Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12117, 2024 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802536

RESUMO

The implementation of the sterile insect technique against Aedes albopictus relies on many parameters, in particular on the success of the sterilization of males to be released into the target area in overflooding numbers to mate with wild females. Achieving consistent sterility levels requires efficient and standardized irradiation protocols. Here, we assessed the effects of exposure environment, density of pupae, irradiation dose, quantity of water and location in the canister on the induced sterility of male pupae. We found that the irradiation of 2000 pupae in 130 ml of water and with a dose of 40 Gy was the best combination of factors to reliably sterilize male pupae with the specific irradiator used in our control program, allowing the sterilization of 14000 pupae per exposure cycle. The location in the canister had no effect on induced sterility. The results reported here allowed the standardization and optimization of irradiation protocols for a Sterile Insect Technique program to control Ae. albopictus on Reunion Island, which required the production of more than 300,000 sterile males per week.


Assuntos
Aedes , Controle de Mosquitos , Pupa , Animais , Aedes/efeitos da radiação , Aedes/fisiologia , Masculino , Pupa/efeitos da radiação , Feminino , Controle de Mosquitos/métodos , Reunião , Controle Biológico de Vetores/métodos
2.
Parasite ; 30: 5, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36762942

RESUMO

Balancing process efficiency and adult sterile male biological quality is one of the challenges in the success of the sterile insect technique (SIT) against insect pest populations. For the SIT against mosquitoes, many stress factors need to be taken into consideration when producing sterile males that require high biological quality to remain competitive once released in the field. Pressures of mass rearing, sex sorting, irradiation treatments, packing, transport and release including handling procedures for each step, add to the overall stress budget of the sterile male post-release. Optimizing the irradiation step to achieve maximum sterility while keeping off-target somatic damage to a minimum can significantly improve male mating competitiveness. It is therefore worth examining various protocols that have been found to be effective in other insect species, such as dose fractionation. A fully sterilizing dose of 70 Gy was administered to Aedes aegypti males as one acute dose or fractionated into either two equal doses of 35 Gy, or one low dose of 10 Gy followed by a second dose of 60 Gy. The two doses were separated by either 1- or 2-day intervals. Longevity, flight ability, and mating competitiveness tests were performed to identify beneficial effects of the various treatments. Positive effects of fractionating dose were seen in terms of male longevity and mating competitiveness. Although applying split doses generally improved male quality parameters, the benefits may not outweigh the added labor in SIT programmes for the management of mosquito vectors.


Title: Fractionnement de la dose d'irradiation chez les moustiques Aedes aegypti adultes. Abstract: Équilibrer l'efficacité du processus et la qualité biologique des mâles adultes stériles est l'un des défis du succès de la technique des insectes stériles (TIS) contre les populations d'insectes nuisibles. Pour la TIS contre les moustiques, de nombreux facteurs de stress sont à prendre en compte lors de la production de mâles stériles qui nécessitent une haute qualité biologique pour rester compétitifs une fois relâchés au champ. Les pressions de l'élevage en masse, du triage par sexe, des traitements d'irradiation, de l'emballage, du transport et de la libération, y compris les procédures de manipulation pour chaque étape, s'ajoutent au budget de stress global du mâle stérile après la libération. L'optimisation de l'étape d'irradiation pour atteindre une stérilité maximale tout en minimisant les dommages somatiques hors cible peut améliorer considérablement la compétitivité de l'accouplement des mâles et il est donc important d'examiner divers protocoles qui se sont révélés efficaces chez d'autres espèces d'insectes, comme le fractionnement de dose. Une dose entièrement stérilisante de 70 Gy a été administrée aux mâles Aedes aegypti en une dose unique ou fractionnée en deux doses égales de 35 Gy, ou une faible dose de 10 Gy suivie d'une seconde dose de 60 Gy. Les deux doses étaient séparées par des intervalles de 1 ou 2 jours. Des tests de longévité, d'aptitude au vol et de compétitivité à l'accouplement ont été réalisés pour identifier les effets bénéfiques des différents traitements. Des effets positifs de la dose de fractionnement ont été observés en termes de longévité des mâles et de compétitivité à l'accouplement. Bien que l'application de doses fractionnées améliore généralement les paramètres de qualité des mâles, les avantages peuvent ne pas compenser le travail supplémentaire dans les programmes TIS pour la gestion des moustiques vecteurs.


Assuntos
Aedes , Animais , Masculino , Aedes/efeitos da radiação , Reprodução , Mosquitos Vetores , Insetos , Doses de Radiação , Comportamento Sexual Animal/efeitos da radiação , Controle de Mosquitos/métodos
3.
PLoS One ; 17(4): e0265244, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35377897

RESUMO

BACKGROUND: The Sterile Insect Technique (SIT) is presently being tested to control dengue in several countries. SIT aims to cause the decline of the target insect population through the release of a sufficient number of sterilized male insects. This induces sterility in the female population, as females that mate with sterilized males produce no offspring. Male insects are sterilized through the use of ionizing irradiation. This study aimed to evaluate variable parameters that may affect irradiation in mosquito pupae. METHODS: An Ae. aegypti colony was maintained under standard laboratory conditions. Male and female Ae. aegypti pupae were separated using a Fay and Morlan glass sorter and exposed to different doses of gamma radiation (40, 50, 60, 70 and 80 Gy) using a Co60 source. The effects of radiation on survival, flight ability and the reproductive capacity of Ae. aegypti were evaluated under laboratory conditions. In addition, mating competitiveness was evaluated for irradiated male Ae. aegypti mosquitoes to be used for future SIT programmes in Sri Lanka. RESULTS: Survival of irradiated pupae was reduced by irradiation in a dose-dependent manner but it was invariably greater than 90% in control, 40, 50, 60, 70 Gy in both male and female Ae. aegypti. Irradiation didn't show any significant adverse effects on flight ability of male and female mosquitoes, which consistently exceeded 90%. A similar number of eggs per female was observed between the non-irradiated groups and the irradiated groups for both irradiated males and females. Egg hatch rates were significantly lower when an irradiation dose above 50 Gy was used as compared to 40 Gy in both males and females. Irradiation at higher doses significantly reduced male and female survival when compared to the non-irradiated Ae. aegypti mosquitoes. Competitiveness index (C) scores of sterile and non-sterile males compared with non-irradiated male mosquitoes under laboratory and semi-field conditions were 0.56 and 0.51 respectively at 50 Gy. SIGNIFICATION: Based on the results obtained from the current study, a 50 Gy dose was selected as the optimal radiation dose for the production of sterile Ae. aegypti males for future SIT-based dengue control programmes aiming at the suppression of Ae. aegypti populations in Sri Lanka.


Assuntos
Aedes , Dengue , Infertilidade Masculina , Aedes/efeitos da radiação , Animais , Dengue/prevenção & controle , Feminino , Insetos , Masculino , Controle de Mosquitos/métodos , Pupa/efeitos da radiação , Radiação Ionizante , Sri Lanka
4.
Acta Trop ; 228: 106284, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34922909

RESUMO

This work evaluated the genetic damage in descendants of male pupae of Aedes (Stegomyia) aegypti (Diptera: Culicidae) separately exposed to 20, 30, and 40 Gy of gamma radiation in the context of Sterile Insect Technique (SIT). Despite the transmission of the dominant lethal mutation, the employed dose levels did not promote a marked reduction in adult mosquito emergence and fertility. This study emphasized that semi-sterilizing doses < 50 Gy for SIT of Aedes aegypti are not recommended.


Assuntos
Aedes , Infertilidade , Aedes/genética , Aedes/efeitos da radiação , Animais , Fertilidade , Raios gama , Masculino , Pupa/efeitos da radiação
5.
Parasit Vectors ; 14(1): 606, 2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34895318

RESUMO

BACKGROUND: Entomological surveillance is an important means of assessing the efficacy of insect vector management programs and estimating disease transmission thresholds. Among baited traps, Biogents' BG-Sentinel (BGS) trap baited with BG-Lure is considered to have the most similar outcome to, and be a possible replacement for, human-landing catches for the epidemiologically relevant monitoring of adult Aedes aegypti and Culex quinquefasciatus. In contrast to the BGS trap, the Black Hole ultraviolet (UV) light trap, which is widely used to catch nocturnal flying insects, is not baited with synthetic human odor-mimicking lures. METHODS: We evaluated the L-lactic acid-based Kasetsart University (KU)-lures nos. 1-6 as novel candidate chemical lures for the diurnal species Ae. aegypti and the nocturnal species Cx. quinquefasciatus using two commercial traps (the BGS trap and the Black Hole UV light trap) in a semi-field screen (SFS) house. Firstly, we optimized the dose of each KU-lure in an SFS house (140 m3). Secondly, six different candidate KU-lures were screened by comparing their percent attraction using a single discriminating dose (0.5 g). Finally, we evaluated the synergism of the KU-lures selected in this way with commercially available traps. RESULTS: BGS traps baited with KU-lure no. 1 exhibited the greatest percent attraction for Ae. aegypti (29.5% ± 14.3%), whereas those baited with KU-lure no. 6 most strongly attracted Cx. quinquefasciatus (33.3% ± 10.7%). Interestingly, BGS traps treated with 10 g BG-Lure did not significantly attract more Ae. aegypti or Cx. quinquefasciatus than the untreated BGS traps. CO2 at a flow rate of 250 ml/min most strongly attracted both Ae. aegypti and Cx. quinquefasciatus (42.2% ± 14.2% and 75.1% ± 16.9%, respectively). BGS and Black Hole UV light traps with KU-lure no. 6 exhibited a stronger attraction for Cx. quinquefasciatus than untreated traps, and the percent attraction did not differ between the treated traps. CONCLUSIONS: Synergistic effects of KU-lures nos. 1 and 6 with the mosquito traps were demonstrated for both the diurnal and nocturnal species in the SFS house assays. However, further studies are urgently needed for the development of species-specific lures to increase trap efficacy in the field for local vector mosquitoes in Thailand.


Assuntos
Aedes/efeitos dos fármacos , Anopheles/efeitos dos fármacos , Culex/efeitos dos fármacos , Ácido Láctico/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Aedes/efeitos da radiação , Animais , Anopheles/efeitos da radiação , Culex/efeitos da radiação , Feminino , Humanos , Ácido Láctico/química , Masculino , Mosquitos Vetores/efeitos da radiação , Raios Ultravioleta
6.
PLoS Comput Biol ; 17(10): e1009460, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34710086

RESUMO

Fifth generation networks (5G) will be associated with a partial shift to higher carrier frequencies, including wavelengths comparable in size to insects. This may lead to higher absorption of radio frequency (RF) electromagnetic fields (EMF) by insects and could cause dielectric heating. The yellow fever mosquito (Aedes aegypti), a vector for diseases such as yellow and dengue fever, favors warm climates. Being exposed to higher frequency RF EMFs causing possible dielectric heating, could have an influence on behavior, physiology and morphology, and could be a possible factor for introduction of the species in regions where the yellow fever mosquito normally does not appear. In this study, the influence of far field RF exposure on A. aegypti was examined between 2 and 240 GHz. Using Finite Difference Time Domain (FDTD) simulations, the distribution of the electric field in and around the insect and the absorbed RF power were found for six different mosquito models (three male, three female). The 3D models were created from micro-CT scans of real mosquitoes. The dielectric properties used in the simulation were measured from a mixture of homogenized A. aegypti. For a given incident RF power, the absorption increases with increasing frequency between 2 and 90 GHz with a maximum between 90 and 240 GHz. The absorption was maximal in the region where the wavelength matches the size of the mosquito. For a same incident field strength, the power absorption by the mosquito is 16 times higher at 60 GHz than at 6 GHz. The higher absorption of RF power by future technologies can result in dielectric heating and potentially influence the biology of this mosquito.


Assuntos
Aedes , Mosquitos Vetores , Ondas de Rádio , Aedes/fisiologia , Aedes/efeitos da radiação , Animais , Feminino , Temperatura Alta , Masculino , Mosquitos Vetores/fisiologia , Mosquitos Vetores/efeitos da radiação , Febre Amarela/transmissão
7.
Acta Trop ; 199: 105110, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31351072

RESUMO

Aedes albopictus is a vector of several human viral diseases, including dengue, chikungunya, and Zika. New control method for Aedes albopictus is needed to replace traditional methods such as chemical insecticides which induce resistance, environmental contamination and toxicity to human. In sterile insect technique (SIT), male mosquitoes are sterilized by γ-ray or X-ray irradiation before released. In this study, the relative effectiveness of X-ray irradiation as a mosquito SIT was investigated. Both pupal and adult Aedes albopictus were subjected to different radiation doses and their emergence, survivorship, longevity, induced sterility, and male mating competitiveness were evaluated. Relative to controls, irradiation had no significant effect on emergence and survivorship but significantly reduce adult longevity. Induced sterility were essentially same for both irradiated pupal and adult. At a dose of 40 Gy, 97% and 100% sterility was respectively achieved for males and females. Mating competitiveness was reduced both in adult males and those derived from pupae exposed to 40 Gy. However, populations can be suppressed by increasing the release ratio (sterile: normal). When the release ratio was 7:1, 74% of the wild population could be suppressed. Overall, the results of the present study showed that SIT based on X-Ray irradiation is scientific and feasible to control Aedes albopictus.


Assuntos
Aedes/efeitos da radiação , Infertilidade , Controle de Mosquitos/métodos , Animais , Feminino , Masculino , Pupa/efeitos da radiação , Raios X
8.
PLoS One ; 14(2): e0212520, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30779779

RESUMO

The sterile insect technique (SIT) may offer a means to control the transmission of mosquito borne diseases. SIT involves the release of male insects that have been sterilized by exposure to ionizing radiation. We determined the effects of different doses of radiation on the survival and reproductive capacity of local strains of Aedes aegypti and Ae. albopictus in southern Mexico. The survival of irradiated pupae was invariably greater than 90% and did not differ significantly in either sex for either species. Irradiation had no significant adverse effects on the flight ability (capacity to fly out of a test device) of male mosquitoes, which consistently exceeded 91% in Ae. aegypti and 96% in Ae. albopictus. The average number of eggs laid per female was significantly reduced in Ae. aegypti at doses of 15 and 30 Gy and no eggs were laid by females that had been exposed to 50 Gy. Similarly, in Ae. albopictus, egg production was reduced at doses of 15 and 25 Gy and was eliminated at 35 Gy. In Ae. aegypti, fertility in males was eliminated at 70 Gy and was eliminated at 30 Gy in females, whereas in Ae. albopictus, the fertility of males that mated with untreated females was almost zero (0.1%) in the 50 Gy treatment and female fertility was eliminated at 35 Gy. Irradiation treatments resulted in reduced ovary length and fewer follicles in both species. The adult median survival time of both species was reduced by irradiation in a dose-dependent manner. However, sterilizing doses of 35 Gy and 50 Gy resulted in little reduction in survival times of males of Ae. albopictus and Ae. aegypti, respectively, indicating that these doses should be suitable for future evaluations of SIT-based control of these species. The results of the present study will be applied to studies of male sexual competitiveness and to stepwise evaluations of the sterile insect technique for population suppression of these vectors in Mexico.


Assuntos
Aedes/efeitos da radiação , Fertilidade/efeitos da radiação , Controle de Mosquitos/métodos , Animais , Infertilidade , Insetos , Masculino , México , Mosquitos Vetores , Doses de Radiação , Radiação Ionizante , Dosagem Radioterapêutica , Comportamento Sexual Animal/efeitos da radiação , Esterilização Reprodutiva/métodos
9.
Toxicol Ind Health ; 33(12): 930-937, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28992792

RESUMO

The study was undertaken to evaluate gamma radiation-induced DNA damage in Aedes aegypti. The comet assay was employed to demonstrate the extent of DNA damage produced in adult male A. aegypti exposed to seven different doses of gamma radiation, ranging from 1 Gy to 50 Gy. DNA damage was measured as the percentage of comet tail DNA. A significant linear increase in DNA damage was observed in all samples; the extent of damage being proportional to the dose of gamma radiation the organism received, except in those treated with 1 Gy. The highest amount of DNA damage was noticed at 1 h postirradiation, which decreased gradually with time, that is, at 3, 6 and 12 h postirradiation. This may indicate repair of the damaged DNA and/or loss of heavily damaged cells as the postirradiation time increased. The comet assay serves as a sensitive and rapid technique to detect gamma radiation-induced DNA damage in A. aegypti. This could be used as a potential biomarker for environmental risk assessment.


Assuntos
Aedes/genética , Aedes/efeitos da radiação , Dano ao DNA/efeitos da radiação , Raios gama/efeitos adversos , Animais , Ensaio Cometa , DNA/genética , Relação Dose-Resposta à Radiação , Masculino , Testes de Mutagenicidade
10.
PLoS One ; 11(3): e0151864, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26990981

RESUMO

Combination of the sterile insect technique with the incompatible insect technique is considered to be a safe approach to control Aedes albopictus populations in the absence of an accurate and scalable sex separation system or genetic sexing strain. Our previous study has shown that the triple Wolbachia-infected Ae. albopictus strain (wAlbA, wAlbB and wPip) was suitable for mass rearing and females could be completely sterilized as pupae with a radiation dose of at least 28 Gy. However, whether this radiation dose can influence the mating competitiveness of the triple infected males was still unknown. In this study we aimed to evaluate the effects of irradiation on the male mating competitiveness of the triple infected strain under laboratory and semi-field conditions. The results herein indicate that irradiation with a lower, female-sterilizing dose has no negative impact on the longevity of triple infected males while a reduced lifespan was observed in the wild type males (wAlbA and wAlbB) irradiated with a higher male-sterilizing dose, in small cages. At different sterile: fertile release ratios in small cages, triple-infected males induced 39.8, 81.6 and 87.8% sterility in a wild type female population at 1:1, 5:1 and 10:1 release ratios, respectively, relative to a fertile control population. Similarly, irradiated triple infected males induced 31.3, 70.5 and 89.3% sterility at 1:1, 5:1 and 10:1 release ratios, respectively, again relative to the fertile control. Under semi-field conditions at a 5:1 release ratio, relative to wild type males, the mean male mating competitiveness index of 28 Gy irradiated triple-infected males was significantly higher than 35 Gy irradiated wild type males, while triple infected males showed no difference in mean mating competitiveness to either irradiated triple-infected or irradiated wild type males. An unexpected difference was also observed in the relative male mating competitiveness of the triple infected strain after irradiation at 28 Gy dose in small vs large cages, with a higher male mating competitiveness index calculated from results of experiments in the large cages. Based on these results, we consider that the male mating performance of the triple infected strain after irradiation at 28 Gy, a dose required for complete female sterility and the avoidance of population replacement, is approximately equal to that of the wild type males under semi-field conditions. Though field evaluation is required, this suggests that the triple infected strain is suitable for irradiation and release as part of a combined SIT-IIT approach to Ae. albopictus control.


Assuntos
Aedes/fisiologia , Controle de Mosquitos/métodos , Infecções por Rickettsiaceae/transmissão , Comportamento Sexual Animal , Wolbachia , Aedes/microbiologia , Aedes/efeitos da radiação , Animais , Feminino , Masculino , Infecções por Rickettsiaceae/prevenção & controle , Esterilização Reprodutiva
11.
Recife; s.n; 2015. 85 p. ilus, graf.
Tese em Português | LILACS | ID: biblio-870275

RESUMO

Este estudo avaliou o desempenho biológico e reprodutivo de machos de Aedes aegypti esterilizados por radiação gama e seu potencial para uso no controle da espécie, através da técnica do inseto estéril (TIE). A eficácia de esterilização de diferentes doses de radiação gama, 30, 40 e 50 Gy, foi avaliada em machos irradiados (MI) na fase de pupa. O seu efeito sobre a longevidade e competitividade de acasalamento dos MI, sobre a fecundidade e fertilidade das fêmeas acasaladas com estes machos, bem como de fêmeas também irradiadas (FI), foram parâmetros analisados. Os testes de competitividade foram conduzidos em gaiolas teladas (2 X 2 m) em condições simuladas de campo, onde foram liberados machos irradiados e machos não irradiados (MNI), nas seguintes proporções: 5:1, 10:1 e 15:1. Os resultados revelaram que o fitness biológico e reprodutivo dos mosquitos são afetados pela radiação, de modo que os efeitos são diretamente proporcionais a dose de radiação utilizada. O parâmetro de longevidade apresentou diferenças significativas, tanto quando os MI foram analisados de forma individual quanto em grupo. Para a maior dose, MI e FI viveram em média 19,6 ± 2,2 dias e 25,8 ± 2,2 dias, respectivamente, enquanto que no grupo controle, estes valores foram de 24,9 ± 2,5 dias e 30,4 ± 2,5 dias...


This study evaluated the biological and reproductiv e performance of Aedes aegyptimales sterilized by gamma radiation and its potential for use in controlling the species through the Sterile Insect Technique (SIT). The sterilization efficacy of different doses of gamma radiation, 30, 40 and 50 Gy, was assessed in irradiated males (IM) in the pupal stage. The direct effects of gama radiation on the longevity and competitiveness of IM, as well as the effect on the fecundity and fertility of females mated with these males, and also irradiated females (IF), were analyzed. The competitiveness was examined by tests conducted in large cage (2 x 2 meters) in semi field conditions where irradiated males (IM) and non-irradiated males (NIM) were released in the following proportions: 5:1, 10:1 and 15:1. The results revealed that the biological and reproductive fitness of the mosquitoes are affected by radiation, so that the effects are directly proportional to the radiation dose. The longevity parameter showed significant differences...


Assuntos
Animais , Masculino , Feminino , Aedes/efeitos da radiação , Raios gama , Infertilidade , Controle de Insetos , Efeitos da Radiação , Aedes/crescimento & desenvolvimento , Brasil , Comportamento Competitivo/efeitos da radiação , Controle da População/métodos , Controle Biológico de Vetores , Área Urbana
12.
J Biophotonics ; 7(7): 465-73, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23450780

RESUMO

In biomedical applications, nanoparticles have demonstrated the potential to eradicate abnormal cells in small localized pathological zones associated with cancer or infections. Here, we introduce a method for nanotechnology-based photothermal (PT) killing of whole organisms considered harmful to humans or the environment. We demonstrate that laser-induced thermal, and accompanying nano- and microbubble phenomena, can injure or kill C. elegans and mosquitoes fed carbon nanotubes, gold nanospheres, gold nanoshells, or magnetic nanoparticles at laser energies that are safe for humans. In addition, a photoacoustic (PA) effect was used to control nanoparticle delivery. Through the integration of this technique with molecular targeting, nanoparticle clustering, magnetic capturing and spectral sharpening of PA and PT plasmonic resonances, our laser-based PA-PT nano-theranostic platform can be applied to detection and the physical destruction of small organisms and carriers of pathogens, such as malaria vectors, spiders, bed bugs, fleas, ants, locusts, grasshoppers, phytophagous mites, or other arthropod pests, irrespective of their resistance to conventional treatments.


Assuntos
Aedes/fisiologia , Aedes/efeitos da radiação , Ouro/efeitos da radiação , Lasers , Nanopartículas Metálicas/efeitos da radiação , Controle de Mosquitos/métodos , Técnicas Fotoacústicas/métodos , Animais , Relação Dose-Resposta à Radiação , Temperatura Alta , Doses de Radiação , Taxa de Sobrevida
13.
Parasit Vectors ; 6: 211, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23866939

RESUMO

BACKGROUND: Sterile Insect Technique (SIT) has been successfully implemented to control, and in some cases, eradicate, dipteran insect populations. SIT has great potential as a mosquito control method. Different sterilization methods have been used on mosquitoes ranging from chemosterilization to genetically modified sterile male mosquito strains; however, sterilization with ionizing radiation is the method of choice for effective sterilization of male insects for most species. The lack of gentle radiation methods has resulted in significant complications when SIT has been applied to mosquitoes. Several studies report that irradiating mosquitoes resulted in a decrease in longevity and mating success compared to unirradiated males. The present study explored new protocols for mosquito sterilization with ionizing radiation that minimized detrimental effects on the longevity of irradiated males. METHODS: We tested three compounds that have been shown to act as radioprotectors in the mouse model system - ethanol, trimethylglycine, and beer. Male Aedes aegypti were treated with one of three chosen potential radioprotectors and were subsequently irradiated with identical doses of long-wavelength X-rays. We evaluated the effect of these radioprotectors on the longevity of male mosquito after irradiation. RESULTS: We found that X-ray irradiation with an absorbed dose of 1.17 gy confers complete sterility. Irradiation with this dose significantly shortened the lifespan of male mosquitoes and all three radioprotectors tested significantly enhanced the lifespan of irradiated mosquito males. CONCLUSION: Our results suggest that treatment with ethanol, beer, or trimethylglycine before irradiation can be used to enhance longevity in mosquitoes.


Assuntos
Aedes/fisiologia , Aedes/efeitos da radiação , Etanol/administração & dosagem , Glicinas N-Substituídas/administração & dosagem , Protetores contra Radiação/administração & dosagem , Aedes/efeitos dos fármacos , Animais , Cerveja , Masculino , Controle Biológico de Vetores , Análise de Sobrevida , Irradiação Corporal Total , Raios X
14.
J Med Entomol ; 50(1): 94-102, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23427657

RESUMO

Mating competitiveness trials have been conducted in large net-screened enclosures (8 by 5 by 2.8 m) built in a natural shaded environment, in the summers of 2006, 2007, 2008, and 2009 in northern Italy. Aedes albopictus (Skuse) males were radio-sterilized by applying gamma radiations at doses in the range 30-60 Gy. Gamma radiation was administered to aged pupae at the rate of 2.3 Gy/min. Reared radiated males (originally collected in Rimini, Forli, Bologna, Matera, Pinerolo) and hybrid radiated males were tested against wild fertile males (originated from eggs collected in Rimini and Cesena) and reared fertile males, in multiple comparisons for mating competitiveness with reared or wild females. The ratio was kept constant at 100-100_100 (fertile males-radiated males_virgin females). Mating competitiveness was estimated through the calculation of the hatching rate of the eggs laid in oviposition traps positioned inside enclosures. No clear effect of the strains tested (reared, wild, or hybrid) was found. Results demonstrated that reducing the radiation dose from 60 to 30 Gy increases males' competitiveness. Laboratory investigations conducted after controversial results in the 2006 preliminary trials, showed that radiation induces precociousness in adult male emergence.


Assuntos
Aedes/efeitos da radiação , Comportamento Sexual Animal/efeitos da radiação , Animais , Feminino , Raios gama , Hibridização Genética , Masculino , Controle Biológico de Vetores , Pupa/efeitos da radiação
15.
Photochem Photobiol ; 55(1): 35-8, 1992 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-1603849

RESUMO

Sanguinarine, a commercial drug exhibiting antimicrobial and antitumor properties, was studied with respect to its basic photochemical characteristics and also with regard to its phototoxicity to mosquito larvae (Aedes atropalpus). Sanguinarine proved to be clearly phototoxic to larvae, with an LD50 of 0.096 mg/mL with near UV exposure as compared with 23.3 mg/mL without. Flash photolysis experiments enabled the study of the triplet state of sanguinarine to be undertaken. Quenching by oxygen occurs with a rate constant of 6 x 10(9) M-1s-1 and time-resolved emission studies indicate that sanguinarine produces a significant amount of singlet oxygen (phi delta = 0.16) as does the isoquinoline alkaloid, berberine (phi delta = 0.25). These values represent the first direct quantitative measurements of photosensitization parameters of these compounds. Additionally, sanguinarine exhibits efficient electron donation properties, undergoing reaction with methyl viologen with a rate constant greater than 10(10) M-1s-1, but is a poor electron acceptor. Phototoxicity of sanguinarine can thus be explained in terms of its photosensitization properties.


Assuntos
Aedes/efeitos dos fármacos , Alcaloides/química , Alcaloides/toxicidade , Anti-Infecciosos/química , Anti-Infecciosos/toxicidade , Raios Ultravioleta , Aedes/efeitos da radiação , Animais , Benzofenantridinas , Isoquinolinas , Larva , Dose Letal Mediana , Fotoquímica , Pupa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA