Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.319
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 631, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722405

RESUMO

Adipokines are now well-known to regulate reproduction. Visfatin is an adipokine expressed in the hypothalamus, pituitary, ovary, uterus, and placenta of different species, and since it has been found to modulate the endocrine secretion of the hypothalamus, pituitary gland and ovary, it may be considered a novel regulator of female reproduction. Although the majority of the literature explored its role in ovarian regulation, visfatin has also been shown to regulate uterine remodeling, endometrial receptivity and embryo development, and its expression in the uterus is steroid dependent. Like other adipokines, visfatin expression and levels are deregulated in pathological conditions including polycystic ovary syndrome. Thus, the present mini-review focuses on the role of visfatin in female reproduction under both physiological and pathological conditions.


Assuntos
Nicotinamida Fosforribosiltransferase , Síndrome do Ovário Policístico , Reprodução , Feminino , Humanos , Nicotinamida Fosforribosiltransferase/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Reprodução/fisiologia , Reprodução/genética , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/fisiopatologia , Animais , Ovário/metabolismo , Útero/metabolismo , Citocinas/metabolismo , Gravidez , Adipocinas/metabolismo
2.
Mol Med Rep ; 29(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38606791

RESUMO

Obesity reaches up to epidemic proportions globally and increases the risk for a wide spectrum of co­morbidities, including type­2 diabetes mellitus (T2DM), hypertension, dyslipidemia, cardiovascular diseases, non­alcoholic fatty liver disease, kidney diseases, respiratory disorders, sleep apnea, musculoskeletal disorders and osteoarthritis, subfertility, psychosocial problems and certain types of cancers. The underlying inflammatory mechanisms interconnecting obesity with metabolic dysfunction are not completely understood. Increased adiposity promotes pro­inflammatory polarization of macrophages toward the M1 phenotype, in adipose tissue (AT), with subsequent increased production of pro­inflammatory cytokines and adipokines, inducing therefore an overall, systemic, low­grade inflammation, which contributes to metabolic syndrome (MetS), insulin resistance (IR) and T2DM. Targeting inflammatory mediators could be alternative therapies to treat obesity, but their safety and efficacy remains to be studied further and confirmed in future clinical trials. The present review highlights the molecular and pathophysiological mechanisms by which the chronic low­grade inflammation in AT and the production of reactive oxygen species lead to MetS, IR and T2DM. In addition, focus is given on the role of anti­inflammatory agents, in the resolution of chronic inflammation, through the blockade of chemotactic factors, such as monocytes chemotractant protein­1, and/or the blockade of pro­inflammatory mediators, such as IL­1ß, TNF­α, visfatin, and plasminogen activator inhibitor­1, and/or the increased synthesis of adipokines, such as adiponectin and apelin, in obesity­associated metabolic dysfunction.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Síndrome Metabólica , Humanos , Obesidade/metabolismo , Síndrome Metabólica/complicações , Síndrome Metabólica/metabolismo , Inflamação/metabolismo , Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Mediadores da Inflamação/metabolismo
3.
Reprod Biol Endocrinol ; 22(1): 38, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575956

RESUMO

The present study aimed to examine the effects of progranulin and omentin on basic ovarian cell functions. For this purpose, we investigated the effects of the addition of progranulin and omentin (0, 0.1, 1, or 10 ng/ml) on the viability, proliferation, apoptosis and steroidogenesis of cultured rabbit ovarian granulosa cells. To determine the importance of the interrelationships between granulosa cells and theca cells, we compared the influence of progranulin and omentin on progesterone and estradiol release in cultured granulosa cells and ovarian fragments containing both granulosa cells and theca cells. Cell viability, proliferation, cytoplasmic apoptosis and release of progesterone and estradiol were measured by Cell Counting Kit-8 (CCK-8), BrdU incorporation, cell death detection, and ELISA. Both progranulin and omentin increased granulosa cell viability and proliferation and decreased apoptosis. Progranulin increased progesterone release by granulosa cells but reduced progesterone output by ovarian fragments. Progranulin decreased estradiol release by granulosa cells but increased it in ovarian fragments. Omentin reduced progesterone release in both models. Omentin reduced estradiol release by granulosa cells but promoted this release in ovarian fragments. The present observations are the first to demonstrate that progranulin and omentin can be direct regulators of basic ovarian cell functions. Furthermore, the differences in the effects of these adipokines on steroidogenesis via granulosa and ovarian fragments indicate that these peptides could target both granulosa and theca cells.


Assuntos
Adipocinas , Progesterona , Feminino , Animais , Coelhos , Progesterona/metabolismo , Progranulinas/metabolismo , Progranulinas/farmacologia , Adipocinas/metabolismo , Adipocinas/farmacologia , Ovário/metabolismo , Células da Granulosa/metabolismo , Estradiol/metabolismo , Apoptose , Células Cultivadas , Proliferação de Células
4.
Int Immunopharmacol ; 132: 112018, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38588630

RESUMO

Obesity is associated with insulin resistance, hypertension, and coronary artery diseases which are grouped as metabolic syndrome. Rather than being a storage for energy, the adipocytes could synthesis and secret diverse hormones and molecules, named as adipokines. Under obese status, the adipocytes are dysfunctional with excessively producing the inflammatory related cytokines, such as interleukin 1 (IL-1), IL-6, and tumor necrosis factor α (TNF-α). Concerning on the vital role of adipokines, it is proposed that one of the critical pathological factors of obesity is the dysfunctional adipocytic pathways. Among these adipokines, acylation stimulating protein, as an adipokine synthesized by adipocytes during the process of cell differentiation, is shown to activate the metabolism of triglyceride (TG) by regulating the catabolism of glucose and free fatty acid (FFA). Recent attention has paid to explore the underlying mechanism whereby acylation stimulating protein influences the biological function of adipocyte and the pathological development of obesity. In the present review, we summarized the progression of acylation stimulating protein in modulating the physiological and hormonal catabolism which affects fat distribution. Furthermore, the potential mechanisms which acylation stimulating protein regulates the metabolism of adipose tissue and the process of metabolic syndrome were also summarized.


Assuntos
Síndrome Metabólica , Obesidade , Humanos , Síndrome Metabólica/metabolismo , Animais , Obesidade/metabolismo , Obesidade/patologia , Adipócitos/metabolismo , Adipócitos/patologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Adipocinas/metabolismo , Progressão da Doença
5.
Reproduction ; 167(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38513348

RESUMO

In brief: Dairy cattle experience a period of infertility postpartum that is caused in part by the development of IGF1/insulin resistance. This study suggests that an adipokine, FNDC3A, reduces IGF1-dependent glycolysis and may contribute to postpartum infertility. Abstract: Dairy cows go through a period of subfertility after parturition, triggered in part by a disruption of energy homeostasis. The mobilization of body fat alters the secretion of adipokines, which have been shown to impact ovarian function. Fibronectin type III domain-containing 3A (FNDC3A) is a recently discovered adipokine-myokine, and FNDC3A mRNA abundance in subcutaneous adipose tissue is increased postpartum in cattle. In this study, we hypothesized that FNDC3A may compromise granulosa cell function in cattle and investigated this using a well-established in vitro cell culture model. Here, we demonstrate the presence of FNDC3A protein associated with extracellular vesicles in follicular fluid and in plasma, suggesting an endocrine role for this adipokine. FNDC3A protein and mRNA was also detected in the bovine ovary (cortex, granulosa and theca cells, cumulus, oocyte and corpus luteum). Abundance of FNDC3A mRNA in granulosa cells from small follicles was increased by in vitro treatment with the adipokines leptin and TNF but not by visfatin, resistin, adiponectin, chemerin or IGF1. Addition of recombinant FNDC3A at physiological doses (10 ng/mL) to granulosa cells decreased IGF1-dependent progesterone but not estradiol secretion and IGF1-dependent lactate secretion and abundance of GLUT3 and GLUT4 mRNA. This concentration of FNDC3A increased cell viability, abundance of mRNA encoding a putative receptor FOLR1, and increased phosphorylation of Akt. Collectively, these data suggest that FNDC3A may regulate folliculogenesis in cattle by modulating IGF1-dependent granulosa cell steroidogenesis and glucose metabolism.


Assuntos
Células da Granulosa , Infertilidade , Animais , Bovinos , Feminino , Adipocinas/metabolismo , Células da Granulosa/metabolismo , Infertilidade/metabolismo , Lactatos/metabolismo , Progesterona/metabolismo , RNA Mensageiro/metabolismo , Receptor 1 de Folato/metabolismo , Fibronectinas/metabolismo , Exossomos/genética , Exossomos/metabolismo
6.
Anticancer Res ; 44(4): 1369-1376, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537999

RESUMO

BACKGROUND/AIM: Obesity is correlated with an increased risk of developing malignancies, including prostate cancer. Adipocytokines, such as leptin and adiponectin, are a family of hormones derived from adipose tissue that are involved not only in metabolism, but also in the development and progression of various malignancies. However, little is known about their role in prostate cancer. This study aimed to determine how leptin, adiponectin, and their receptors impact the spread of prostate cancer. MATERIALS AND METHODS: We first performed immunohistochemical analysis of prostate cancer tissue microarrays to detect leptin, leptin receptor (Ob-R), adiponectin, and adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2). Wound healing assays and western blot analysis were then performed in human prostate cancer cell lines. RESULTS: Immunohistochemistry showed that prostate tissue was not significantly positive for adiponectin. However, its expression tended to decrease according to the International Society of Urological Pathology (ISUP) grade of prostate cancer (p=0.056). In prostate cancer cell lines, administration of the synthetic adiponectin AdipoRon suppressed cell migration as well as the expression of phospho-NF-[Formula: see text]B and cyclooxygenase-2, whereas leptin stimulated these effects. CONCLUSION: Adiponectin expression tended to be suppressed according to ISUP grade in prostate cancer tissues. In vitro, tumor cell migration was induced by leptin but suppressed by adiponectin. Targeting adipocytokines could be a novel treatment strategy for prostate cancer.


Assuntos
Leptina , Neoplasias da Próstata , Masculino , Humanos , Leptina/metabolismo , Adipocinas/metabolismo , Adiponectina/farmacologia , Adiponectina/metabolismo , Tecido Adiposo/metabolismo , Neoplasias da Próstata/metabolismo
7.
Front Endocrinol (Lausanne) ; 15: 1336543, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516409

RESUMO

The prevalence of osteoporosis has been on the rise globally. With ageing populations, research has sought therapeutic solutions in novel areas. One such area is that of the adipokines. Current literature points to an important role for these chemical mediators in relation to bone metabolism. Well-established adipokines have been broadly reported upon. These include adiponectin and leptin. However, other novel adipokines such as visfatin, nesfatin-1, meteorin-like protein (Metrnl), apelin and lipocalin-2 are starting to be addressed pre-clinically and clinically. Adipokines hold pro-inflammatory and anti-inflammatory properties that influence the pathophysiology of various bone diseases. Omentin-1 and vaspin, two novel adipokines, share cardioprotective effects and play essential roles in bone metabolism. Studies have reported bone-protective effects of omentin-1, whilst others report negative associations between omentin-1 and bone mineral density. Lipocalin-2 is linked to poor bone microarchitecture in mice and is even suggested to mediate osteoporosis development from prolonged disuse. Nesfatin-1, an anorexigenic adipokine, has been known to preserve bone density. Animal studies have demonstrated that nesfatin-1 treatment limits bone loss and increases bone strength, suggesting exogenous use as a potential treatment for osteopenic disorders. Pre-clinical studies have shown adipokine apelin to have a role in bone metabolism, mediated by the enhancement of osteoblast genesis and the inhibition of programmed cell death. Although many investigations have reported conflicting findings, sufficient literature supports the notion that adipokines have a significant influence on the metabolism of bone. This review aims at highlighting the role of novel adipokines in osteoporosis while also discussing their potential for treating osteoporosis.


Assuntos
Osteoporose , Serpinas , Animais , Camundongos , Adipocinas/metabolismo , Apelina/metabolismo , Lipocalina-2 , Adiponectina/metabolismo , Osteoporose/tratamento farmacológico
8.
Obesity (Silver Spring) ; 32(3): 560-570, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38247441

RESUMO

OBJECTIVE: The study objective was to investigate the effect of cold exposure on the plasma levels of five potential human brown adipokines (chemokine ligand 14 [CXCL14], growth differentiation factor 15 [GDF15], fibroblast growth factor 21 [FGF21], interleukin 6 [IL6], and bone morphogenic protein 8b [BMP8b]) and to study whether such cold-induced effects are related to brown adipose tissue (BAT) volume, activity, or radiodensity in young humans. METHODS: Plasma levels of brown adipokines were measured before and 1 h and 2 h after starting an individualized cold exposure in 30 young adults (60% women, 21.9 ± 2.3 y; 24.9 ± 5.1 kg/m2 ). BAT volume, 18 F-fluorodeoxyglucose uptake, and radiodensity were assessed by a static positron emission tomography-computerized tomography scan after cold exposure. RESULTS: Cold exposure increased the concentration of CXCL14 (Δ2h = 0.58 ± 0.98 ng/mL; p = 0.007), GDF15 (Δ2h = 19.63 ± 46.2 pg/mL; p = 0.013), FGF21 (Δ2h = 33.72 ± 55.13 pg/mL; p = 0.003), and IL6 (Δ1h = 1.98 ± 3.56 pg/mL; p = 0.048) and reduced BMP8b (Δ2h = -37.12 ± 83.53 pg/mL; p = 0.022). The cold-induced increase in plasma FGF21 was positively associated with BAT volume (Δ2h: ß = 0.456; R2 = 0.307; p = 0.001), but not with 18 F-fluorodeoxyglucose uptake or radiodensity. None of the changes in the other studied brown adipokines was related to BAT volume, activity, or radiodensity. CONCLUSIONS: Cold exposure modulates plasma levels of several potential brown adipokines in humans, whereas only cold-induced changes in FGF21 levels are associated with BAT volume. These findings suggest that human BAT might contribute to the circulatory pool of FGF21.


Assuntos
Adipocinas , Tecido Adiposo Marrom , Adulto Jovem , Humanos , Feminino , Masculino , Adipocinas/metabolismo , Tecido Adiposo Marrom/diagnóstico por imagem , Tecido Adiposo Marrom/metabolismo , Interleucina-6/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Fluordesoxiglucose F18/metabolismo , Temperatura Baixa
9.
J Cell Physiol ; 239(1): 67-78, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37882238

RESUMO

Cerebral injury is closely associated with enhanced oxidative stress. A newly discovered secretory adipocytokine, intelectin-1 (ITLN-1), has been shown to have beneficial effects in neuroprotection in epidemiological studies. However, the specific molecular mechanism of ITLN-1 in protecting against cerebral oxidative stress needs further investigation. In this study, we hypothesize that ITLN-1 plays a protective role against oxidative stress injury through the SIRT1/PGC1-α signaling pathway in neuromatocytes. We used hydrogen peroxide (H2 O2 ) as a oxidative stress model to simulate oxidative stress injury. Then, small interfering RNAs (siRNAs) was used to knock down SIRT1 in N2a cells with or without ITLN overexpression, followed by H2 O2 -induced injury. We observed that H2 O2 injury significantly decreased the levels of ITLN-1, SIRT1, and PGC-1α. However, ITLN overexpression reversed H2 O2 -induced decline in cell viability and rise in apoptosis and intracellular ROS levels in N2a cells, while ITLN siRNA worsened the neurocyte injury. Furthermore, SIRT1 knockdown reversed the positive effect of ITLN overexpression on oxidative stress injury in N2a cells. Taken together, these findings suggest that ITLN-1 exerts neuroprotective effects against oxidative stress injury primarily through the SIRT1/PGC-1α axis.


Assuntos
Adipocinas , Neuroblastoma , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Sirtuína 1 , Apoptose , Neuroblastoma/genética , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Sirtuína 1/genética , Sirtuína 1/metabolismo , Adipocinas/genética , Adipocinas/metabolismo
10.
Reproduction ; 167(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37971748

RESUMO

In brief: Adipolin (C1QTNF12) has been described as a regulator of metabolism and is linked with the pathophysiology of PCOS. In this study, for the first time, we show the expression of C1QTNF12 in granulosa cells and its positive effect on porcine granulosa cell proliferation and steroid synthesis. Abstract: Adipolin (C1QTNF12) is a recently discovered adipokine that plays an important role in glucose and insulin level regulation. Previous studies showed its reduced level in serum of women suffering from polycystic ovarian syndrome; however, whether C1QTNF12 regulates ovary function is still unknown. The aim of the study was first to determine the level of C1QTNF12 in the porcine ovarian follicles granulosa cells (Gc) and then its in vitro effect on proliferation and steroidogenesis as well as phosphorylation of several signalling pathways. Our results showed that the expression of C1QTNF12 was dependent on follicle size and was higher at the mRNA and protein level in Gc of small than large follicles from both prepubertal and mature animals. Similar pattern was observed for C1QTNF12 concentration in porcine follicular fluid. Additionally, we observed immunolocalisation of C1QTNF12 in Gc, theca cells and oocytes. We found that C1QTNF12 stimulated porcine Gc proliferation via the activation of protein kinase B (AKT). Moreover, C1QTNF12 enhanced progesterone, testosterone and oestradiol secretion by elevating STAR, CYP11A1, HSD3B and CYP19A1 mRNA expression and by activation of MAP3/1 pathway. Additionally, C1QTNF12 increased pMAP3/1-to-MAP3/1 protein expression ratio and enhanced IGF1-induced pTyr-IGF1Rß-to-IGFR1ß and pMAP3/1-to-MAP3/1 protein ratios. Taken together, C1QTNF12 could act directly on proliferation and steroid synthesis and serve as an important factor in in vivo ovarian follicle function, possibly regulating the course of folliculogenesis.


Assuntos
Adipocinas , Síndrome do Ovário Policístico , Feminino , Animais , Suínos , Humanos , Adipocinas/metabolismo , Células da Granulosa/metabolismo , Progesterona/metabolismo , Síndrome do Ovário Policístico/metabolismo , RNA Mensageiro/metabolismo , Reprodução , Estradiol/farmacologia
11.
J Biol Chem ; 300(1): 105566, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103643

RESUMO

Macrophages play critical roles in inflammation and tissue homeostasis, and their functions are regulated by various autocrine, paracrine, and endocrine factors. We have previously shown that CTRP6, a secreted protein of the C1q family, targets both adipocytes and macrophages to promote obesity-linked inflammation. However, the gene programs and signaling pathways directly regulated by CTRP6 in macrophages remain unknown. Here, we combine transcriptomic and phosphoproteomic analyses to show that CTRP6 activates inflammatory gene programs and signaling pathways in mouse bone marrow-derived macrophages (BMDMs). Treatment of BMDMs with CTRP6 upregulated proinflammatory, and suppressed the antiinflammatory, gene expression. We also showed that CTRP6 activates p44/42-MAPK, p38-MAPK, and NF-κB signaling pathways to promote inflammatory cytokine secretion from BMDMs, and that pharmacologic inhibition of these signaling pathways markedly attenuated the effects of CTRP6. Pretreatment of BMDMs with CTRP6 also sensitized and potentiated the BMDMs response to lipopolysaccharide (LPS)-induced inflammatory signaling and cytokine secretion. Consistent with the metabolic phenotype of proinflammatory macrophages, CTRP6 treatment induced a shift toward aerobic glycolysis and lactate production, reduced oxidative metabolism, and elevated mitochondrial reactive oxygen species production in BMDMs. Importantly, in accordance with our in vitro findings, BMDMs from CTRP6-deficient mice were less inflammatory at baseline and showed a marked suppression of LPS-induced inflammatory gene expression and cytokine secretion. Finally, loss of CTRP6 in mice also dampened LPS-induced inflammation and hypothermia. Collectively, our findings suggest that CTRP6 regulates and primes the macrophage response to inflammatory stimuli and thus may have a role in modulating tissue inflammatory tone in different physiological and disease contexts.


Assuntos
Adipocinas , Perfilação da Expressão Gênica , Inflamação , Lipopolissacarídeos , Macrófagos , Fosfoproteínas , Proteômica , Animais , Camundongos , Adipocinas/deficiência , Adipocinas/genética , Adipocinas/metabolismo , Células da Medula Óssea/citologia , Citocinas/metabolismo , Glicólise , Hipotermia/complicações , Inflamação/complicações , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Ácido Láctico/biossíntese , Lipopolissacarídeos/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fosfoproteínas/análise , Fosfoproteínas/metabolismo , Transdução de Sinais , Espécies Reativas de Oxigênio/metabolismo
12.
J Transl Med ; 21(1): 906, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082368

RESUMO

BACKGROUND: Obesity, characterized by visceral adipose tissue (VAT) expansion, is closely associated with metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). Recent research has highlighted the crucial role of the adipose tissue-liver axis in the development of MASLD. In this study, we investigated the potential role of omentin-1, a novel adipokine expressed by VAT, in obesity-related MASLD pathogenesis. METHODS: Through in silico analysis of differentially expressed genes in VAT from obese patients with and without MASH, we identified omentin-1 as a significant candidate. To validate our findings, we measured omentin-1 levels in VAT and plasma of lean controls and obese patients with biopsy-proven MASLD. Additionally, we assessed omentin-1 expression in the VAT of diet-induced mice MASLD model. In vitro and ex vivo studies were conducted to investigate the effects of omentin-1 on MASLD-related mechanisms, including steatosis, inflammation, endoplasmic reticulum (ER) stress, and oxidative stress. We also analyzed the impact of D-glucose and insulin on VAT omentin-1 levels ex vivo. RESULTS: Compared to the lean group, the obese groups exhibited significantly lower VAT and plasma levels of omentin-1. Interestingly, within the obese groups, omentin-1 is further decreased in MASH groups, independent of fibrosis. Likewise, VAT of mice fed with high-fat diet, showing histological signs of MASH showed decreased omentin-1 levels as compared to their control diet counterpart. In vitro experiments on fat-laden human hepatocytes revealed that omentin-1 did not affect steatosis but significantly reduced TNF-α levels, ER stress, and oxidative stress. Similar results were obtained using ex vivo VAT explants from obese patients upon omentin-1 supplementation. Furthermore, omentin-1 decreased the mRNA expression of NF-κB and mitogen-activated protein kinases (ERK and JNK). Ex vivo VAT explants showed that D-glucose and insulin significantly reduced omentin-1 mRNA expression and protein levels. CONCLUSIONS: Collectively, our findings suggest that reduced omentin-1 levels contribute to the development of MASLD. Omentin-1 supplementation likely exerts its beneficial effects through the inhibition of the NF-κB and MAPK signaling pathways, and it may additionally play a role in the regulation of glucose and insulin metabolism. Further research is warranted to explore omentin-1 as a potential therapeutic target and/or biomarker for MASLD.


Assuntos
Adipocinas , Fígado Gorduroso , Animais , Humanos , Camundongos , Fígado Gorduroso/genética , Glucose , Insulina , NF-kappa B , Obesidade/complicações , Obesidade/genética , RNA Mensageiro/genética , Citocinas/genética , Citocinas/metabolismo , Lectinas/genética , Lectinas/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Adipocinas/genética , Adipocinas/metabolismo
13.
Cancer Lett ; 579: 216465, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38084702

RESUMO

Lung cancer is a highly heterogeneous malignancy, and despite the rapid development of chemotherapy and radiotherapy, acquired drug resistance and tumor progression still occur. Thus, it is urgent to identify novel therapeutic targets. Our research aims to screen novel biomarkers associated with the prognosis of lung carcinoma patients and explore the potential regulatory mechanisms. We obtained RNA sequencing (RNA-seq) data of lung cancer patients from public databases. Clinical signature analysis, weighted gene coexpression network analysis (WGCNA) and the random forest algorithm showed that C1q/tumor necrosis factor-related protein-6 (CTRP6) is a core gene related to lung cancer prognosis, and it was determined to promote tumor proliferation and metastasis both in vivo and in vitro. Mechanistically, silencing CTRP6 was determined to promote xCT/GPX4-involved ferroptosis through functional assays related to lipid peroxidation, Fe2+ concentration and mitochondrial ultrastructure. By performing interactive proteomics analyses in lung tumor cells, we identified the interaction between CTRP6 and suppressor of cytokine signaling 2 (SOCS2) leading to SOCS2 ubiquitination degradation, subsequently enhancing the downstream xCT/GPX4 signaling pathway. Moreover, significant correlations between CTRP6-mediated SOCS2 and ferroptosis were revealed in mouse models and clinical specimens of lung cancer. As inducing ferroptosis has been gradually regarded as an alternative strategy to treat tumors, targeting CTRP6-mediated ferroptosis could be a potential strategy for lung cancer therapy.


Assuntos
Ferroptose , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Adipocinas/metabolismo , Ferroptose/genética , Pulmão/metabolismo , Neoplasias Pulmonares/genética , Prognóstico , Transdução de Sinais , Proteínas Supressoras da Sinalização de Citocina/metabolismo
14.
Endocr Regul ; 57(1): 262-268, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38127689

RESUMO

Objective. Adipose tissue is considered to be an endocrine organ that secretes bioactive substances known as adipokines that contribute to the pathophysiology of metabolic and coronary diseases related to obesity. In this study, various novel biomarkers, such as inflammatory markers that are pro-inflammatory (visfatin) and anti-inflammatory (omentin-1), as prognostic indicators for people with coronary artery disease (CAD) were investigated. Methods. In this study, 30 diabetic patients with CAD, 30 diabetic patients without CAD, and 30 healthy control counterparts were included. Serum omentin and visfatin concentrations were evaluated by solid-phase enzyme linked immunosorbent assay (ELISA) kit. Patients with established diagnosis of CAD based on angiography, ECG, and elevated cardiac marker level were included into the study. Patients with cardioembolic stroke, cerebral venous sinus thrombosis, CNS vasculitis, and hemorrhage due to trauma, tumor, vascular malformation, and coagulopathy were excluded. Results. The serum omentin-1 levels were significantly higher in the healthy controls in comparison with the diabetic group (p<0.0001) and serum visfatin levels were significantly higher in the diabetic group in comparison with the healthy controls (p<0.0001). The serum omentin levels were significantly higher in the diabetic group in comparison with the cardio-diabetic group (p<0.0001) and serum visfatin levels were significantly higher in the cardio-diabetic group in comparison with the diabetic group (p<0.0001). The serum omentin-1 showed negative correlation with the serum visfatin in the cardio-diabetic group. Conclusion. The adipokines, such as omentin and visfatin, may be good therapeutic candidates in preventing or ameliorating CAD.


Assuntos
Doença da Artéria Coronariana , Diabetes Mellitus , Humanos , Adipocinas/metabolismo , Nicotinamida Fosforribosiltransferase , Citocinas , Tecido Adiposo/metabolismo
15.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139115

RESUMO

Adipokines are substances secreted by adipose tissue that are receiving increasing attention. The approach to adipose tissue has changed in recent years, and it is no longer looked at as just a storage organ but its secretion and how it influences systems in the human body are also looked at. The role of adipokine seems crucial in developing future therapies for pathologies of selected systems. In this study, we look at selected adipokines, leptin, adiponectin, chemerin, resistin, omentin-1, nesfatin, irisin-1, visfatin, apelin, vaspin, heparin-binding EGF-like growth factor (HB-EGF), and TGF-ß2, and how they affect systems in the human body related to physical activity such as the musculoskeletal and cardiovascular systems.


Assuntos
Adipocinas , Sistema Cardiovascular , Humanos , Adipocinas/metabolismo , Leptina/metabolismo , Resistina/metabolismo , Sistema Cardiovascular/metabolismo , Adiponectina/metabolismo , Tecido Adiposo/metabolismo
16.
Int J Mol Sci ; 24(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38139276

RESUMO

The advanced glycosylation end-product receptor (AGER) is involved in the development of metabolic inflammation and related complications in type 2 diabetes mellitus (T2DM). Tissue expression of the AGER gene (AGER) is regulated by epigenetic mediators, including a long non-coding RNA AGER-1 (lncAGER-1). This study aimed to investigate whether human obesity and T2DM are associated with an altered expression of AGER and lncAGER-1 in adipose tissue and, if so, whether these changes affect the local inflammatory milieu. The expression of genes encoding AGER, selected adipokines, and lncAGER-1 was assessed using real-time PCR in visceral (VAT) and subcutaneous (SAT) adipose tissue. VAT and SAT samples were obtained from 62 obese (BMI > 40 kg/m2; N = 24 diabetic) and 20 normal weight (BMI = 20-24.9 kg/m2) women, while a further 15 SAT samples were obtained from patients who were 18 to 24 months post-bariatric surgery. Tissue concentrations of adipokines were measured at the protein level using an ELISA-based method. Obesity was associated with increased AGER mRNA levels in SAT compared to normal weight status (p = 0.04) and surgical weight loss led to their significant decrease compared to pre-surgery levels (p = 0.01). Stratification by diabetic status revealed that AGER mRNA levels in VAT were higher in diabetic compared to non-diabetic women (p = 0.018). Elevated AGER mRNA levels in VAT of obese diabetic patients correlated with lncAGER-1 (p = 0.04, rs = 0.487) and with interleukin 1ß (p = 0.008, rs = 0.525) and resistin (p = 0.004, rs = 0.6) mRNA concentrations. In conclusion, obesity in women is associated with increased expression of AGER in SAT, while T2DM is associated with increased AGER mRNA levels and pro-inflammatory adipokines in VAT.


Assuntos
Diabetes Mellitus Tipo 2 , RNA Longo não Codificante , Humanos , Feminino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Gordura Intra-Abdominal/metabolismo , Obesidade/complicações , Obesidade/genética , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Adipocinas/genética , Adipocinas/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Gordura Subcutânea/metabolismo
17.
Cells ; 12(24)2023 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-38132172

RESUMO

Adipose-derived mesenchymal stem cells (ASCs) have the potential to differentiate into bone, cartilage, fat, and neural cells and promote tissue regeneration and healing. It is known that they can have variable responses to hypoxic conditions. In the present study, we aimed to explore diverse changes in the cells and secretome of ASCs under a hypoxic environment over time and to present the possibility of ASCs as therapeutic agents from a different perspective. The expression differences of proteins between normoxic and hypoxic conditions (6, 12, or 24 h) were specifically investigated in human ASCs using 2-DE combined with MALDI-TOF MS analysis, and secreted proteins in ASC-derived conditioned media (ASC-derived CM) were examined by an adipokine array. In addition, genetic and/or proteomic interactions were assessed using a DAVID and miRNet functional annotation bioinformatics analysis. We found that 64 and 5 proteins were differentially expressed in hypoxic ASCs and in hypoxic ASC-derived CM, respectively. Moreover, 7 proteins among the 64 markedly changed spots in hypoxic ASCs were associated with bone-related diseases. We found that two proteins, cathepsin D (CTSD) and cathepsin L (CTSL), identified through an adipokine array independently exhibited significant efficacy in promoting osteocyte differentiation in bone-marrow-derived mesenchymal stem cells (BM-MSCs). This finding introduces a promising avenue for utilizing hypoxia-preconditioned ASC-derived CM as a potential therapeutic approach for bone-related diseases.


Assuntos
Tecido Adiposo , Células-Tronco Mesenquimais , Humanos , Tecido Adiposo/metabolismo , Osteócitos , Catepsina D/metabolismo , Proteômica , Células-Tronco Mesenquimais/metabolismo , Hipóxia/metabolismo , Adipocinas/metabolismo
18.
J Clin Invest ; 134(4)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38015631

RESUMO

C1q/TNF-related protein 4 (CTRP4) is generally thought to be released extracellularly and plays a critical role in energy metabolism and protecting against sepsis. However, its physiological functions in autoimmune diseases have not been thoroughly explored. In this study, we demonstrate that Th17 cell-associated experimental autoimmune encephalomyelitis was greatly exacerbated in Ctrp4-/- mice compared with WT mice due to increased Th17 cell infiltration. The absence of Ctrp4 promoted the differentiation of naive CD4+ T cells into Th17 cells in vitro. Mechanistically, CTRP4 interfered with the interaction between IL-6 and the IL-6 receptor (IL-6R) by directly competing to bind with IL-6R, leading to suppression of IL-6-induced activation of the STAT3 pathway. Furthermore, the administration of recombinant CTRP4 protein ameliorated disease symptoms. In conclusion, our results indicate that CTRP4, as an endogenous regulator of the IL-6 receptor-signaling pathway, may be a potential therapeutic intervention for Th17-driven autoimmune diseases.


Assuntos
Encefalomielite Autoimune Experimental , Encefalomielite , Camundongos , Animais , Interleucina-6/genética , Interleucina-6/metabolismo , Células Th17 , Complemento C1q , Diferenciação Celular , Fatores Imunológicos , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/metabolismo , Camundongos Endogâmicos C57BL , Adipocinas/metabolismo
19.
Orphanet J Rare Dis ; 18(1): 367, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017461

RESUMO

BACKGROUND: Pseudohypoparathyroidism type 1 (PHP1) is a rare disease featuring hypocalcemia and elevated PTH level. Though disturbed calcium and phosphorus metabolism under PTH resistant have been widely studied, glucolipid metabolism abnormalities observed in PHP1 patients have received little attention. The aim of this research is to explore the glucolipid metabolism features in a rather large cohort of PHP1 patient. In the current study, PHP1 patients and primary hyperparathyroidism patients as well as normal control were recruited for the investigation. Glucolipid metabolic indices as well as the level of four adipokines were examined. RESULTS: A total of 49 PHP1 patients, 64 PHPT patients and 30 healthy volunteers were enrolled. A trend of higher HOMA-ß index was found in PHP1 patients than normal controls (median 97.08% vs 68.19%, p = 0.060). Both the PHP1 and PHPT group presented with significantly lower TNFα level compared to normal controls (average 10.74 pg/ml and 12.53 pg/ml vs 15.47 pg/ml, p = 0.002 and 0.041, respectively). FGF21 level was significantly higher in PHPT group than in PHP1 group (median 255.74 pg/ml vs 167.46 pg/ml, p = 0.019). No significant difference in glucolipid metabolic indices and adipokines was found between PHP1A or PHP1B patients and normal controls, while overweight/obese PHP1 patients tended to have higher leptin than normal-BMI cases (p = 0.055). Multiple linear regression analysis showed BMI rather than PTH or HOMA-IR to be an independent variable of leptin in PHP1. CONCLUSION: Metabolic stress given upon especially overweight PHP1 patients may resulted in possible ß-cell compensation. Elevated TNFα may be related with hyper-PTH level regardless of calcium level.


Assuntos
Cálcio , Pseudo-Hipoparatireoidismo , Humanos , Leptina , Adipocinas/metabolismo , Fator de Necrose Tumoral alfa , Sobrepeso
20.
Reprod Fertil Dev ; 35(16): 692-707, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37955271

RESUMO

CONTEXT: The appropriate course of angiogenesis in the endometrium is crucial for pregnancy establishment and maintenance. Very little is known about the factors linking vessel formation and immune system functioning. AIMS: We hypothesised that chemerin, an adipokine known for its involvement in the regulation of energy balance and immunological functions, may act as a potent regulator of endometrial angiogenesis during early pregnancy in pigs. METHODS: Porcine endometrial tissue explants were obtained from pregnant pigs on days 10-11, 12-13, 15-16 and 27-28, and on days 10-12 of the oestrous cycle. The explants were in vitro cultured for 24h in the presence of chemerin (100, 200ng/mL) or in medium alone (control). We evaluated the in vitro effect of chemerin on the secretion of vascular endothelial growth factors A-D (VEGF-A-D), placental growth factor (PlGF), basic fibroblast growth factor (bFGF) and angiopoietin 1 and 2 (ANG-1, ANG-2) with the ELISA method. The protein abundance of angiogenesis-related factor receptors, VEGF receptors 1-3 (VEGFR1-3), FGF receptors 1 and 2 (FGFR1-2) and ANG receptor (TIE2) was evaluated with the Western blot (WB) method. We also analysed the influence of chemerin on the phosphorylation of AMPK using WB. KEY RESULTS: We found that in the studied endometrial samples, chemerin up-regulated the secretion of VEGF-A, VEGF-B and PlGF, and protein expression of VEGFR3. The adipokine caused a decrease in VEGF-C, VEGF-D and ANG-1 release. Chemerin effect on bFGF and ANG-2 secretion, and protein content of VEGFR1, VEGFR2, FGFR1, FGFR2 and TIE2 were dependent on the stage of pregnancy. Chemerin was found to down-regulate AMPK phosphorylation. CONCLUSIONS: The obtained in vitro results suggest that chemerin could be an important factor in the early pregnant uterus by its influence on angiogenic factors' secretion and signalling. IMPLICATIONS: The obtained results on the role of chemerin in the process of endometrial angiogenesis may, in the long term perspective, contribute to the elaboration of more effective methods of modifying reproductive processes and maintaining energy homeostasis in farm animals.


Assuntos
Indutores da Angiogênese , Fator A de Crescimento do Endotélio Vascular , Gravidez , Suínos , Feminino , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator de Crescimento Placentário/metabolismo , Indutores da Angiogênese/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Endométrio/metabolismo , Adipocinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA