Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
J Mater Chem B ; 12(14): 3543-3555, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38529560

RESUMO

Intrauterine adhesions (IUAs) are common sequelae of cervical mucosa damage caused by uterine curettage. Establishing an anti-adhesion barrier between the damaged endometrium with a sustained-release drug capability and hence promoting endogenous regeneration of the endometrium is an available treatment for IUA. However, current therapy lacks long-term intracavitary residence, drug-delivery permeability, and tissue anti-adhesion to the endometrium. Here, we report the design of a Janus microneedle patch consisting of two layers: an adhesive inner layer with an exosomes-loaded microneedle, which endows the patch with a tissue adhesive capability as well as transdermal drug-delivery capability; and an anti-adhesion outer layer, which prevents the intrauterine membrane from postoperative adhesion. This Janus adhesive microneedle patch firmly adhered to uterine tissue, and sustainedly released ∼80% of the total loaded exosomes in 7 days, hence promoting the expression of vascular- and endothelial-related cell signals. Furthermore, the anti-adhesive layer of the microneedle patch exhibited low cell and protein adhesion performance. In rats, the microneedle patch successfully prevented uterine adhesions, improved endometrial angiogenesis, proliferation, and hormone response levels. This study provides a stable anti-adhesion barrier as well as efficient drug-release capability treatment for intrauterine adhesion treatment.


Assuntos
Exossomos , Doenças Uterinas , Humanos , Feminino , Ratos , Animais , Adesivos/farmacologia , Adesivos/metabolismo , Doenças Uterinas/metabolismo , Doenças Uterinas/terapia , Endométrio/metabolismo , Proteínas/metabolismo
2.
ACS Biomater Sci Eng ; 9(10): 5679-5686, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37722068

RESUMO

The strategy of robust adhesion employed by barnacles renders them fascinating biomimetic candidates for developing novel wet adhesives. Particularly, barnacle cement protein 19k (cp19k) has been speculated to be the key adhesive protein establishing the priming layer in the initial barnacle cement construction. In this work, we systematically studied the sequence design rationale of cp19k by designing adhesive peptides inspired by the low-complexity STGA-rich and the charged segments of cp19k. Combining structure analysis and the adhesion performance test, we found that cp19k-inspired adhesive peptides possess excellent disparate adhesion strategies for both hydrophilic mica and hydrophobic self-assembled monolayer surfaces. Specifically, the low-complexity STGA-rich segment offers great structure flexibility for surface adhesion, while the hydrophobic and charged residues can contribute to the adhesion of the peptides on hydrophobic and charged surfaces. The adaptive adhesion strategy identified in this work broadens our understanding of barnacle adhesion mechanisms and offers valuable insights for designing advanced wet adhesives with exceptional performance on various types of surfaces.


Assuntos
Adesivos , Thoracica , Animais , Adesivos/química , Adesivos/metabolismo , Thoracica/química , Thoracica/metabolismo , Peptídeos/química , Interações Hidrofóbicas e Hidrofílicas
3.
ACS Biomater Sci Eng ; 9(3): 1362-1376, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36826383

RESUMO

Synthetic hydrogels have been used widely as extracellular matrix (ECM) mimics due to the ability to control and mimic physical and biochemical cues observed in natural ECM proteins such as collagen, laminin, and fibronectin. Most synthetic hydrogels are formed via covalent bonding resulting in slow gelation which is incompatible with drop-on-demand 3D bioprinting of cells and injectable hydrogels for therapeutic delivery. Herein, we developed an electrostatically crosslinked PEG-based hydrogel system for creating high-throughput 3D in vitro models using synthetic hydrogels to mimic the ECM cancer environment. A 3-arm PEG-based polymer backbone was first modified with either permanent cationic charged moieties (2-(methacryloyloxy)ethyl trimethylammonium) or permanent anionic charged moieties (3-sulfopropyl methacrylate potassium salt). The resulting charged polymers can be conjugated further with various amounts of cell adhesive RGD motifs (0, 25, 75, and 98%) to study the influences of RGD motifs on breast cancer (MCF-7) spheroid formation. Formation, stability, and mechanical properties of hydrogels were tested with, and without, RGD to evaluate the cellular response to material parameters in a 3D environment. The hydrogels can be degraded in the presence of salts at room temperature by breaking the interaction of oppositely charged polymer chains. MCF-7 cells could be released with high viability through brief exposure to NaCl solution. Flow cytometry characterization demonstrated that embedded MCF-7 cells proliferate better in a softer (60 Pa) 3D hydrogel environment compared to those that are stiffer (1160 Pa). As the stiffness increases, the RGD motif plays a role in promoting cell proliferation in the stiffer hydrogel. Flow cytometry characterization demonstrated that embedded MCF-7 cells proliferate better in a softer (60 Pa) 3D hydrogel environment compared to those that are stiffer (1160 Pa). As the stiffness increases, the RGD motif plays a role in promoting cell proliferation in the stiffer hydrogel. Additionally, cell viability was not impacted by the tested hydrogel stiffness range between 60 to 1160 Pa. Taken together, this PEG-based tuneable hydrogel system shows great promise as a 3D ECM mimic of cancer extracellular environments with controllable biophysical and biochemical properties. The ease of gelation and dissolution through salt concentration provides a way to quickly harvest cells for further analysis at any given time of interest without compromising cell viability.


Assuntos
Adesivos , Matriz Extracelular , Adesivos/análise , Adesivos/metabolismo , Eletricidade Estática , Matriz Extracelular/metabolismo , Hidrogéis/química , Oligopeptídeos/análise , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Materiais Biocompatíveis , Polímeros/metabolismo
4.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499519

RESUMO

Microbial infections remain a global health concern, calling for the urgent need to implement effective prevention measures. Antimicrobial peptides (AMPs) have been extensively studied as potential antimicrobial coating agents. However, an efficient and economical method for AMP production is lacking. Here, we synthesized the direct coating adhesive AMP, NKC-DOPA5, composed of NKC, a potent AMP, and repeats of the adhesive amino acid 3,4-dihydroxyphenylalanine (DOPA) via an intein-mediated protein ligation strategy. NKC was expressed as a soluble fusion protein His-NKC-GyrA (HNG) in Escherichia coli, comprising an N-terminal 6× His-tag and a C-terminal Mxe GyrA intein. The HNG protein was efficiently produced in a 500-L fermenter, with a titer of 1.63 g/L. The NKC-thioester was released from the purified HNG fusion protein by thiol attack and subsequently ligated with chemically synthesized Cys-DOPA5. The ligated peptide His-NKC-Cys-DOPA5 was obtained at a yield of 88.7%. The purified His-NKC-Cys-DOPA5 possessed surface-binding and antimicrobial properties identical to those of the peptide obtained via solid-phase peptide synthesis. His-NKC-Cys-DOPA5 can be applied as a practical and functional antimicrobial coating to various materials, such as medical devices and home appliances.


Assuntos
Anti-Infecciosos , Peptídeos Antimicrobianos , Adesivos/metabolismo , Anti-Infecciosos/química , Di-Hidroxifenilalanina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Peptídeos/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
5.
Nat Commun ; 13(1): 6854, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369425

RESUMO

During mesenchymal development, the sources of mechanical forces transduced by cells transition over time from predominantly cell-cell interactions to predominantly cell-extracellular matrix (ECM) interactions. Transduction of the associated mechanical signals is critical for development, but how these signals converge to regulate human mesenchymal stem cells (hMSCs) mechanosensing is not fully understood, in part because time-evolving mechanical signals cannot readily be presented in vitro. Here, we established a DNA-driven cell culture platform that could be programmed to present the RGD peptide from fibronectin, mimicking cell-ECM interactions, and the HAVDI peptide from N-cadherin, mimicking cell-cell interactions, through DNA hybridization and toehold-mediated strand displacement reactions. The platform could be programmed to mimic the evolving cell-ECM and cell-cell interactions during mesenchymal development. We applied this platform to reveal that RGD/integrin ligation promoted cofilin phosphorylation, while HAVDI/N-cadherin ligation inhibited cofilin phosphorylation. Cofilin phosphorylation upregulated perinuclear apical actin fibers, which deformed the nucleus and thereby induced YAP nuclear localization in hMSCs, resulting in subsequent osteogenic differentiation. Our programmable culture platform is broadly applicable to the study of dynamic, integrated mechanobiological signals in development, healing, and tissue engineering.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Humanos , Integrinas/metabolismo , Caderinas/metabolismo , Fosforilação , Adesivos/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular , Matriz Extracelular/metabolismo , DNA/metabolismo
6.
Expert Opin Drug Deliv ; 19(11): 1539-1548, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36242524

RESUMO

OBJECTIVES: Olanzapine (OZP) is a safe and effective atypical antipsychotic drug used in treating schizophrenia and bipolar disorders. The dosage forms currently on the market for OZP are administered via oral or intramuscular routes. However, there are many problems associated with oral and intramuscular routes of drug administration. Thus, our aim was to develop a drug-in-adhesive transdermal delivery system (TDS) that can deliver OZP for 3 days. METHODS: We determined passive permeation, effect of oleic acid as chemical enhancer, and delivery of OZP across different skin types. Based on preliminary studies and saturation solubility of OZP in different pressure-sensitive adhesives (PSAs), we formulated and characterized solution-based TDS in acrylate PSA and suspension-based TDS in silicone and PIB PSA, with oleic acid as chemical enhancer. RESULTS: Acrylate solution-based TDS, silicone, and PIB suspension-based TDS delivered 58.97 ± 6.59 µg/sq.cm, 129.34 ± 16.59 µg/sq.cm, and 245.00 ± 2.51 µg/sq.cm, respectively, using in vitro permeation testing. PIB PSA suspension-based TDS met the 3 days desired target delivery. Skin irritation testing using In vitro EpiDermTM skin irritation test (EPI-200-SIT) kit found PIB TDS to be nonirritant. CONCLUSION: The PIB PSA suspension-based TDS could serve as a potentially effective transdermal delivery system for olanzapine.


Assuntos
Adesivos , Absorção Cutânea , Humanos , Masculino , Acrilatos/metabolismo , Acrilatos/farmacologia , Adesivos/química , Adesivos/metabolismo , Adesivos/farmacologia , Administração Cutânea , Sistemas de Liberação de Medicamentos , Olanzapina/metabolismo , Olanzapina/farmacologia , Ácido Oleico/metabolismo , Ácido Oleico/farmacologia , Permeabilidade , Preparações Farmacêuticas/metabolismo , Antígeno Prostático Específico/metabolismo , Antígeno Prostático Específico/farmacologia , Silicones/química , Pele/metabolismo , Adesivo Transdérmico
7.
Curr Biol ; 32(20): 4386-4396.e3, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36084647

RESUMO

Filopodia are narrow cell extensions involved in various physiological processes. Integrins mediate filopodia adhesion and likely transmit adhesive force to regulate filopodia formation and functions, but the force is extremely weak to study and remains poorly understood. Using integrative tension sensor (ITS), we imaged filopodia adhesive force at the single molecular tension level and investigated the force dynamics and sources. Results show that filopodia integrin tension (FIT) is generated in discrete foci (force nodes) along single filopodia with a spacing of ∼1 µm. Inhibitions of actin polymerization or myosin II activity markedly reduced FIT signals in force nodes at filopodia tips and at filopodia bases, respectively, suggesting differential force sources of FIT in the distal force nodes and proximal ones in filopodia. Using two ITS constructs with different force thresholds for activation, we showed that the molecular force level of FIT is greater at filopodia bases than that at filopodia tips. We also tested the role of vinculin and myosin X in the FIT transmission. With vinculin knockout in cells, filopodia and associated force nodes were still formed normally, suggesting that vinculin is dispensable for the formation of filopodia and force nodes. However, vinculin is indeed required for the transmission of strong FIT (capable of rupturing DNA in a shear conformation), as the strong FIT vanished in filopodia with vinculin knockout. Co-imaging of FIT and myosin X shows no apparent co-localization, demonstrating that myosin X is not directly responsible for generating FIT, despite its prominent role in filopodium elongation.


Assuntos
Integrinas , Pseudópodes , Pseudópodes/metabolismo , Vinculina/metabolismo , Integrinas/metabolismo , Actinas/metabolismo , Adesivos/metabolismo , Miosinas/metabolismo
8.
Nano Lett ; 22(6): 2293-2302, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35238578

RESUMO

Cell adhesion and differentiation can be regulated through material engineering, but current methods have low temporal and spatial accuracy to control invivo. Here, we developed an up-conversion nanoparticle (UCNP) substrate to regulate cell adhesion and multidifferentiation in mesenchymal stem cells (MSCs) by near-infrared (NIR) light. First, the cell-adhesive peptide Arg-Gly-Asp (RGD) was conjugated on the surface of UCNPs, and the photocleavage 4-(hydroxymethyl)-3-nitrobenzoic acid (ONA) was connected to RGD. Then, the photoactivated UCNPs were linked to cover glass to form UCNP-substrate. Under the NIR, the up-convert UV from UCNPs triggered the release of ONA and exposed RGD to change the cell-matrix interactions dynamically for cell adhesion and spreading. Moreover, MSCs cultured on UCNP-substrate could be specifically induced to multidifferentiate adipocytes or osteoblasts via different power and periods of NIR irradiation in vitro and in vivo. Our work demonstrates a new way to control cell adhesion and multidifferentiation by light for regeneration medicine.


Assuntos
Adesivos , Células-Tronco Mesenquimais , Adesivos/metabolismo , Adesão Celular , Oligopeptídeos/farmacologia , Peptídeos/metabolismo , Peptídeos/farmacologia
9.
Int J Pharm ; 614: 121437, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34973408

RESUMO

A nail patch is an attractive option for the topical treatment of onychomycosis, although no product is commercially available. We previously identified optimal nail patch formulations for two anti-onychomycotic drugs, based on their properties, as well as those of the other patch components. In this paper, our aim was to further investigate the potential of the patch formulations as topical nail medicines, in particular, whether the drug-in-adhesive patches release drug which then permeates into and through the nail plate and show anti-fungal efficacy, and whether and to what extent they remain adhered to the human nail plate in vivo when tested over 2 week durations. In addition, the influence of the drug (amorolfine HCl, ciclopirox olamine) and PSA (Duro-Tak 2852 or Duro-Tak 202A) on these parameters was determined. We found that both the nature of the drug and of the PSA influenced in vitro drug release. The nature of the drug, but not that of the PSA, influenced ungual drug permeation through human nail clippings, with considerably greater (almost double) permeation for ciclopirox olamine, the smaller and less lipophilic molecule. In vivo residence, tested with 3 out of the 4 patches, excluding the patch where ciclopirox olamine degraded with time, showed greater residence on toenails compared to fingernails reflecting their far lesser exposure to environmental stresses during daily activities. In vivo residence was enhanced when the patch was cut to the shape of the nail, was applied at bedtime, and when a clear colourless nail varnish was applied on top of the patch to 'seal' it into place on the nail. Comparison of the patches indicated greater residence of Duro-Tak 202A containing patches over those containing Duro-Tak 2852. Amorolfine HCl in Duro-Tak 202A based patch also showed antifungal efficacy in contrast to Duro-Tak 2852-based patch, and is particularly promising for further development as a potential toenail medicine, remaining almost fully adhered to toenails for at least two weeks.


Assuntos
Onicomicose , Preparações Farmacêuticas , Adesivos/metabolismo , Administração Tópica , Antifúngicos/metabolismo , Química Farmacêutica , Liberação Controlada de Fármacos , Humanos , Unhas/metabolismo , Onicomicose/tratamento farmacológico , Onicomicose/metabolismo , Permeabilidade , Preparações Farmacêuticas/metabolismo
10.
J Tissue Eng Regen Med ; 16(3): 279-289, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34788485

RESUMO

After an injury, soft tissue structures in the body undergo a natural healing process through specific phases of healing. Adhesions occur as abnormal attachments between tissues and organs through the formation of blood vessels and/or fibrinous adhesions during the regenerative repair process. In this study, we developed an adhesion-preventing membrane with an improved physical protection function by modifying the surface of chondrocyte-derived extracellular matrices (CECM) with anti-adhesion function. We attempted to change the negative charge of the CECM surface to neutral using poly-L-lysine (PLL) and investigated whether it blocked fibroblast adhesion to it and showed an improved anti-adhesion effect in animal models of tissue adhesion. The surface of the membrane was modified with PLL coating (PLL 10), which neutralized the surface charge. We confirmed that the surface characteristics except for the potential difference were maintained after the modification and tested cell attachment in vitro. Adhesion inhibition was identified in a peritoneal adhesion animal model at 1 week and in a subcutaneous adhesion model for 4 weeks. Neutralized CECM (N-CECM) suppressed fibroblast and endothelial cell adhesion in vitro and inhibited abdominal adhesions in vivo. The CECM appeared to actively inhibit the infiltration of endothelial cells into the injured site, thereby suppressing adhesion formation, which differed from conventional adhesion barriers in the mode of action. Furthermore, the N-CECM remained intact without degradation for more than 4 weeks in vivo and exerted anti-adhesion effects for a long time. This study demonstrated that PLL10 surface modification rendered a neutral charge to the polymer on the extracellular matrix surface, thereby inhibiting cell and tissue adhesion. Furthermore, this study suggests a means to modify extracellular matrix surfaces to meet the specific requirements of the target tissue in preventing post-surgical adhesions.


Assuntos
Condrócitos , Polilisina , Adesivos/análise , Adesivos/metabolismo , Animais , Células Endoteliais , Matriz Extracelular/metabolismo , Polilisina/análise , Polilisina/metabolismo , Polilisina/farmacologia , Aderências Teciduais/metabolismo , Aderências Teciduais/prevenção & controle
11.
Eur J Pharm Sci ; 161: 105774, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33640502

RESUMO

The purpose of present study was to develop a long-acting drug-in-adhesive patch of rivastigmine (RVS) to achieve controlled release under high drug loading. Formulation factors including ion-pair, pressure sensitive adhesive (PSA), drug-loading and permeation enhancers were investigated through in vitro skin permeation experiments. Optimized patch was evaluated by pharmacokinetic study. The mechanism of controlled release was studied by FTIR, Raman, DSC, rheology study and molecular modeling. The optimized patch composed of RVS-SA (equal to 30% RVS), 15% POCC as permeation enhancer and AAOH as PSA matrix. The RVS in optimized patch was basically permeated at a uniform rate, and the ratio of the skin permeation amount (2803.38 ± 153.85 µg/cm2) in 72 hours to that of the control group (1000.89 ± 62.45 µg/cm2) was 2.8. The plasma concentration of RVS was stable for 72 hours in vivo (AUCoptimized = 5721.30 ± 1994.87 h ng/mL, MRT0-t = 29.55 ± 2.49 h), and Cmax was significantly controlled. The results of the study on the controlled release mechanism showed that the addition of counter ion formed hydrogen bonds with RVS and PSA respectively, which reduced the fluidity and molecular mobility of PSA, and enhanced the interaction between RVS and PSA, thus achieving the purpose of long-acting effect. In conclusion, long-acting drug-in-adhesive patch of RVS was developed, and provided a new idea for the long term drug delivery of Alzheimer's disease.


Assuntos
Adesivos , Absorção Cutânea , Adesivos/metabolismo , Administração Cutânea , Animais , Preparações de Ação Retardada/metabolismo , Ratos , Ratos Wistar , Rivastigmina/metabolismo , Pele/metabolismo , Adesivo Transdérmico
12.
Curr Pharm Biotechnol ; 22(7): 969-982, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33342408

RESUMO

BACKGROUND: Recombinant Keratinocyte Growth Factor (rHuKGF) is a therapeutic protein used widely in oral mucositis after chemotherapy in various cancers, stimulating lung morphogenesis and gastrointestinal tract cell proliferation. In this research study, chitosan-rHuKGF polymeric complex was implemented to improve the stability of rHuKGF and used as rejuvenation therapy for the treatment of oral mucositis in cancer patients. OBJECTIVE: Complexation of rHuKGF with mucoadhesive low molecular weight chitosan to protect rHuKGF from proteolysis and investigate the effect of chitosan-rHuKGF complex on the proliferation rate of FHs 74 Int cells. METHODS: The interaction between chitosan and rHuKGF was studied by molecular docking. Malvern ZetaSizer Nano Zs and Fourier-Transform Infrared spectroscopy (FTIR) tests were carried out to characterize the chitosan-rHuKGF complex. In addition, SDS-PAGE was performed to investigate the interaction between chitosan-rHuKGF complex and pepsin. The effect of chitosan-rHuKGF complex on the proliferation rate of FHs 74 Int cells was studied by MTT assay. RESULTS: Chitosan-rHuKGF complex was formed through the hydrogen bonding proven by the docking studies. A stable chitosan-rHuKGF complex was formed at pH 4.5 and was protected from proteolysis and assessed by SDS PAGE. According to the MTT assay results, chitosan-rHuKGF complex increased the cell proliferation rate of FHs 74 Int cells. CONCLUSION: The developed complex improved the stability and the biological function of rHuKGF.


Assuntos
Adesivos/química , Proliferação de Células/efeitos dos fármacos , Quitosana/química , Fator 7 de Crescimento de Fibroblastos/química , Proteólise/efeitos dos fármacos , Adesivos/metabolismo , Adesivos/farmacologia , Proliferação de Células/fisiologia , Células Cultivadas , Quitosana/metabolismo , Quitosana/farmacologia , Feto , Fator 7 de Crescimento de Fibroblastos/metabolismo , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Simulação de Acoplamento Molecular/métodos , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
13.
ACS Appl Mater Interfaces ; 12(51): 57431-57440, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33306341

RESUMO

Filamentous fungi have been considered as candidates to replace petroleum-based adhesives and plastics in novel composite material production, particularly those containing lignocellulosic materials. However, the nature of the role of surface mycelium in the adhesion between lignocellulosic composite components is not well-known. The current study investigated the functionality of surface mycelium for wood bonding by incubating Trametes versicolor on yellow birch veneers and compared the lap-shear strengths after hot-pressing to evaluate if the presence of surface mycelium can improve the interface between two wood layers and consequently improve bonding. We found that the lap-shear strength of the samples was enhanced by the increase of surface mycelium coverage up to 8 days of incubation (up to 1.74 MPa) without a significant wood weight loss. We provide evidence that the bottom surface of the mycelium layer is more hydrophilic, contains more small-scale filamentous structure and contains more functional groups, resulting in better bonding with wood than the top surface. These observations confirm and highlight the functionality of the surface mycelium layer for wood bonding and provide useful information for future developments in fully biobased composites manufacturing.


Assuntos
Adesivos/química , Micélio/química , Madeira/química , Adesivos/metabolismo , Teste de Materiais , Micélio/metabolismo , Polyporaceae/metabolismo , Resistência ao Cisalhamento , Propriedades de Superfície , Madeira/metabolismo , Madeira/microbiologia
14.
J Pharm Sci ; 109(8): 2501-2511, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32387424

RESUMO

The objective of this work was to develop a drug-in-adhesive (DIA) patch of TIZ by employing ion-pair and permeation enhancer to increase drug-polymer miscibility and drug release. Special attention was paid on the regulation effect of permeation enhancer on ion-pair status in pressure sensitive adhesives (PSA). Formulation factors including TIZ-fatty acids ion-pair, drug loading and permeation enhancer were investigated by ex-vivo transdermal experiments. Optimized patch was evaluated by pharmacokinetics study. The better polarity similarity and strong hydrogen bonding interactions between TIZ-caproic acid ion-pair (TIZ-C6) and PSA was confirmed by polarity determination, FT-IR, TOPEM of MDSC and theoretical calculation, which determined enhanced miscibility of ion-pair and PSA. The permeation enhancer affected status of ion-pair in PSA by regulating polarity similarity and interaction between ion-pair and PSA, resulting in increased drug-PSA miscibility and drug release, which was characterized by FT-IR, polarity determination, thermal analysis and molecular dynamics simulation. The optimized patch showed high drug-polymer miscibility and drug skin permeability with AUC0-t of 14641.12 ± 854.45 h ng/mL and Cmax of 834.55 ± 155.68 ng/mL, which was significantly higher than the control group. In conclusion, DIA patch of TIZ was prepared and it supplied a reference for design of DIA patches with TIZ.


Assuntos
Adesivos , Preparações Farmacêuticas , Adesivos/metabolismo , Administração Cutânea , Animais , Clonidina/análogos & derivados , Liberação Controlada de Fármacos , Preparações Farmacêuticas/metabolismo , Polímeros/metabolismo , Ratos , Ratos Wistar , Pele/metabolismo , Absorção Cutânea , Espectroscopia de Infravermelho com Transformada de Fourier , Adesivo Transdérmico
15.
FEBS Open Bio ; 10(4): 495-506, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32115900

RESUMO

Transglutaminases are a family of enzymes that catalyse the cross-linking of proteins by forming covalent bonds between lysine and glutamine residues in various polypeptides. Cross-linking reactions are involved in blood clots, skin formation, embryogenesis and apoptosis. Clinically, these enzymes appear to be implicated in neurodegenerative diseases, tumours and coeliac diseases. Transglutaminases have great potential for use in the food industry because of their ability to cross-link proteins that are not normally linked. Here, a gene coding for transglutaminase from Atlantic cod was cloned into a bacterial expression vector and used to transform protein expression in a strain of Escherichia coli. The successful expression of recombinant transglutaminase protein from Atlantic cod (AcTG-1) as a soluble protein upon induction at low temperature was confirmed by sodium dodecyl sulfate/polyacrylamide gel electrophoresis, immunoblotting and mass spectrometry analysis. Biochemical characterisation demonstrated that the transglutaminase was active between 0 and 65 °C, but was completely inactivated after 20-min incubation at 70 °C. Interestingly, the enzyme displayed cold-adapted features, such as temperature instability combined with high catalytic efficiency at low temperatures (8-16 °C). In addition, the enzyme had optimal activity at 50 °C, a new feature for a cold-adapted enzyme. AcTG-1 was active in the pH range from 6 to 9, with an optimum at pH 8, and required 5 mm calcium for maximum activity. Potential calcium-binding sites in the enzyme were predictable, making the enzyme an appropriate model for studying structure-function relationships in the calcium-dependent transglutaminase family. In vitro gel analysis revealed that transglutaminase cross-linked casein, collagen and gelatin. The binding of fish fillets in the presence of recombinant AcTG-1 provided further macroscopic proof for the potential application of AcTG-1 as a biological cross-linker in the food industry. Once binding occurred, fish fillets withstood further processing such as frying, boiling, freeze-thawing and chilling. The low-temperature activity and new enzymatic properties of AcTG-1 appear to offer advantages over commercially available enzymatic glues in the food industry.


Assuntos
Cálcio/metabolismo , Temperatura Baixa , Manipulação de Alimentos , Gadus morhua/metabolismo , Medicina , Transglutaminases/genética , Transglutaminases/metabolismo , Adesivos/química , Adesivos/metabolismo , Animais , Caseínas/metabolismo , Colágeno/metabolismo , Reagentes de Ligações Cruzadas , Ativação Enzimática , Escherichia coli/enzimologia , Escherichia coli/genética , Gelatina/metabolismo , Glutamina/metabolismo , Concentração de Íons de Hidrogênio , Lisina/metabolismo , Peptídeos/metabolismo , Plasmídeos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transglutaminases/química
16.
AAPS PharmSciTech ; 20(1): 18, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30603884

RESUMO

Nowadays, chemoprevention by administering natural supplements is considered an attractive strategy to reverse, suppress, or prevent the evolution of premalignant oral lesions. In particular, Barbaloin exhibits anti-proliferative, anti-inflammatory, and anti-cancer properties, and it results useful in multi-therapy with classic chemotherapeutics. Therefore, in this work, mucoadhesive buccal films, as locoregional drug delivery system able to provide a targeted and efficient therapeutic delivery of Barbaloin, are proposed. Thus, Aloin extract-loaded Eudragit® RL100 or Eudragit® RS100-based buccal films were designed in order to obtain an easily self-administrable formulation capable of promoting Barbaloin penetration into buccal mucosa and assuring high patient compliance. Large amounts of extract (44%) were loaded into the polymer matrix and six formulations were prepared varying polymers and plasticizers ratios. For all formulations, physical form (thermogravimetric analysis-differential scanning calorimetry, TGA-DSC), swelling degree, mucoadhesiveness, drug release, and ability to promote drug penetration in mucosa have been investigated. After a sequential selection process, Eudragit RS 100-based film, with low PVP and high plasticizers amounts, emerged as the most promising. It results appropriately flexible, uniform in terms of weight, thickness and drug content, as well as characterized by suitable surface pH, good mucoadhesiveness, and low swelling degree. It displays a Higuchian drug release behavior up to 89% of Barbaloin released, thus demonstrating that diffusion through the matrix is the main release mechanism. Remarkable penetration enhancer properties of film were demonstrated by evidence of Barbaloin accumulation into buccal mucosa up to 10-fold higher than those obtained following administration of Aloin solution.


Assuntos
Adesivos/metabolismo , Antracenos/metabolismo , Mucosa Bucal/metabolismo , Polímeros/metabolismo , Resinas Acrílicas/administração & dosagem , Resinas Acrílicas/química , Resinas Acrílicas/metabolismo , Adesivos/administração & dosagem , Administração Bucal , Animais , Antracenos/administração & dosagem , Antracenos/química , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Quimioprevenção/métodos , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Humanos , Mucosa Bucal/efeitos dos fármacos , Polímeros/administração & dosagem , Polímeros/química , Suínos
17.
Angew Chem Int Ed Engl ; 57(48): 15728-15732, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30246912

RESUMO

A novel strategy to generate adhesive protein analogues by enzyme-induced polymerization of peptides is reported. Peptide polymerization relies on tyrosinase oxidation of tyrosine residues to Dopaquinones, which rapidly form cysteinyldopa-moieties with free thiols from cysteine residues, thereby linking unimers and generating adhesive polymers. The resulting artificial protein analogues show strong adsorption to different surfaces, even resisting hypersaline conditions. Remarkable adhesion energies of up to 10.9 mJ m-2 are found in single adhesion events and average values are superior to those reported for mussel foot proteins that constitute the gluing interfaces.


Assuntos
Adesivos/metabolismo , Materiais Biomiméticos/metabolismo , Bivalves/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Proteínas/metabolismo , Adesivos/química , Adsorção , Animais , Benzoquinonas/química , Benzoquinonas/metabolismo , Materiais Biomiméticos/química , Bivalves/química , Cisteína/química , Cisteína/metabolismo , Di-Hidroxifenilalanina/análogos & derivados , Di-Hidroxifenilalanina/química , Di-Hidroxifenilalanina/metabolismo , Estrutura Molecular , Monofenol Mono-Oxigenase/química , Polimerização , Proteínas/química , Propriedades de Superfície
18.
Acta Pharm ; 68(1): 1-18, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29453908

RESUMO

Urinary tract infections (UTIs) caused by uropathogenic Escherichia coli (UPEC) are among the most common infectious diseases in humans. Due to their frequent occurrence in the community and nosocomial settings, as well as the development of resistance to the commonly prescribed antimicrobial agents, an enormous financial burden is placed on healthcare systems around the world. Therefore, novel approaches to the prevention and treatment of UTIs are needed. Although UPEC may harbour a plethora of virulence factors, type I fimbriae and P pili are two of the most studied adhesive organelles, since the attachment to host cells in the urinary tract is a crucial step towards infection. Design of receptor analogues that competitively bind to UPEC surface adhesins placed at the top of pili organelles led to the development of anti-adhesive drugs that are increasingly recognized as important and promising alternatives to antibiotic treatment of UTIs.


Assuntos
Adesivos/metabolismo , Antibacterianos/farmacologia , Infecções Urinárias/tratamento farmacológico , Escherichia coli Uropatogênica/efeitos dos fármacos , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Humanos , Infecções Urinárias/metabolismo
19.
Sci Rep ; 8(1): 1737, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29379026

RESUMO

Here, we report a new concept of both the adhesive manner and material, named "adhesive leaf (AL)," based on the leaf of the plant Heteropanax fragrans. The treatment of the corona discharge on the leaf surface can cause the nano-/microdestruction of the leaf epidermis, resulting in an outward release of sap. The glucose-containing sap provided the AL with a unique ability to stick to various substrates such as steel, polypropylene, and glass. Moreover, we reveal that the AL adhesion strength depends on the AL size, as well as the corona-discharge intensity. Conventional adhesives, such as glue and bond, lose their adhesive property and leave dirty residues upon the removal of the attached material. Unlike the conventional methods, the AL is advantageous as it can be repeatedly attached and detached thoroughly until the sap liquid is exhausted; its adhesive ability is maintained for at least three weeks at room temperature. Our findings shed light on a new concept of a biodegradable adhesive material that is created by a simple surface treatment.


Assuntos
Adesivos/metabolismo , Araliaceae/metabolismo , Produtos Biológicos/metabolismo , Folhas de Planta/metabolismo , Adesivos/química , Produtos Biológicos/química
20.
J Am Chem Soc ; 140(7): 2687-2692, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29381064

RESUMO

We developed dendritic caged molecular glues (CagedGlue-R) as tags for nucleus-targeted drug delivery, whose multiple guanidinium ion (Gu+) pendants are protected by an anionic photocleavable unit (butyrate-substituted nitroveratryloxycarbonyl; BANVOC). Negatively charged CagedGlue-R hardly binds to anionic biomolecules because of their electrostatic repulsion. However, upon exposure of CagedGlue-R to UV light or near-infrared (NIR) light, the BANVOC groups of CagedGlue-R are rapidly detached to yield an uncaged molecular glue (UncagedGlue-R) that carries multiple Gu+ pendants. Because Gu+ forms a salt bridge with PO4-, UncagedGlue-R tightly adheres to anionic biomolecules such as DNA and phospholipids in cell membranes by a multivalent salt-bridge formation. When tagged with CagedGlue-R, guests can be taken up into living cells via endocytosis and hide in endosomes. However, when the CagedGlue-R tag is photochemically uncaged to form UncagedGlue-R, the guests escape from the endosome and migrate into the cytoplasm followed by the cell nucleus. We demonstrated that quantum dots (QDs) tagged with CagedGlue-R can be delivered efficiently to cell nuclei eventually by irradiation with light.


Assuntos
Adesivos/metabolismo , Núcleo Celular/metabolismo , Guanidina/metabolismo , Luz , Adesivos/química , Linhagem Celular Tumoral , Núcleo Celular/química , Endocitose , Endossomos/química , Endossomos/metabolismo , Guanidina/química , Humanos , Estrutura Molecular , Processos Fotoquímicos , Pontos Quânticos/química , Pontos Quânticos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA