Quinase/antagonistas & inibidores , Morfolinas/uso terapêutico , Pirimidinas/uso terapêutico , Traumatismo por Reperfusão/complicações , Adenosina Quinase/metabolismo , Adulto , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Cobalto , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Inflamação/patologia , Inosina/farmacologia , Túbulos Renais/enzimologia , Túbulos Renais/patologia , Masculino , Camundongos Endogâmicos C57BL , Morfolinas/farmacologia , Necrose , Estresse Oxidativo/efeitos dos fármacos , Pirimidinas/farmacologia
10.
PLoS One ; 15(5): e0225232, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32442170

RESUMO

Toxoplasma gondii is the etiologic agent of toxoplasmosis, a disease which can lead to morbidity and mortality of the fetus and immunocompromised individuals. Due to the limited effectiveness or side effects of existing drugs, the search for better drug candidates is still ongoing. In this study, we performed structure-based screening of potential dual-targets inhibitors of active sites of T. gondii drug targets such as uracil phosphoribosyltransferase (UPRTase) and adenosine kinase (AK). First screening of virtual compounds from the National Cancer Institute (NCI) was performed via molecular docking. Subsequently, the hit compounds were tested in-vitro for anti- T. gondii effect using cell viability assay with Vero cells as host to determine cytotoxicity effects and drug selectivities. Clindamycin, as positive control, showed a selectivity index (SI) of 10.9, thus compounds with SI > 10.9 specifically target T. gondii proliferation with no significant effect on the host cells. Good anti- T. gondii effects were observed with NSC77468 (7-ethoxy-4-methyl-6,7-dihydro-5H-thiopyrano[2,3-d]pyrimidin-2-amine) which showed SI values of 25. This study showed that in-silico selection can serve as an effective way to discover potentially potent and selective compounds against T. gondii.


Assuntos
Adenosina Quinase/antagonistas & inibidores , Antiprotozoários/farmacologia , Pentosiltransferases/antagonistas & inibidores , Toxoplasma/efeitos dos fármacos , Toxoplasmose/tratamento farmacológico , Animais , Antiprotozoários/química , Chlorocebus aethiops , Relação Estrutura-Atividade , Células Vero
11.
Microcirculation ; 27(6): e12624, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32352607

RESUMO

OBJECTIVE: Inhibition of adenosine kinase (ADK), via augmenting endogenous adenosine levels exerts cardiovascular protection. We tested the hypothesis that ADK inhibition improves microvascular dilator and left ventricle (LV) contractile function under metabolic or hemodynamic stress. METHODS AND RESULTS: In Obese diabetic Zucker fatty/spontaneously hypertensive heart failure F1 hybrid rats, treatment with the selective ADK inhibitor, ABT-702 (1.5 mg/kg, intraperitoneal injections for 8-week) restored acetylcholine-, sodium nitroprusside-, and adenosine-induced dilations in isolated coronary arterioles, an effect that was accompanied by normalized end-diastolic pressure (in mm Hg, Lean: 3.4 ± 0.6, Obese: 17.6 ± 4.2, Obese + ABT: 6.6 ± 1.4) and LV relaxation constant, Tau (in ms, Lean: 6.9 ± 1.5, Obese: 13.9 ± 1.7, Obese + ABT: 6.0 ± 1.1). Mice with vascular endothelium selective ADK deletion (ADKVEC KO) exhibited an enhanced dilation to acetylcholine in isolated gracilis muscle (lgEC50 WT: -8.2 ± 0.1, ADKVEC KO: -8.8 ± 0.1, P < .05) and mesenteric arterioles (lgEC50 WT: -7.4 ± 0.2, ADKVEC KO: -8.1 ± 1.2, P < .05) when compared to wild-type (WT) mice, whereas relaxation of the femoral artery and aorta (lgEC50 WT: -7.03 ± 0.6, ADKVEC KO: -7.05 ± 0.8) was similar in the two groups. Wild-type mice progressively developed LV systolic and diastolic dysfunction when they underwent transverse aortic constriction surgery, whereas ADKVEC -KO mice displayed a lesser degree in decline of LV function. CONCLUSIONS: Our results indicate that ADK inhibition selectively enhances microvascular vasodilator function, whereby it improves LV perfusion and LV contractile function under metabolic and hemodynamic stress.


Assuntos
Adenosina Quinase/antagonistas & inibidores , Microvasos/enzimologia , Morfolinas/farmacologia , Pirimidinas/farmacologia , Vasodilatação/efeitos dos fármacos , Disfunção Ventricular Esquerda/enzimologia , Adenosina Quinase/genética , Adenosina Quinase/metabolismo , Animais , Diástole/efeitos dos fármacos , Diástole/genética , Masculino , Camundongos , Camundongos Knockout , Ratos , Ratos Zucker , Vasodilatação/genética , Disfunção Ventricular Esquerda/genética
12.
Curr Drug Targets ; 21(3): 252-257, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31633474

RESUMO

Epilepsy, an ancient disease, is defined as an enduring predisposition to generate epileptic seizures and by the neurobiological, cognitive, psychological, and social consequences of this condition. Antiepileptic drugs (AEDs) are currently used as first-line treatment for patients with epilepsy; however, around 36% of patients are diagnosed with refractory epilepsy, which means two or more AEDs have been considered as failed after sufficiently correct usage. Unfortunately, it is unlikely that the improvement of the efficacy of AEDs will be easily achieved, especially since no AEDs show efficacy in ceasing epileptogenesis. Consequently, several endogenous anticonvulsants attract investigators and epileptologists, such as galanin, cannabis, and adenosine. Astrogliosis is a neuropathological hallmark of epilepsy, whatever the etiology is, and astrogliosis is frequently associated with overexpression of adenosine kinase, which means downregulation of synaptic levels of adenosine. Consequently, adenosine is negatively regulated by adenosine kinase through the astrocyte-based cycle. On the other hand, focal adenosine augmentation therapy, using adenosine kinase inhibitor, has been proved to be effective for reducing seizures in both animal models and in vitro human brain tissue resected from a variety of etiology of refractory epilepsy patients. In addition to reducing seizures, adenosine augmentation therapy can also palliate co-morbidities, like sleep, cognition, or depression. Of importance, transgenic mice with reduced ADK were resistant to epileptogenesis induced by acute brain injury. In terms of translation, based on findings of adenosinerelated epileptogenic mechanisms, the application into clinical practice seems to be feasible by molecular strategies that have been already experimentally implemented, including gene and RNA interference. In the present review, we will focus on the evidence of ADK dysfunction in the epileptic brain from human beings and animals, and review the role of ADK inhibitor in adenosine augmentation therapy and the underlying mechanism of prevention of epileptogenesis.


Assuntos
Adenosina Quinase/antagonistas & inibidores , Adenosina/fisiologia , Anticonvulsivantes/farmacologia , Epilepsia/tratamento farmacológico , Epilepsia/prevenção & controle , Inibidores de Proteínas Quinases/farmacologia , Adenosina/metabolismo , Adenosina Quinase/metabolismo , Animais , Anticonvulsivantes/uso terapêutico , Encéfalo/efeitos dos fármacos , Epilepsia/fisiopatologia , Humanos , Camundongos , Inibidores de Proteínas Quinases/uso terapêutico
13.
J Biomol Struct Dyn ; 38(18): 5320-5337, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31779529

RESUMO

The seizure controlling activity of human adenosine kinase (AK) has been identified as a promising target for the development of small-molecule inhibitors to be used as potential anti-epileptic agents. Overexpression of AK has been considered as a pathologic hallmark of epilepsy. However, the exploration of AK for the treatment of epilepsy still remains a challenge in drug discovery. In a pursuit to recognize novel inhibitors of AK, a structure-based virtual screening study based on the molecular docking analysis of the compounds of Asinex database was performed. Crystal structure of human AK in complex with inhibitor revealed the crucial ligand-protein interactions (Asn14, Asn18, Ser65 and Phe170) within the active site and offers opportunities for further development of the potential anti-epileptic agents. Overall, 20 novel diverse potential hits appear to be important scaffolds for the design of novel AK inhibitors with better docking scores, dG bind scores with in silico desired pharmacokinetic parameters and synthetic accessibility scores than the co-crystallized ligand. Computational hits obtained through validated virtual screening protocol (superposition and enrichment) followed by simulation studies, quantum mechanics with better pharmacokinetic performance and hit optimization study provides in silico evidence for the applicability of these valuable tools in drug discovery and towards the development of a better therapeutic regime of epilepsy.Communicated by Ramaswamy H. Sarma.


Assuntos
Adenosina Quinase , Adenosina , Anticonvulsivantes , Adenosina Quinase/antagonistas & inibidores , Anticonvulsivantes/química , Humanos , Ligantes , Simulação de Acoplamento Molecular
14.
Circ Heart Fail ; 12(8): e005762, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31525084

RESUMO

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is often manifested as impaired cardiovascular reserve. We sought to determine if conducted vasodilation, which coordinates microvascular resistance longitudinally to match tissue metabolic demand, becomes compromised in HFpEF. We hypothesized that the metabolic vasodilator adenosine facilitates and that inhibition of ADK (adenosine kinase) augments conducted vasodilation for a more efficient myocardial perfusion and improved left ventricle (LV) diastolic function in HFpEF. METHODS AND RESULTS: We assessed conducted vasodilation in obese ZSF1 rats that develop LV diastolic dysfunction and is used to model human HFpEF. Additionally, conducted vasodilation was measured in arterioles isolated from the right atrial appendages of patients with HFpEF. We found a markedly reduced conducted vasodilation both in obese ZSF1 rats and in patients with HFpEF. Impaired conducted vasodilation was accompanied by increased vascular ADK expression. Isolated rat and human arterioles incubated with adenosine (10 nmol/L) or ADK inhibitor ABT-702 (0.1 µmol/L) both displayed augmented conducted vasodilation. Treatment of obese ZSF1 rats with ABT-702 (1.5 mg/kg, IP for 8 weeks) prevented LV diastolic dysfunction, and in a crossover design augmented conducted vasodilation and improved LV diastolic function. ABT-702 treated obese ZSF1 rats exhibited reduced expression of myocardial carbonic anhydrase 9 and collagen, surrogate markers of myocardial hypoxia. CONCLUSIONS: Upregulation of vascular ADK mitigates adenosine-facilitated conducted vasodilation in obese ZSF1 rats and in patients with HFpEF. We propose that pharmacological inhibition of ADK could be beneficial for therapeutic augmentation of conducted vasodilation, thereby improving tissue perfusion and LV diastolic function in HFpEF.


Assuntos
Adenosina Quinase/antagonistas & inibidores , Insuficiência Cardíaca/complicações , Morfolinas/farmacologia , Pirimidinas/farmacologia , Volume Sistólico/fisiologia , Vasodilatação/efeitos dos fármacos , Disfunção Ventricular Esquerda/prevenção & controle , Função Ventricular Esquerda/fisiologia , Animais , Diástole , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Feminino , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Microvasos/efeitos dos fármacos , Microvasos/fisiopatologia , Pessoa de Meia-Idade , Ratos , Ratos Zucker , Resistência Vascular/efeitos dos fármacos , Vasodilatação/fisiologia , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/fisiopatologia , Função Ventricular Esquerda/efeitos dos fármacos
15.
Pharmacol Res Perspect ; 7(4): e00506, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31367385

RESUMO

Adenosine (ADO) is an endogenous protective regulator that restores cellular energy balance in response to tissue trauma. Extracellular ADO has a half-life of the order of seconds thus restricting its actions to tissues and cellular sites where it is released. Adenosine kinase (AK, ATP:adenosine 5'-phosphotransferase, EC 2.7.1.20) is a cytosolic enzyme that is the rate-limiting enzyme controlling extracellular ADO concentrations. Inhibition of AK can effectively increase ADO extracellular concentrations at tissue sites where pathophysiological changes occur. Highly potent and selective nucleoside and non-nucleoside AK inhibitors were discovered in the late 1990s that showed in vivo effects consistent with the augmentation of the actions of endogenous ADO in experimental models of pain, inflammation, and seizure activity. These data supported clinical development of several AK inhibitors for the management of epilepsy and chronic pain. However, early toxicological data demonstrated that nucleoside and non-nucleoside chemotypes produced hemorrhagic microfoci in brain in an apparent ADO receptor-dependent fashion. An initial oral report of these important toxicological findings was presented at an international conference but a detailed description of these data has not appeared in the peer-reviewed literature. In the two decades following the demise of these early AK-based clinical candidates, interest in AK inhibition has renewed based on preclinical data in the areas of renal protection, diabetic retinopathy, cardioprotection, and neurology. This review provides a summary of the pharmacology and toxicology data for several AK inhibitor chemotypes and the resulting translational issues associated with the development of AK inhibitors as viable therapeutic interventions.


Assuntos
Adenosina Quinase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Adenosina/química , Adenosina/metabolismo , Adenosina Quinase/química , Animais , Desenvolvimento de Medicamentos , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular
16.
PLoS One ; 14(6): e0218449, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31199855

RESUMO

Cordycepin is an efficient component of Cordyceps spp, a traditional Chinese medicine widely used for healthcare in China, and has been recently acted as a strong anticancer agent for clinic. However, whether and how it may play a role in combating tuberculosis, caused by Mycobacterium tuberculosis, remains unknown. Here we report that cordycepin can kill Mycobacterium by hijacking the bacterial adenosine kinase (AdoK), a purine salvage enzyme responsible for the phosphorylation of adenosine (Ado) to adenosine monophosphate (AMP). We show that cordycepin is a poor AdoK substrate but it competitively inhibits the catalytic activity of AdoK for adenosine phosphorylation. Cordycepin does not affect the activity of the human adenosine kinase (hAdoK), whereas hAdoK phosphorylates cordycepin to produce a new monophosphate derivative. Co-use of cordycepin and deoxycoformycin, an inhibitor of adenosine deaminase (ADD), more efficiently kills M. bovis and M. tuberculosis. The add-deleted mycobacterium is more sensitive to cordycepin. This study characterized cordycepin as a new mycobactericidal compound and also uncovered a potential anti-mycobacterial mechanism.


Assuntos
Adenosina Quinase/antagonistas & inibidores , Antituberculosos/farmacologia , Desoxiadenosinas/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Antituberculosos/química , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Desoxiadenosinas/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mutação , Mycobacterium tuberculosis/genética , Polimorfismo de Nucleotídeo Único , Espectrometria de Massas em Tandem
17.
Am J Physiol Renal Physiol ; 317(1): F107-F115, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30995110

RESUMO

Numerous studies have demonstrated that several mechanisms, including oxidative stress, DNA damage, and inflammatory responses, are closely linked to cisplatin-induced nephrotoxicity. Adenosine, emerging as a key regulatory molecule, is mostly protective in the pathophysiology of inflammatory diseases. A previous study showed that some of the adenosine receptors led to renal protection against ischemia-reperfusion injury. However, these adenosine receptor agonists lack a useful therapeutic index due to cardiovascular side effects. We hypothesized that inhibition of adenosine kinase (ADK) might exacerbate extracellular adenosine levels to reduce cisplatin-induced renal injury. In the present study, pretreatment with the ADK inhibitor ABT-702 could markedly attenuate cisplatin-induced acute kidney injury, tubular cell apoptosis, oxidative stress, and inflammation in the kidneys. Consistent with in vivo results, inhibition of ADK suppressed cisplatin-induced apoptosis, reactive oxygen species production, and inflammation in HK2 cells. Additionally, the protective effect of ADK inhibition was abolished by A1 or A2B adenosine receptor antagonist and enhanced by A2A or A3 adenosine receptor antagonist. Collectively, the results suggest that inhibition of ADK might increase extracellular adenosine levels, which inhibited cisplatin-induced oxidative stress and inflammation via A1 and A2B adenosine receptors, finally suppressing cisplatin-induced cell apoptosis. Pharmacological therapies based on ADK will be of potential use in therapy of cisplatin-induced nephrotoxicity.


Assuntos
Injúria Renal Aguda/prevenção & controle , Adenosina Quinase/antagonistas & inibidores , Adenosina/metabolismo , Cisplatino , Rim/efeitos dos fármacos , Morfolinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/enzimologia , Injúria Renal Aguda/patologia , Adenosina Quinase/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/metabolismo , Rim/enzimologia , Rim/patologia , Masculino , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Receptores Purinérgicos P1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima
18.
ASN Neuro ; 11: 1759091419833502, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30862176

RESUMO

ATP- and adenosine-mediated signaling are prominent types of glia-glia and glia-neuron interaction, with an imbalance of ATP/adenosine ratio leading to altered states of excitability, as seen in epileptic seizures. Pannexin1 (Panx1), a member of the gap junction family, is an ATP release channel that is expressed in astrocytes and neurons. Previous studies provided evidence supporting a role for purinergic-mediated signaling via Panx1 channels in seizures; using mice with global deletion of Panx1, it was shown that these channels contribute in maintenance of seizures by releasing ATP. However, nothing is known about the extent to which astrocyte and neuronal Panx1 might differently contribute to seizures. We here show that targeted deletion of Panx1 in astrocytes or neurons has opposing effects on acute seizures induced by kainic acid. The absence of Panx1 in astrocytes potentiates while the absence of Panx1 in neurons attenuates seizure manifestation. Immunohistochemical analysis performed in brains of these mice, revealed that adenosine kinase (ADK), an enzyme that regulates extracellular levels of adenosine, was increased only in seized GFAP-Cre:Panx1f/f mice. Pretreating mice with the ADK inhibitor, idotubercidin, improved seizure outcome and prevented the increase in ADK immunoreactivity. Together, these data suggest that the worsening of seizures seen in mice lacking astrocyte Panx1 is likely related to low levels of extracellular adenosine due to the increased ADK levels in astrocytes. Our study not only reveals an unexpected link between Panx1 channels and ADK but also highlights the important role played by astrocyte Panx1 channels in controlling neuronal activity.


Assuntos
Astrócitos/metabolismo , Conexinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Convulsões/metabolismo , Adenosina Quinase/antagonistas & inibidores , Adenosina Quinase/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Conexinas/genética , Modelos Animais de Doenças , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Ácido Caínico , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Neurônios/efeitos dos fármacos , Convulsões/tratamento farmacológico
19.
Epilepsia ; 60(4): 615-625, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30815855

RESUMO

OBJECTIVE: Over one-third of all patients with epilepsy are refractory to treatment and there is an urgent need to develop new drugs that can prevent the development and progression of epilepsy. Epileptogenesis is characterized by distinct histopathologic and biochemical changes, which include astrogliosis and increased expression of the adenosine-metabolizing enzyme adenosine kinase (ADK; EC 2.7.1.20). Increased expression of ADK contributes to epileptogenesis and is therefore a target for therapeutic intervention. We tested the prediction that the transient use of an ADK inhibitor administered during the latent phase of epileptogenesis can mitigate the development of epilepsy. METHODS: We used the intrahippocampal kainic acid (KA) mouse model of temporal lobe epilepsy, which is characterized by ipsilateral hippocampal sclerosis with granule cell dispersion and the development of recurrent hippocampal paroxysmal discharges (HPDs). KA-injected mice were treated with the ADK inhibitor 5-iodotubercidin (5-ITU, 1.6 mg/kg, b.i.d., i.p.) during the latent phase of epileptogenesis from day 3-8 after injury; the period when gradual increases in hippocampal ADK expression begin to manifest. HPDs were assessed at 6 and 9 weeks after KA administration followed by epilepsy histopathology including assessment of granule cell dispersion, astrogliosis, and ADK expression. RESULTS: 5-ITU significantly reduced the percent time in seizures by at least 80% in 56% of mice at 6 weeks post-KA. This reduction in seizure activity was maintained in 40% of 5-ITU-treated mice at 9 weeks. 5-ITU also suppressed granule cell dispersion and prevented maladaptive ADK increases in these protected mice. SIGNIFICANCE: Our results show that the transient use of a small-molecule ADK inhibitor, given during the early stages of epileptogenesis, has antiepileptogenic disease-modifying properties, which provides the rationale for further investigation into the development of a novel class of antiepileptogenic ADK inhibitors with increased efficacy for epilepsy prevention.


Assuntos
Adenosina Quinase/antagonistas & inibidores , Anticonvulsivantes/farmacologia , Encéfalo/efeitos dos fármacos , Epilepsia , Tubercidina/análogos & derivados , Animais , Inibidores Enzimáticos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tubercidina/farmacologia
20.
Med Chem ; 14(3): 269-280, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28641526

RESUMO

BACKGROUND: Serious side effects such as gastric intestinal ulcer, bleeding etc. are associated with most of the antiinflammatory and analgesic drugs. So, there is a need to search novel, potent, and safer antiinflammatory and analgesic drug. METHOD: Based on "biology-oriented synthesis approach", piperine alkaloid was isolated from Piper nigrum L. and some derivatives of piperine having azomethine, sulfamoyl, propanoyl, acetamoyl and heterocyclic oxadiazole were synthesized. The structures of synthetic derivatives were confirmed by using different spectroscopic techniques such as 1H-, 13C-NMR, EI-MS, and IR. Melting points were also determined for all compounds. Piperine and its all the synthetic derivatives were subjected to comparative in vivo evaluation of analgesic and antiinflammatory activities at the oral dose of 6 mg/kg/day. Analgesic activity was evaluated by tail immersion, hot plate and acetic acid writhing methods. While, antiinflammatory activity was evaluated by carrageenan-induced paw inflammation. In silico studies of all synthetic compounds was also conducted on COX-2 and adenosine kinase enzymes. RESULTS: A number of derivatives showed enhanced antiinflammatory and analgesic activities as compared to piperine and standard drug diclofenac. CONCLUSION: The newly identified molecules may serve as lead for the future research in connection of potent and safer antiinflammatory and analgesic drug candidate.


Assuntos
Alcaloides/farmacologia , Analgésicos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Benzodioxóis/farmacologia , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Adenosina Quinase/antagonistas & inibidores , Alcaloides/síntese química , Alcaloides/química , Alcaloides/isolamento & purificação , Analgésicos/síntese química , Analgésicos/química , Analgésicos/isolamento & purificação , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Benzodioxóis/síntese química , Benzodioxóis/química , Benzodioxóis/isolamento & purificação , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/isolamento & purificação , Inibidores de Ciclo-Oxigenase 2/farmacologia , Feminino , Humanos , Masculino , Camundongos , Simulação de Acoplamento Molecular , Piper nigrum , Piperidinas/síntese química , Piperidinas/química , Piperidinas/isolamento & purificação , Alcamidas Poli-Insaturadas/síntese química , Alcamidas Poli-Insaturadas/química , Alcamidas Poli-Insaturadas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA