Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.739
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Molecules ; 29(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38731585

RESUMO

The techniques used to detect and quantify cyanocobalamin (vitamin B12) vary considerably in terms of detection sensitivity, from the most sensitive, based on radioisotopes and mass spectrometry (MS) with limits of detection (LOD) in fg mL-1, to fluorescence (FL) and surface plasmon resonance (SPR) biosensors with LOD values in the range of a few µg mL-1. For accurate quantification of an analyte present at trace levels in complex biological matrices, a selective separation and enrichment step is required to overcome matrix interferences and ensure sufficient detection sensitivity. In this study, iron oxide magnetic nanoparticles (IONPs) were used for the extraction and initial preconcentration of cyanocobalamin (vitamin B12). In the dependence of the magnetization on the H-field (hysteresis loop), no coercivity and remanence values were found at 300 K, indicating the superparamagnetic properties of the tested IONPs. Perfluorinated acids were used as amphiphilic agents to allow the sorption of cyanocobalamin onto the IONPs. FT-IR/ATR spectroscopy was used to confirm the sorption of cyanocobalamin on the IONPs. The influence of the addition of a homologous series of perfluorinated acids such as trifluoroacetic acid (TFAA), heptafluorobutyric acid (HFBA), and trichloroacetic acid (TCAA) to the extraction mixture was tested considering their type, mass, and time required for effective sorption. The adsorption kinetics and isotherm, described by the Freundlich and Langmuir equations, were analyzed. The maximum adsorption capacity (qm) exceeded 6 mg g-1 and was 8.9 mg g-1 and 7.7 mg g-1 for HFBA and TCAA, respectively, as the most efficient additives. After the desorption process using aqueous KH2PO4 solution, the sample was finally analyzed spectrophotometrically and chromatographically. The IONP-based method was successfully applied for the isolation of cyanocobalamin from human urine samples. The results showed that the developed approach is simple, cheap, accurate, and efficient for the determination of traces of cyanocobalamin in biological matrices.


Assuntos
Nanopartículas Magnéticas de Óxido de Ferro , Vitamina B 12 , Vitamina B 12/química , Vitamina B 12/análise , Adsorção , Nanopartículas Magnéticas de Óxido de Ferro/química , Limite de Detecção , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Food Res Int ; 186: 114340, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729695

RESUMO

Fruits are essential sources of nutrients in our daily diet; however, their spoilage is often intensified by mechanical damage and the ethylene phytohormone, resulting in significant economic losses and exacerbating hunger issues. To address these challenges, this study presented a straightforward in situ synthesis protocol for producing Z/SOPPU foam, a 3D porous-structured fruit packaging. This innovative packaging material offered advanced ethylene-adsorbing and cushioning capabilities achieved through stirring, heating, and standing treatments. The results demonstrated that the Z/SOPPU foam, with its porous structure, served as an excellent packaging material for fruits, maintaining the intact appearance of tomatoes even after being thrown 72 times from a height of 1.5 m. Additionally, it exhibited desirable hydrophobicity (contact angle of 114.31 ± 0.82°), degradability (2.73 ± 0.88 % per 4 weeks), and efficient ethylene adsorption (adsorption rate of 13.2 ± 1.7 mg/m3/h). These remarkable characteristics could be attributed to the unique 3D micron-porous configuration, consisting of soybean oil polyol polyurethane foam for mechanical strain cushioning and zein for enhanced ethylene adsorption efficiency. Overall, this research offers an effective and original approach to the rational design and fabrication of advanced bio-based fruit packaging.


Assuntos
Etilenos , Embalagem de Alimentos , Frutas , Poliuretanos , Óleo de Soja , Zeína , Etilenos/química , Poliuretanos/química , Embalagem de Alimentos/métodos , Porosidade , Frutas/química , Óleo de Soja/química , Zeína/química , Adsorção , Polímeros/química , Solanum lycopersicum/química , Interações Hidrofóbicas e Hidrofílicas
3.
Environ Monit Assess ; 196(5): 491, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691183

RESUMO

This study explores the dual applications of a greenly synthesized ZnO@CTAB nanocomposite for the efficient remediation of Rhodamine B (RhB) and lead (Pb). The synthesis method involves a sustainable approach, emphasizing environmentally friendly practices. FT-IR, XRD, FESEM, zeta potential, and particle size analyzer (PSA), BET, and UV-VIS were used to physically characterize the zinc oxide and CTAB nanocomposite (ZnO@CTAB). The size and crystalline index of ZnO@CTAB are 77.941 nm and 63.56% respectively. The Zeta potential of ZnO@CTAB is about - 22.4 mV. The pore diameter of the ZnO@CTAB was 3.216 nm, and its total surface area was 97.42 m2/g. The mechanism of adsorption was investigated through pHZPC measurements. The nanocomposite's adsorption performance was systematically investigated through batch adsorption experiments. At pH 2, adsorbent dose of 0.025 g, and temperature 50 °C, ZnO@CTAB removed the most RhB, while at pH 6, adsorbent dose of 0.11 g, and temperature 60 °C, ZnO@CTAB removed the most Pb. With an adsorption efficiency of 214.59 mg/g and 128.86 mg/g for RhB and Pb, the Langmuir isotherm model outperforms the Freundlich isotherm model in terms of adsorption. The pseudo-2nd-order model with an R2 of 0.99 for both RhB and Pb offers a more convincing explanation of adsorption than the pseudo-1st-order model. The results demonstrated rapid adsorption kinetics and high adsorption capacities for RhB and Pb. Furthermore, there was minimal deterioration and a high reusability of ZnO@CTAB till 4 cycles were observed.


Assuntos
Chumbo , Nanocompostos , Rodaminas , Poluentes Químicos da Água , Óxido de Zinco , Chumbo/química , Óxido de Zinco/química , Rodaminas/química , Nanocompostos/química , Poluentes Químicos da Água/química , Adsorção , Cetrimônio/química , Recuperação e Remediação Ambiental/métodos , Química Verde , Nanoestruturas/química
4.
Environ Monit Assess ; 196(6): 524, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717730

RESUMO

The utilization of agricultural waste to create value-added goods has benefited waste management while resolving cost-effectiveness and food shortage problems. Returning biochar produced from agricultural waste to the agricultural field is a sustainable method of enhancing crop production while lowering the environmental effect of typical fertilizers. It also enhances soil condition by modulating pH, soil organic carbon, water retention capacity, and soil ion exchange potential. The current work concentrated on the production of iron oxide-loaded biochar from banana peels. Pyrolysis was carried out at temperatures ranging from 400 to 500 °C. The co-precipitation technique was utilized to impregnate Fe3O4 nanoparticles on biochar, and it showed to be an effective and trustworthy method. Loading was done in situ. Characterization techniques such as XRD, FTIR, CHNS, and TGA were employed to characterize synthesized materials. Swelling ratio, water retention, absorbance, and equilibrium water content percentage were used to study the adsorption capabilities of Fe3O4-loaded biochar, soil, and raw biochar. As a consequence, Fe3O4-enriched biochar was shown to have better adsorption capability than raw biochar, which in turn showed better adsorption properties than soil. Iron-loaded biochar was employed as a fertilizer in Abelmoschus esculentus (Okra), and the results showed that it is a cost-effective, environmentally friendly fertilizer.


Assuntos
Agricultura , Carvão Vegetal , Fertilizantes , Solo , Fertilizantes/análise , Carvão Vegetal/química , Agricultura/métodos , Solo/química , Ferro/química , Adsorção
5.
Sci Rep ; 14(1): 10269, 2024 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704450

RESUMO

Thiamine (vitamin B1) is an essential vitamin serving in its diphosphate form as a cofactor for enzymes in the citric acid cycle and pentose-phosphate pathways. Its concentration reported in the pM and nM range in environmental and clinical analyses prompted our consideration of the components used in pre-analytical processing, including the selection of filters, filter apparatuses, and sample vials. The seemingly innocuous use of glass fiber filters, glass filter flasks, and glass vials, ubiquitous in laboratory analysis of clinical and environmental samples, led to marked thiamine losses. 19.3 nM thiamine was recovered from a 100 nM standard following storage in glass autosampler vials and only 1 nM of thiamine was obtained in the filtrate of a 100 nM thiamine stock passed through a borosilicate glass fiber filter. We further observed a significant shift towards phosphorylated derivatives of thiamine when an equimolar mixture of thiamine, thiamine monophosphate, and thiamine diphosphate was stored in glass (most notably non-silanized glass, where a reduction of 54% of the thiamine peak area was observed) versus polypropylene autosampler vials. The selective losses of thiamine could lead to errors in interpreting the distribution of phosphorylated species in samples. Further, some loss of phosphorylated thiamine derivatives selectively to amber glass vials was observed relative to other glass vials. Our results suggest the use of polymeric filters (including nylon and cellulose acetate) and storage container materials (including polycarbonate and polypropylene) for thiamine handling. Losses to cellulose nitrate and polyethersulfone filters were far less substantial than to glass fiber filters, but were still notable given the low concentrations expected in samples. Thiamine losses were negated when thiamine was stored diluted in trichloroacetic acid or as thiochrome formed in situ, both of which are common practices, but not ubiquitous, in thiamine sample preparation.


Assuntos
Vidro , Tiamina , Tiamina/análise , Tiamina/química , Vidro/química , Adsorção , Humanos , Filtração
6.
J Agric Food Chem ; 72(19): 11259-11267, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38691423

RESUMO

Peanut allergen monitoring is currently an effective strategy to avoid allergic diseases, while food matrix interference is a critical challenge during detection. Here, we developed an antifouling surface plasmon resonance sensor (SPR) with stratified zwitterionic peptides, which provides both excellent antifouling and sensing properties. The antifouling performance was measured by the SPR, which showed that stratified peptide coatings showed much better protein resistance, reaching ultralow adsorption levels (<5 ng/cm2). Atomic force microscopy was used to further analyze the antifouling mechanism from a mechanical perspective, which demonstrated lower adsorption forces on hybrid peptide coatings, confirming the better antifouling performance of stratified surfaces. Moreover, the recognition of peanut allergens in biscuits was performed using an SPR with high efficiency and appropriate recovery results (98.2-112%), which verified the feasibility of this assay. Therefore, the fabrication of antifouling sensors with stratified zwitterionic peptides provides an efficient strategy for food safety inspection.


Assuntos
Alérgenos , Arachis , Peptídeos , Ressonância de Plasmônio de Superfície , Ressonância de Plasmônio de Superfície/métodos , Arachis/química , Arachis/imunologia , Peptídeos/química , Peptídeos/imunologia , Alérgenos/análise , Alérgenos/imunologia , Alérgenos/química , Incrustação Biológica/prevenção & controle , Contaminação de Alimentos/análise , Proteínas de Plantas/imunologia , Proteínas de Plantas/química , Proteínas de Plantas/análise , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Adsorção
7.
J Chromatogr A ; 1726: 464973, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38729044

RESUMO

Hydrophilic interaction chromatography (HILIC) offers different selectivity than reversed-phase liquid chromatography (RPLC). However, our knowledge of the driving force for selectivity is limited and there is a need for a better understanding of the selectivity in HILIC. Quantitative assessment of retention mechanisms makes it possible to investigate selectivity based on understanding the underlying retention mechanisms. In this study, selected model compounds from the Ikegami selectivity tests were evaluated on different polar stationary phases. The study results revealed significant insights into the selectivity in HILIC. First, hydroxy and methylene selectivity is driven by hydrophilic partitioning; but surface adsorption for 2-deoxyuridine or 5-methyluridine reduces the selectivity factor. Furthermore, the retention of 2-deoxyuridine or 5-methyluridine by surface adsorption in combination with the phase ratio explain the difference in hydroxy or methylene selectivity observed among different stationary phases. Investigations on xanthine positional isomers (1-methylxanthine/3-methylxanthine, theophylline/theobromine) indicate that isomeric selectivity is controlled by surface adsorption; however, hydrophilic partitioning may contribute to resolution by enhancing overall retention. In addition, two pairs of nucleoside isomers (adenosine/vidarabine, 2'-deoxy and 3'-deoxyguanosine) provide an example that isomeric selectivity can also be controlled by hydrophilic partitioning if their partitioning coefficients are significantly different in HILIC. Although more data is needed, the current study provides a mechanistic based understanding of the selectivity in HILIC and potentially a new way to design selectivity tests.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Adsorção , Cromatografia Líquida/métodos , Isomerismo , Nucleosídeos/química , Nucleosídeos/análise , Cromatografia de Fase Reversa/métodos , Xantinas/química
8.
J Chromatogr A ; 1726: 464965, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38733925

RESUMO

Aristolochic acids (AAs) naturally occurring in the herbal genus Aristolochia are associated with a high risk of kidney failure, multiple tumors and cancers. However, approaches with high selectivity and rapidity for measuring AAs in biological samples are still inadequate. Inspired by the mechanism of AAs-induced nephrotoxicity, we designed a hybrid magnetic polymer-porous agarose (denoted as MNs@SiO2M@DNV-A), mimicking the effect of basic and aromatic residues of organic anion transporter 1 (OAT1) for efficient enriching aristolochic acid I (AA I) and aristolochic acid II (AA II) in the plasma. The monomers of vinylbenzyl trimethylammonium chloride (VBTAC), N-vinyl-2-pyrrolidinone (NVP) and divinylbenzene (DVB) were employed to construct the polymer layer, which provided a selective adsorption for AAs by multiple interactions. The porous agarose shell contributed to remove interfering proteins in the plasma samples. A magnetic solid-phase extraction (MSPE) based on the proposed composite enhanced the selectivity toward AA I and AA II in the plasma samples. In combination of HPLC analysis, the proposed method was proved to be applicable to fast and specific quantification of AAs in blood samples, which was characterized by a good linearity, high sensitivity, acceptable recovery, excellent repeatability and satisfactory reusability.


Assuntos
Ácidos Aristolóquicos , Compostos de Amônio Quaternário , Sefarose , Extração em Fase Sólida , Ácidos Aristolóquicos/química , Ácidos Aristolóquicos/isolamento & purificação , Ácidos Aristolóquicos/sangue , Sefarose/química , Extração em Fase Sólida/métodos , Compostos de Amônio Quaternário/química , Cromatografia Líquida de Alta Pressão/métodos , Porosidade , Limite de Detecção , Animais , Humanos , Polímeros/química , Adsorção , Reprodutibilidade dos Testes
9.
Chemosphere ; 358: 142198, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697566

RESUMO

In the electrical industry, there are many hazardous gases that pollute the environment and even jeopardize human health, so timely detection and effective control of these hazardous gases is of great significance. In this work, the gas-sensitive properties of Pd-modified g-C3N4 interface for each hazardous gas molecule were investigated from a microscopic viewpoint, taking the hazardous gases (CO, NOx) that may be generated in the power industry as the detection target. Then, the performance of Pd-modifiedg-C3N4 was evaluated for practical applications as a gas sensor material. Novelly, an unconventional means was designed to briefly predict the effect of humidity on the adsorption properties of this sensor material. The final results found that Pd-modified g-C3N4 is most suitable as a potential gas-sensitizing material for NO2 gas sensors, followed by CO. Interestingly, Pd-modified g-C3N4 is less suitable as a potential gas-sensitizing material for NO gas sensors, but has the potential to be used as a NO cleaner (adsorbent). Unconventional simulation explorations of humidity effects show that in practical applications Pd-modified g-C3N4 remains a promising material for gas sensing in specific humidity environments. This work reveals the origin of the excellent properties of Pd-modified g-C3N4 as a gas sensor material and provides new ideas for the detection and treatment of these three hazardous gases.


Assuntos
Poluentes Atmosféricos , Paládio , Poluentes Atmosféricos/análise , Paládio/química , Adsorção , Água/química , Monitoramento Ambiental/métodos , Gases/análise , Umidade , Monóxido de Carbono/análise , Nitrilas/química , Nitrilas/análise
10.
Sci Total Environ ; 931: 172846, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38703858

RESUMO

The development of low-cost, highly efficient adsorbent materials is of significant importance for environmental remediation. In this study, a novel material, sulfurized nano zero-valent iron loaded biomass carbon (S-nZVI/BC), was successfully synthesized by a simple manufacturing process. The preparation of S-nZVI/BC does not require the use of expensive and hazardous chemicals. Instead, residual sludge, a solid waste product, is used as feedstock. The sludge is rich in Sulfate-Reducing Bacteria (SRB), which can provide carbon and sulfur sources for the synthesis of S-nZVI/BC. It was observed that S-nZVI particles formed in situ were dispersed within BC and covered by it. Additionally, S-nZVI/BC inherited the large specific surface area and porosity of BC. The adsorption capacity of S-nZVI/BC can reach 857.55 mg g-1 Hg (II) during the remediation of mercury-polluted water. This research offers new perspectives for developing composites in terms of the low cost and harmlessness of raw materials.


Assuntos
Biomassa , Ferro , Mercúrio , Poluentes Químicos da Água , Ferro/química , Poluentes Químicos da Água/análise , Adsorção , Enxofre/química , Recuperação e Remediação Ambiental/métodos , Bactérias Redutoras de Enxofre/metabolismo , Sulfatos/química
11.
Mikrochim Acta ; 191(6): 319, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727763

RESUMO

The high-residual and bioaccumulation property of organophosphorus pesticides (OPs) creates enormous risks towards the ecological environment and human health, promoting the research for smart adsorbents and detection methods. Herein, 2D hemin-bridged MOF nanozyme (2D-ZHM) was fabricated and applied to the efficient removal and ultrasensitive dual-mode aptasensing of OPs. On the one hand, the prepared 2D-ZHM contained Zr-OH groups with high affinity for phosphate groups, endowing it with selective recognition and high adsorption capacity for OPs (285.7 mg g-1 for glyphosate). On the other hand, the enhanced peroxidase-mimicking biocatalytic property of 2D-ZHM allowed rapid H2O2-directed transformation of 3,3',5,5'-tetramethylbenzidine to oxidic product, producing detectable colorimetric or photothermal signals. Using aptamers of specific recognition capacity, the rapid quantification of two typical OPs, glyphosate and omethoate, was realized with remarkable sensitivity and selectivity. The limit of detections (LODs) of glyphosate were 0.004 nM and 0.02 nM for colorimetric and photothermal methods, respectively, and the LODs of omethoate were 0.005 nM and 0.04 nM for colorimetric and photothermal methods, respectively. The constructed dual-mode aptasensing platform exhibited outstanding performance for monitoring OPs in water and fruit samples. This work provides a novel pathway to develop MOF-based artificial peroxidase and integrated platform for pollutant removal and multi-mode aptasensing.


Assuntos
Glicina , Glifosato , Hemina , Limite de Detecção , Estruturas Metalorgânicas , Praguicidas , Praguicidas/análise , Praguicidas/química , Estruturas Metalorgânicas/química , Hemina/química , Glicina/análogos & derivados , Glicina/química , Glicina/análise , Colorimetria/métodos , Benzidinas/química , Adsorção , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Peróxido de Hidrogênio/química , Dimetoato/análise , Dimetoato/química , Aptâmeros de Nucleotídeos/química , Compostos Organofosforados/análise , Compostos Organofosforados/química
12.
J Environ Manage ; 357: 120786, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38583386

RESUMO

An innovative task was undertaken to convert ubiquitous and toxic electronic waste, waste toner powder (WTP), into novel adsorbents. Alkaline modification with KOH, NaOH, and NH4OH was employed for the first time to synthesize a series of surface-modified WTP with enhanced dispersibility and adsorption capacity. XRD, XRF, FTIR, and BET analyses confirmed that the prepared KOH-WTP, NaOH-WTP, and NH4OH-WTP were oxygen-functionalized self-doped iron oxide-graphite nanocomposites. The prepared adsorbents were used to remove methylene blue and tetracycline from aqueous solutions. KOH-WTP (0.1 g/100 mL) adsorbed 80% of 10 mg/L methylene blue within 1 h, while 0.1 g/100 mL NH4OH-WTP removed 72% of 10 mg/L tetracycline in 3 h. Exploring surface chemistry by altering solution pH and temperature suggested that hydrogen bonding, electrostatic interactions, π-π electron stacking, and pore filling were plausible adsorption mechanisms. Scanning electron microscopy revealed a diminishing adsorbents porosity after adsorption proving the filling of pores by the adsorbates. KOH-WTP and NH4OH-WTP removed 77% and 61% of methylene blue and tetracycline respectively in the fourth reuse. The adsorption data of methylene blue and tetracycline fitted the Freundlich isotherm model. The maximum adsorption capacities of KOH-WTP and NH4OH-WTP for methylene blue and tetracycline were 59 mg/g and 43 mg/g respectively. The prepared adsorbents were also compared with other adsorbents to assess their performance. The transformation of waste toner powder into magnetically separable oxygen-functionalized WTP with outstanding recyclability and adsorption capacity showcases a significant advancement in sustainable wastewater treatment. This further aligns with the principles of the circular economy through the utilization of toxic e-waste in value-added applications. Additionally, magnetic separation of surface-modified WTP post-treatment can curtail filtration and centrifugation expenses and adsorbent loss during wastewater treatment.


Assuntos
Compostos Férricos , Grafite , Nanocompostos , Poluentes Químicos da Água , Azul de Metileno , Adsorção , Pós , Hidróxido de Sódio , Tetraciclina , Antibacterianos , Oxigênio , Poluentes Químicos da Água/análise , Cinética , Concentração de Íons de Hidrogênio
13.
Anal Chem ; 96(14): 5446-5454, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38556805

RESUMO

In this study, a novel integrated photoelectrochemical (PEC) sensor platform was proposed, utilizing an optical fiber (OF) as the working electrode for guided in situ light. A CdS quantum dots (QDs)/ZnO nanosheets (NSs) n-n heterojunction was quickly and easily constructed on the OF surface by successive ionic layer adsorption and reaction (SILAR). Au nanoparticles (NPs)@dsDNA as a capturing probe were modified on the CdS QDs/ZnO NSs@OF (CZ@OF). Due to the energy transfer between Au NPs@dsDNA and CdS QDs, the resultant opto-electrode has a lower background near zero, enabling the "signal-on" detection of biomarkers (interleukin-6 (IL-6) as a model). The OF-PEC biosensor demonstrated a wide linear range from 1 to 100 pg mL-1 with a regression coefficient (R2) of 0.9958 and an impressive detection limit (LOD) of 0.19 pg mL-1. More significantly, the proposed OF-PEC can be successfully used for the detection of IL-6 in serum samples from patients with pulmonary arterial hypertension, and it showed consistency and is more sensitive to trace concentrations compared to BD FACSCanto II flow cytometry used at the hospital. This holds significance for an early disease diagnosis. Therefore, the proposed OF-PEC not only achieves integration of the light source and sensing interface but also enables sensitive and accurate "signal-on" detection of IL-6. Furthermore, due to the flexibility and remote detection capabilities of OF, the application of OF-PEC is expected to be expanded more widely. This approach opens up possibilities for advances in PEC sensing.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Pontos Quânticos , Óxido de Zinco , Humanos , Técnicas Eletroquímicas , Citocinas , Interleucina-6 , Ouro , Adsorção , Fibras Ópticas , Eletrodos , Limite de Detecção
14.
Sci Rep ; 14(1): 8611, 2024 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616197

RESUMO

This work describes the study of the removal of a refractory contaminant, i.e., Hexavalent chromium (Cr(VI)) from aqueous systems by a novel adsorbent comprising Cr(VI) tolerant bacteria and zero valent iron nanoparticle (nZVI). A gram-positive, rod-shaped bacteria used in the study were isolated from wastewater (WW) received from the effluent of leather industries. The adsorbents were prepared with bacteria, nZVI alone, and a combination of both. The adsorbent comprising both elements was found to remove Cr(VI) with a higher percentage (93%) and higher capacities (0.58 mg/g) as compared to adsorbent with bacteria (Cr(VI) removal = 63%, qe = 0.163 mg/g) or nanoparticles (Cr(VI) removal = 80%, qe = 0.45 mg/g) alone. The adsorbent worked best at neutral pH, and the removal became saturated after 90 min of incubation. Equilibrium studies with isotherm modeling suggested that the adsorption process follows sips isotherm (R2 = 0.9955), which is expected to bean intra-particle diffusion process before the actual adsorption. Process kinetics was modeled with pseudo-first order, pseudo-second order, and Vermeulen model. The diffusion coefficient determined by fitting the kinetic data to Vermeulen model was found to be 0.0000314 cm2/s. The adsorbent can be tested further for continuous flow processes to find more insights about the usage on a large scale.


Assuntos
Bactérias , Cromo , Nanopartículas , Adsorção , Ferro
15.
Sci Total Environ ; 927: 172287, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38593877

RESUMO

In this study, the sustainability of the electrokinetic remediation soil flushing (EKSFs) process integrated without and with adsorption barriers (EKABs) have been evaluated for the treatment of four soils contaminated with Atrazine, Oxyfluorfen, Chlorosulfuron and 2,4-D. To this purpose, the environmental effects of both procedures (EKSFs and EKABs) have been determined through a life cycle assessment (LCA). SimaPro 9.3.0.3 was used as software tool and Ecoinvent 3.3 as data base to carry out the inventory of the equipment of each remediation setup based on experimental measurements. The environmental burden was quantified using the AWARE, USEtox, IPPC, and ReCiPe methods into 3 Endpoint impact categories (and damage to human health, ecosystem and resources) and 7 Midpoints impact categories (water footprint, global warming potential, ozone depletion, human toxicity (cancer and human non-cancer), freshwater ecotoxicity and terrestrial ecotoxicity). In general terms, the energy applied to treatment (using the Spanish energy mix) was the parameter with the greatest influence on the carbon footprint, ozone layer depletion and water footprint accounting for around 70 % of the overall impact contribution. On the other hand, from the point of view of human toxicity and freshwater ecotoxicity of soil treatments with 32 mg kg-1 of the different pesticides, the EKSF treatment is recommended for soils with Chlorosulfuron. In this case, the carbon footprint and water footprint reached values around 0.36 kg of CO2 and 114 L of water per kg of dry soil, respectively. Finally, a sensitivity analysis was performed assuming different scenarios.


Assuntos
Recuperação e Remediação Ambiental , Herbicidas , Poluentes do Solo , Herbicidas/análise , Poluentes do Solo/análise , Recuperação e Remediação Ambiental/métodos , Adsorção , Solo/química , Agricultura/métodos
16.
J Hazard Mater ; 470: 134306, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626684

RESUMO

Soil cadmium (Cd) is immobilized by the progressing biomineralization process as microbial induced phosphate precipitation (MIPP), which is regulated by phosphate (P) solubilizing microorganisms and P sources. However, little attention has been paid to the implications of Cd biosorption during MIPP. In this study, the newly isolated Penicillium oxalicum could immobilize 5.4-12.6 % of Cd2+, while the presence of hydroxyapatite (HAP) considerably enhanced Cd2+ immobilization in P. oxalicum and reached over 99 % Cd2+ immobilization efficiency within 7 days. Compared to P. oxalicum mono inoculation, MIPP dramatically boosted Cd biosorption and biomineralization efficiency by 71 % and 16 % after 96 h cultivation, respectively. P. oxalicum preferred to absorbing Cd2+ and reaching maximum Cd2+ biosorption efficiency of 87.8 % in the presence of HAP. More surface groups in P. oxalicum and HAP mineral involved adsorption which resulted in the formation of Cd-apatite [Ca8Cd2(PO4)6(OH)2] via ion exchange. Intracellular S2-, secreted organic acids and soluble P via HAP solubilization complexed with Cd2+, progressively mineralized into Cd5(PO4)3OH, Cd(H2PO4)2, C4H6CdO4 and CdS. These results suggested that Cd2+ immobilization was enhanced simultaneously by the accelerated biosorption and biomineralization during P. oxalicum induced P precipitation. Our findings revealed new mechanisms of Cd immobilization in MIPP process and offered clues for remediation practices at metal contaminated sites.


Assuntos
Biomineralização , Cádmio , Penicillium , Fosfatos , Penicillium/metabolismo , Cádmio/química , Cádmio/metabolismo , Fosfatos/química , Fosfatos/metabolismo , Adsorção , Durapatita/química , Poluentes do Solo/metabolismo , Poluentes do Solo/química , Biodegradação Ambiental , Precipitação Química
17.
ACS Sens ; 9(4): 1906-1915, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38565844

RESUMO

As a carcinogenic and highly neurotoxic hazardous gas, benzene vapor is particularly difficult to be distinguished in BTEX (benzene, toluene, ethylbenzene, xylene) atmosphere and be detected in low concentrations due to its chemical inertness. Herein, we develop a depth-related pore structure in Cu-TCPP-Cu to thermodynamically and kinetically enhance the adsorption of benzene vapor and realize the detection of ultralow-temperature benzene gas. We find that the in-plane π electronic nature and proper pore sizes in Cu-TCPP-Cu can selectively induce the adsorption and diffusion of BTEX. Interestingly, the theoretical calculations (including density functional theory (DFT) and grand canonical Monte Carlo (GCMC) simulations) exhibit that benzene molecules are preferred to adsorb and array as a consecutive arrangement mode in the Cu-TCPP-Cu pore, while the TEX (toluene, ethylbenzene, xylene) dominate the jumping arrangement model. The differences in distribution behaviors can allow adsorption and diffusion of more benzene molecules within limited room. Furthermore, the optimal pore-depth range (60-65 nm) of Cu-TCPP-Cu allows more exposure of active sites and hinders the gas-blocking process. The optimized sensor exhibits ultrahigh sensitivity to benzene vapor (155 Hz/µg@1 ppm), fast response time (less than 10 s), extremely low limit of detection (65 ppb), and excellent selectivity (83%). Our research thus provides a fundamental understanding to design and optimize two-dimensional metal-organic framework (MOF)-based gas sensors.


Assuntos
Benzeno , Cobre , Limite de Detecção , Estruturas Metalorgânicas , Termodinâmica , Benzeno/análise , Benzeno/química , Cobre/química , Estruturas Metalorgânicas/química , Adsorção , Cinética , Teoria da Densidade Funcional , Gases/análise , Gases/química
18.
ACS Sens ; 9(4): 1938-1944, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38591496

RESUMO

The adsorption of oxygen and its reaction with target gases are the basis of the gas detection mechanism by using metal oxides. Here, we present a theoretical analysis of the sensor response, within the ionosorption model, for an n-type polycrystalline semiconductor. Our goal of our work is to reveal the mechanisms of gas sensing from a fundamental point of view. We revisit the existing models in which the sensor response presents a power-law behavior with a reducing gas partial pressure. Then, we show, based on the Wolkenstein theory of chemisorption, that the sensor response depends not only on the reducing gas partial pressure but also on the oxygen partial pressure. We also find that the obtained sensor response does not explicitly depend on the grain size, and if it does, it is exclusively through the rate constants related to the involved reactions.


Assuntos
Gases , Óxidos , Oxigênio , Oxigênio/química , Óxidos/química , Gases/química , Semicondutores , Pressão , Metais/química , Adsorção , Oxirredução
19.
J Chromatogr A ; 1722: 464869, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604057

RESUMO

Hydrodynamics, efficiency, and loading capacity of two semi-packed columns with different cross sections (NANO 315 µm x 18 µm; CAP 1000 µm x 28 µm) and similar pillar diameter and pillar-pillar distance (respectively 5 µm and 2.5 µm) have been compared in high-pressure gas chromatography. A flow prediction tool has been first designed to determine pressure variations and hold-up time across the chromatographic system taking into account the rectangular geometry of the ducts into the semi-packed columns. Intrinsic values of Height Equivalent to Theoretical Plate were determined for NANO and CAP columns using helium as carrier gas and similar values have been obtained (30 µm) for the two columns. Loading capacity of semi-packed columns were determined for decane at 70 °C using helium, and the highest value was obtained from CAP column (larger cross section and stationary phase content). Finally, significant HETP improvement (down to 15 µm) and peak shape were observed when carbon dioxide was used as carrier gas, suggesting mobile phase adsorption on stationary phase in high pressure conditions.


Assuntos
Hélio , Pressão , Cromatografia Gasosa/métodos , Cromatografia Gasosa/instrumentação , Hélio/química , Hidrodinâmica , Dióxido de Carbono/química , Adsorção
20.
J Chromatogr A ; 1722: 464892, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608369

RESUMO

In this study, 3D-printing based on fused-deposition modeling (FDM) was employed as simple and cost-effective strategy to fabricate a novel format of rotating-disk sorptive devices. As proof-of-concept, twenty organochlorine and organophosphorus pesticides were determined in water samples through rotating-disk sorptive extraction (RDSE) using honeycomb-like 3D-printed disks followed by gas chromatography coupled to mass spectrometry (GC-MS). The devices that exhibited the best performance were comprised of polyamide + 15 % carbon fiber (PA + 15 % C) with the morphology being evaluated through X-ray microtomography. The optimized extraction conditions consisted of 120 min of extraction using 20 mL of sample at stirring speed of 1100 rpm. Additionally, liquid desorption using 800 µL of acetonitrile for 25 min at stirring speed of 1100 rpm provided the best response. Importantly, the methodology also exhibited high throughput since an extraction/desorption platform that permitted up to fifteen simultaneous extractions was employed. The method was validated, providing coefficients of determination higher than 0.9706 for all analytes; limits of detection (LODs) and limits of quantification (LOQs) ranged from 0.15 to 3.03 µg L-1 and from 0.5 to 10.0 µg L-1, respectively. Intraday precision ranged from 4.01 to 18.73 %, and interday precision varied from 4.83 to 20.00 %. Accuracy was examined through relative recoveries and ranged from 73.29 to 121.51 %. This method was successfully applied to analyze nine groundwater samples from monitoring wells of gas stations in São Paulo. Moreover, the greenness was assessed through AGREEprep metrics, and an overall score of 0.69 was obtained indicating that the method proposed can be considered sustainable.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos Clorados , Limite de Detecção , Compostos Organofosforados , Praguicidas , Impressão Tridimensional , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/isolamento & purificação , Compostos Organofosforados/análise , Compostos Organofosforados/isolamento & purificação , Praguicidas/análise , Praguicidas/isolamento & purificação , Hidrocarbonetos Clorados/análise , Hidrocarbonetos Clorados/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas/métodos , Adsorção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA