Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731798

RESUMO

Aphids are insect pests that suck phloem sap and introduce salivary proteins into plant tissues through saliva secretion. The effector of salivary proteins plays a key role in the modulation of host plant defense responses and enhancing aphid host adaptation. Based on previous transcriptome sequencing results, a candidate effector cyclin-dependent kinase-like (CDK) was identified from the grain aphid Sitobion avenae. In this study, the function of SaCDK in wheat defense response and the adaptation of S. avenae was investigated. Our results showed that the transient overexpression of SaCDK in tobacco Nicotiana benthamiana suppressed cell death triggered by mouse pro-apoptotic protein-BAX or Phytophthora infestans PAMP-INF1. SaCDK, delivered into wheat cells through a Pseudomonas fluorescens-mediated bacterial type III secretion system, suppressed callose deposition in wheat seedlings, and the overexpression of SaCDK in wheat significantly decreased the expression levels of salicylic acid and jasmonic acid signaling pathway-related genes phenylalanine ammonia lyase (PAL), pathogenesis-related 1 protein (PR1), lipoxygenase (LOX) and Ω-3 fatty acid desaturase (FAD). In addition, aphid bioassay results showed that the survival and fecundity of S. avenae were significantly increased while feeding on the wheat plants carrying SaCDK. Taken together, our findings demonstrate that the salivary protein SaCDK is involved in inhibiting host defense response and improving its host adaptation, which lays the foundation to uncover the mechanism of the interaction of cereal aphids and host plants.


Assuntos
Afídeos , Triticum , Animais , Afídeos/fisiologia , Triticum/parasitologia , Triticum/genética , Triticum/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Proteínas e Peptídeos Salivares/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Adaptação Fisiológica , Doenças das Plantas/parasitologia , Regulação da Expressão Gênica de Plantas , Nicotiana/parasitologia , Nicotiana/genética , Ciclopentanos/metabolismo , Oxilipinas
2.
Theor Appl Genet ; 137(6): 140, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780770

RESUMO

Greenbug [Schizaphis graminum (Rondani)] is a serious insect pest that not only damages cereal crops, but also transmits several destructive viruses. The emergence of new greenbug biotypes in the field makes it urgent to identify novel greenbug resistance genes in wheat. CWI 76364 (PI 703397), a synthetic hexaploid wheat (SHW) line, exhibits greenbug resistance. Evaluation of an F2:3 population from cross OK 14319 × CWI 76364 indicated that a dominant gene, designated Gb9, conditions greenbug resistance in CWI 76364. Selective genotyping of a subset of F2 plants with contrasting phenotypes by genotyping-by-sequencing identified 25 SNPs closely linked to Gb9 on chromosome arm 7DL. Ten of these SNPs were converted to Kompetitive allele-specific polymerase chain reaction (KASP) markers for genotyping the entire F2 population. Genetic analysis delimited Gb9 to a 0.6-Mb interval flanked by KASP markers located at 599,835,668 bp (Stars-KASP872) and 600,471,081 bp (Stars-KASP881) on 7DL. Gb9 was 0.5 cM distal to Stars-KASP872 and 0.5 cM proximal to Stars-KASP881. Allelism tests indicated that Gb9 is a new greenbug resistance gene which confers resistance to greenbug biotypes C, E, H, I, and TX1. TX1 is one of the most widely virulent biotypes and has overcome most known wheat greenbug resistance genes. The introgression of Gb9 into locally adapted wheat cultivars is of economic importance, and the KASP markers developed in this study can be used to tag Gb9 in cultivar development.


Assuntos
Afídeos , Genes de Plantas , Genótipo , Polimorfismo de Nucleotídeo Único , Poliploidia , Triticum , Triticum/genética , Animais , Afídeos/genética , Afídeos/fisiologia , Marcadores Genéticos , Mapeamento Cromossômico , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Resistência à Doença/genética , Alelos , Melhoramento Vegetal
3.
Plant Biotechnol J ; 22(7): 2010-2019, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38426894

RESUMO

RNA interference (RNAi) has emerged as an efficient technology for pest control by silencing the essential genes of targeted insects. Owing to its nucleotide sequence-guided working mechanism, RNAi has a high degree of species-specificity without impacts on non-target organisms. However, as plants are inevitably under threat by two or more insect pests in nature, the species-specific mode of RNAi-based technology restricts its wide application for pest control. In this study, we artificially designed an intermediate dsRNA (iACT) targeting two ß-Actin (ACT) genes of sap-sucking pests Bemisia tabaci and Myzus persicae by mutual correction of their mismatches. When expressing hairpin iACT (hpiACT) from tobacco nuclear genome, transgenic plants are well protected from both B. tabaci and M. persicae, either individually or simultaneously, as evidenced by reduced fecundity and suppressed ACT gene expression, whereas expression of hpRNA targeting BtACT or MpACT in transgenic tobacco plants could only confer specific resistance to either B. tabaci or M. persicae, respectively. In sum, our data provide a novel proof-of-concept that two different insect species could be simultaneously controlled by artificial synthesis of dsRNA with sequence optimization, which expands the range of transgenic RNAi methods for crop protection.


Assuntos
Nicotiana , Plantas Geneticamente Modificadas , Interferência de RNA , RNA de Cadeia Dupla , RNA de Cadeia Dupla/genética , Animais , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/parasitologia , Nicotiana/genética , Nicotiana/parasitologia , Afídeos/genética , Afídeos/fisiologia , Hemípteros/genética , Actinas/genética , Actinas/metabolismo
4.
Pest Manag Sci ; 80(2): 307-316, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37682693

RESUMO

BACKGROUND: Although most biological control programs use multiple biological agents to manage pest species, to date only a few programs have combined the use of agents from different guilds. Using sweet pepper (Capsicum annuum L.), the entomopathogenic fungus Akanthomyces muscarius ARSEF 5128, the tobacco peach aphid Myzus persicae var. nicotianae and the aphid parasitoid Aphidius ervi as the experimental model, we explored whether root inoculation with an entomopathogenic fungus is compatible with parasitoid wasps for enhanced biocontrol of aphids. RESULTS: In dual-choice behavior experiments, A. ervi was significantly attracted to the odor of M. persicae-infested C. annuum plants that had been inoculated with A. muscarius, compared to noninoculated infested plants. There was no significant difference in attraction to the odor of uninfested plants. Myzus persicae-infested plants inoculated with A. muscarius emitted significantly higher amounts of indole, (E)-nerolidol, (3E,7E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene and one unidentified terpene compared to noninoculated infested plants. Coupled gas chromatography-electroantennography, using the antennae of A. ervi, confirmed the physiological activity of these elevated compounds. Inoculation of plants with A. muscarius did not affect parasitism rate nor parasitoid longevity, but significantly increased the speed of mummy formation in parasitized aphids on fungus-inoculated plants. CONCLUSION: Our data suggest that root inoculation of C. annuum with A. muscarius ARSEF 5128 alters the olfactory-mediated behavior of parasitoids, but has little effect on parasitism efficiency or life-history parameters. However, increased attraction of parasitoids towards M. persicae-infested plants when inoculated by entomopathogenic fungi can accelerate host localization and hence improve biocontrol efficacy. © 2023 Society of Chemical Industry.


Assuntos
Afídeos , Capsicum , Parasitos , Vespas , Animais , Controle Biológico de Vetores , Vespas/fisiologia , Plantas , Nicotiana , Afídeos/fisiologia
5.
J Econ Entomol ; 117(1): 302-310, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38011902

RESUMO

Toxoptera aurantii is one of the most destructive pests, threatening the yield and quality of tea plantations. The salicylic acid (SA)-mediated signaling pathway is vital for the induction of plant defense responses; however, its role in tea plant resistance to T. aurantii remains unclear. Thus, this study used and electrical penetration graph and monitoring of population dynamics to evaluate the effects of exogenous SA application on T. aurantii feeding behavior and population growth in tea seedlings. Moreover, the effects of SA treatment on the activities of defense-related enzymes were analyzed. Probe counts and the duration of xylem sap ingestion were significantly higher in SA-treated plants than those in the control group. The total duration of passive phloem ingestion was significantly decreased in 0.5 mmol/l SA-treated plants, and the application of 0.5, 1, and 4 mmol/l SA significantly inhibited T. aurantii population growth. In addition, the activities of polyphenol oxidase, peroxidase, and superoxide dismutase were significantly increased in the 0.5 mmol/l SA-treated plants. Overall, this study demonstrates the capacity of exogenous SA to activate defense responses against T. aurantii. These results have crucial implications for understanding the mechanisms of enhanced resistance, thereby providing a sustainable approach for managing T. aurantii.


Assuntos
Afídeos , Animais , Afídeos/fisiologia , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Chá
6.
Int J Mol Sci ; 24(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37958876

RESUMO

Aphids are a serious threat to rapeseed (Brassica napus L.) production, and cause unmanageable loss. Therefore, effective prevention and management strategies are urgently required to avoid losses. Bacillus amyloliquefaciens AK-12 isolated from a dead aphid with aphicidal activity was tagged with a green fluorescent protein through a natural transformation. The transformed strains were checked for stability and growth, and the best-performing strain was tested for its colonization inside and outside the rapeseed plant. The stability of AK-12-GFP reached more than 95%, and the growth curve was consistent with that of AK-12. After 30 days of treatment, the colonization of 1 × 106 CFU/g was recorded in rapeseed leaves. Interestingly, AK-12 reduced the aphid transmission rate compared with the control and improved the growth of the rapeseed seedlings. Meanwhile, the AK-12 strain also exhibited phosphorus, potassium-solubilizing, and nitrogen-fixing activity, and produced 2.61 µg/mL of IAA at 24 h. Regulation in the activity of four enzymes was detected after the AK-12 treatment. Phenylalanine ammonia lyase (PAL) was recorded at a maximum of 86.84 U/g after 36 h, and catalase (CAT) decreased after 48 h; however, peroxidase (POD) and polyphenol oxidase (PPO) reached the maximum within 12 h of AK-12 application. Additionally, important resistance genes related to these enzymes were upregulated, indicating the activation of a defense response in the rapeseed against aphids. In conclusion, defense enzymes and defense-related gene activation could improve the pest resistance in rapeseed, which has good application prospects for the future to be developed into biopesticide.


Assuntos
Afídeos , Bacillus amyloliquefaciens , Brassica napus , Brassica rapa , Animais , Brassica napus/metabolismo , Afídeos/fisiologia , Peroxidase/metabolismo
7.
Nature ; 622(7981): 139-148, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37704724

RESUMO

Aphids transmit viruses and are destructive crop pests1. Plants that have been attacked by aphids release volatile compounds to elicit airborne defence (AD) in neighbouring plants2-5. However, the mechanism underlying AD is unclear. Here we reveal that methyl-salicylate (MeSA), salicylic acid-binding protein-2 (SABP2), the transcription factor NAC2 and salicylic acid-carboxylmethyltransferase-1 (SAMT1) form a signalling circuit to mediate AD against aphids and viruses. Airborne MeSA is perceived and converted into salicylic acid by SABP2 in neighbouring plants. Salicylic acid then causes a signal transduction cascade to activate the NAC2-SAMT1 module for MeSA biosynthesis to induce plant anti-aphid immunity and reduce virus transmission. To counteract this, some aphid-transmitted viruses encode helicase-containing proteins to suppress AD by interacting with NAC2 to subcellularly relocalize and destabilize NAC2. As a consequence, plants become less repellent to aphids, and more suitable for aphid survival, infestation and viral transmission. Our findings uncover the mechanistic basis of AD and an aphid-virus co-evolutionary mutualism, demonstrating AD as a potential bioinspired strategy to control aphids and viruses.


Assuntos
Ar , Afídeos , Doenças das Plantas , Plantas , Ácido Salicílico , Transdução de Sinais , Afídeos/fisiologia , Afídeos/virologia , Interações entre Hospedeiro e Microrganismos , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Plantas/parasitologia , Plantas/virologia , Ácido Salicílico/metabolismo , Simbiose , Nicotiana/imunologia , Nicotiana/metabolismo , Nicotiana/parasitologia , Nicotiana/virologia , Proteínas Virais/metabolismo , Animais
8.
J Insect Sci ; 23(3)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37339102

RESUMO

The cabbage aphid, Brevicoryne brassicae L. (Hemiptera: Aphididae), is one of the important pests of cruciferous plants throughout the world including Iran. In the present study, we grew cultivated canola plants under different fertilizers or distilled water and sprayed them with 100 µM abscisic acid (ABA) or a control solution (NaOH dissolved in water) to study (i) the antibiosis parameters of B. brassicae on these plants; (ii) the antixenosis of B. brassicae adults on these plants; (iii) the plant's peroxidase (POD), polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL) activity; and (iv) the plant's total phenolic and glucosinolate content. The results of antibiosis experiments showed that ABA and fertilizers have a profound and negative effect on the performance of B. brassicae. In the antixenosis experiment, control plants attracted a significantly higher number of adult females in comparison to treated plants. Also, B. brassicae had lower performance and preference when they were reared on the ABA-treated fertilized plants with higher levels of phenolic and glucosinolate content. These results prompted us to hypothesize that fertilizers enable canola plants to trigger a higher level of secondary metabolites. Our findings reveal that the type and level of nutrient availability may have different impacts on how the plant regulates its defense mechanisms.


Assuntos
Afídeos , Brassica napus , Feminino , Animais , Afídeos/fisiologia , Ácido Abscísico , Glucosinolatos/metabolismo , Fertilizantes , Brassica napus/metabolismo , Fenóis , Compostos Fitoquímicos
9.
Pest Manag Sci ; 79(7): 2365-2371, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36797594

RESUMO

BACKGROUND: Aphids are sap-sucking insect pests of economic importance. They exhibit polyphenism, producing two kinds of morphotypes; winged (alate) and wingless (aptera) morphs. While wingless morphs can be controlled by insecticides, winged morphs are a challenge for targeted control measures as they can fly. Although colored sticky traps are used to control and monitor winged aphids, only a small population is trapped, making sticky traps less effective in controlling aphids. Studies have shown that fragrant oils applied to sticky traps increased attraction of sap-sucking insects like whiteflies and thrips. Here, we tested selected essential oils for their attractiveness to winged Aphis gossypii in potato fields. RESULTS: In field assays, selected essential oils with yellow or colorless sticky traps attracted more winged A. gossypii than controls. The combination of yellow traps baited with essential oils attracted ~2-3-fold more winged A. gossypii than did colorless traps baited with essential oils. In a multi-cycle 2 year study, yellow sticky traps baited with basil oil consistently attracted more winged A. gossypii than yellow sticky traps baited with lavender, geranium or tea tree oils. In electrophysiological studies, winged A. gossypii's antennae responded consistently to estragole in basil oil. In olfactometer assays with estragole, winged A. gossypii spent significantly more time in the treatment arm of the olfactometer than in the control arm, validating estragole's attractiveness. Furthermore, yellow sticky traps baited with pure estragole, in potato fields, attracted similar number of winged A. gossypii as yellow sticky traps baited with basil oil. CONCLUSION: Our findings demonstrate the potential of using basil oil as a potential attractant to improve the efficacy of sticky traps in the monitoring and control of winged aphids. © 2023 Society of Chemical Industry.


Assuntos
Afídeos , Cucurbitaceae , Inseticidas , Óleos Voláteis , Animais , Afídeos/fisiologia , Inseticidas/farmacologia , Óleos Voláteis/farmacologia
10.
Insect Sci ; 30(3): 816-828, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36178731

RESUMO

Wing polyphenism is a common phenomenon that plays key roles in environmental adaptation of insects. Insulin/insulin-like growth factor signaling (IIS) pathway is a highly conserved pathway in regulation of metabolism, development, and growth in metazoans. It has been reported that IIS is required for switching of wing morph in brown planthopper via regulating the development of the wing pad. However, it remains elusive whether and how IIS pathway regulates transgenerational wing dimorphism in aphid. In this study, we found that pairing and solitary treatments can induce pea aphids to produce high and low percentage winged offspring, respectively. The expression level of ILP5 (insulin-like peptide 5) in maternal head was significantly higher upon solitary treatment in comparison with pairing, while silencing of ILP5 caused no obvious change in the winged offspring ratio. RNA interference-mediated knockdown of FoxO (Forkhead transcription factor subgroup O) in stage 20 embryos significantly increased the winged offspring ratio. The results of pharmacological and quantitative polymerase chain reaction experiments showed that the embryonic insulin receptors may not be involved in wing polyphenism. Additionally, ILP4 and ILP11 exhibited higher expression levels in 1st wingless offspring than in winged offspring. We demonstrate that FoxO negatively regulates the wing morph development in embryos. ILPs may regulate aphid wing polyphenism in a developmental stage-specific manner. However, the regulation may be not mediated by the canonical IIS pathway. The findings advance our understanding of IIS pathway in insect transgenerational wing polyphenism.


Assuntos
Afídeos , Animais , Afídeos/fisiologia , Pisum sativum/metabolismo , Transdução de Sinais , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Interferência de RNA , Asas de Animais
11.
Plant Cell Rep ; 42(2): 355-369, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36474079

RESUMO

KEY MESSAGE: R2R3 MYB transcription factor GhMYB18 is involved in the defense response to cotton aphid by participating in the synthesis of salicylic acid and flavonoids. R2R3 MYB transcription factors (TFs) play crucial roles in plant growth and development as well as response to abiotic and biotic stresses. However, the mechanism of R2R3 MYB TFs in cotton response to aphid infestation remains largely unknown. Here, an R2R3 MYB transcription factor GhMYB18 was identified as a gene up-regulated from upland cotton (Gossypium hirsutum L.) under cotton aphid (Aphis gossypii Glover) infestation. GhMYB18, which has transcription activity, was localized mainly to nucleus and cell membranes. Transient overexpression of GhMYB18 in cotton activates salicylic acid (SA) and phenylpropane signaling pathways and promoted the synthesis of salicylic acid and flavonoids, which leads to enhancing the tolerance to cotton aphid feeding. In contrast, silencing of GhMYB18 increased the susceptibility of G. hirsutum to aphid. Additionally, GhMYB18 significantly promoted the activities of defense-related enzymes including catalase (CAT), peroxidase (POD), polyphenol oxidase (PPO) and phenylalanine ammonia-lyase (PAL). These results collectively suggest that GhMYB18 is involved in cotton defense response to cotton aphid attacks through regulating the synthesis of salicylic acid and flavonoids.


Assuntos
Afídeos , Gossypium , Proteínas de Plantas , Animais , Afídeos/fisiologia , Flavonoides/metabolismo , Gossypium/metabolismo , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/metabolismo
12.
J Cell Physiol ; 238(3): 485-497, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36580426

RESUMO

The ribosomal protein S27a (RPS27a) is cleaved from the fusion protein ubiquitin-RPS27a (Ub-RPS27a). Generally, Ub and RPS27a are coexpressed as a fusion protein but function independently after Ub is cleaved from RPS27a by a deubiquitinating enzyme. As an RP, RPS27a assembles into ribosomes, but it also functions independently of ribosomes. RPS27a is involved in the development and poor prognosis of various cancers, such as colorectal cancer, liver cancer, chronic myeloid leukemia, and renal carcinoma, and is associated with poor prognosis. Notably, the murine double minute 2/P53 axis is a major pathway through which RPS27a regulates cancer development. Moreover, RPS27a maintains sperm motility, regulates winged aphid indirect flight muscle degeneration, and facilitates plant growth. Additionally, RPS27a is a metalloprotein and mercury (Hg) biomarker. In the present review, we described the origin, structure, and biological functions of RPS27a.


Assuntos
Proteínas Ribossômicas , Animais , Humanos , Afídeos/fisiologia , Neoplasias/patologia , Desenvolvimento Vegetal , Prognóstico , Proteínas Ribossômicas/metabolismo , Motilidade dos Espermatozoides , Ubiquitina/metabolismo
13.
Microbiol Spectr ; 10(6): e0406622, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36445124

RESUMO

Aphids display wing polyphenism, and the mother can produce a wingless morph for reproduction and a winged morph for dispersal. It is believed that the wingless morph is an adaptive status under favorable conditions and is determined prenatally. In this study, we have found that winged nymphs of the pea aphid, Acyrthosiphon pisum, can change from winged to wingless during normal development. Our results showed that winged nymphs could become the wingless morph by apterization in response to changes from stressful to favorable conditions. The acquired wingless aphids had higher fecundity than the winged morph. However, this process of regression from winged to wingless morph was inhibited by Serratia symbiotica. The existence of the symbiont did not affect the body mass and fecundity of adult aphids, but it increased the body weight of nymphs and temporally increased the quantity of a primary symbiont, Buchnera aphidicola. Our results showed that despite temporal improvement of living conditions causing the induction of apterization of winged nymphs, the inhibition effect of S. symbiotica on this process was activated simultaneously. This finding, for the first time, reveals that the wingless morph can be changed postnatally, which explains a novel regulating mechanism of wing polyphenism driven by external abiotic stimuli and internal biotic regulation together in aphids. IMPORTANCE Wing polyphenism is an important adaptative response to environmental changes for aphids. Endosymbionts are widespread in aphids and also confer the ability to withstand unfavorable conditions. However, little is known about whether endosymbionts are involved in the wing polyphenism. In this study, we report a new finding that winged nymphs of the pea aphid could turn into adults without wings or wing-related structures through apterization when winged nymphs escaped from stressful to favorable environments. Further analysis revealed that the facultative symbiont S. symbiotica could prevent the temporal determination of the host in wing suppression by inhibiting apterization, to enhance its spread. Our findings provide a novel angle to understanding the wing polyphenism regulation of aphids.


Assuntos
Afídeos , Animais , Afídeos/fisiologia , Pisum sativum , Fertilidade , Reprodução , Simbiose
14.
PLoS One ; 17(9): e0273791, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36067150

RESUMO

Entomopathogenic fungi can adopt an endophytic lifestyle and provide protection against insect herbivores and plant pathogens. So far, most studies have focused on Beauveria bassiana to increase plant resistance against abiotic and biotic stresses, while only little is known for other entomopathogenic fungi. In this study, we investigated whether root inoculation of sweet pepper (Capsicum annuum L.) by the entomopathogenic fungi Akanthomyces muscarius ARSEF 5128 and B. bassiana ARSEF 3097 can improve resistance against the tobacco peach aphid Myzus persicae var. nicotianae. First, dual-choice experiments were performed to test the hypothesis that the fungi deter aphids via modifying plant volatile profiles. Next, we tested the hypothesis that endophytic colonization negatively affects aphid life history traits, such as fecundity, development and mortality rate. Aphids were significantly attracted to the odor of plants inoculated with A. muscarius over non-inoculated plants. Plants inoculated with A. muscarius emitted significantly higher amounts of ß-pinene than non-inoculated plants, and significantly higher amounts of indole than B. bassiana-inoculated and non-inoculated plants. Inoculation with the fungal strains also caused significantly higher emission of terpinolene. Further, both aphid longevity and fecundity were significantly reduced by 18% and 10%, respectively, when feeding on plants inoculated with A. muscarius, although intrinsic rate of population increase did not differ between inoculated and non-inoculated plants. Sweet pepper plants inoculated with B. bassiana ARSEF 3097 did not elicit a significant behavioral response nor affected the investigated life history traits. We conclude that endophytic colonization by entomopathogenic fungi has the potential to alter olfactory behavior and performance of M. persicae var. nicotianae, but effects are small and depend on the fungal strain used.


Assuntos
Afídeos , Beauveria , Capsicum , Animais , Afídeos/fisiologia , Beauveria/fisiologia , Insetos , Nicotiana
15.
Int J Mol Sci ; 23(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35805913

RESUMO

Aphid salivary effectors play important roles in modulating plant defense responses. The grain aphid Sitobion miscanthi is one of the most economically important cereal aphids worldwide. However, little information is available on the identification and functional analysis of salivary effectors of S. miscanthi. In this study, a candidate salivary effector Sm9723 was identified, which was specifically expressed in aphid salivary glands and highly induced during the aphid feeding phase. Transient overexpression of Sm9723 in Nicotiana benthamiana suppressed BAX and INF1-induced cell death. Further, Sm9723 overexpression inhibited N. benthamiana defense responses by reducing pattern-triggered immunity associated callose deposition and expression levels of jasmonic and salicylic acid-associated defense genes. In addition, the salivary effector Sm9723 of S. miscanthi was effectively silenced through nanocarrier-mediated dsRNA delivery system. After silencing Sm9723, fecundity and survival of S. miscanthi decreased significantly, and the aphid feeding behavior was also negatively affected. These results suggest salivary effector Sm9723 is involved in suppressing plant immunity and is essential in enabling aphid virulence, which could be applied as potential target gene for RNAi-mediated pest control of S. miscanthi.


Assuntos
Afídeos , Animais , Afídeos/fisiologia , Interferência de RNA , RNA de Cadeia Dupla , Nicotiana/genética , Triticum/genética
16.
Sci Rep ; 12(1): 9582, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688882

RESUMO

Condensed tannins (CTs) are polyphenolics and part of the total phenolic (TP) pool that shape resistance in aspen (Populus tremula). CTs are negatively associated with pathogens, but their resistance properties against herbivores are less understood. CTs shape resistance to pathogens and chewing herbivores and could also shape resistance to aphids. Being chemical pools that are highly variable it can further be questioned whether CT-shaped resistance is better described by constitutive levels, by the induced response potential, or by both. Here, aspen genotypes were propagated and selected to represent a range of inherent abilities to produce and store foliar CTs; the plantlets were then exposed to Chaitophorus aphid infestation and to mechanical (leaf rupture) damage, and the relative abundance of constitutive and induced CTs was related to aphid fitness parameters. As expected, aphid fecundity was negatively related to CT-concentrations of the aphid infested plants although more consistently related to TPs. While TPs increased in response to damage, CT induction was generally low and it even dropped below constitutive levels in more CT-rich genotypes, suggesting that constitutive CTs are more relevant measurements of resistance compared to induced CT-levels. Relating CT and TP dynamics with phenolic low molecular compounds further suggested that catechin (the building block of CTs) increased in response to aphid damage in amounts that correlated negatively with CT-induction and positively with constitutive CT-levels and aphid fecundity. Our study portrays dynamic phenolic responses to two kinds of damage detailed for major phenylpropanoid classes and suggests that the ability of a genotype to produce and store CTs may be a measurement of resistance, caused by other, more reactive, phenolic compounds such as catechin. Rupture damage however appeared to induce catechin levels oppositely supporting that CTs may respond differently to different kinds of damage.


Assuntos
Afídeos , Catequina , Populus , Animais , Afídeos/fisiologia , Catequina/análise , Herbivoria , Fenóis/análise , Folhas de Planta/genética , Populus/genética
17.
J Insect Sci ; 22(3)2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35738260

RESUMO

Aphids exhibit wing polyphenism. Winged and wingless aphid morphs are produced by parthenogenesis depending on population density and host plant quality. Recent studies showed that microRNAs in alate and apterous individuals have differential expression and are involved in wing dimorphism of Acyrthosiphon pisum. From which miR-92a-1-p5 can target the mRNA of flight muscle gene flightin in vitro, but what effect they have on wing development of aphid is unclear. Here with the nanocarrier-delivered RNA interference (RNAi) method, flightin gene was knocked down in winged nymphs of A. pisum. Results showed that the majority (63.33%) of adults had malformed wings, the shape of dorsal longitudinal muscle (DLM) was deformed severely, the dorsoventral flight muscle (DVM) became wider and looser in aphids with flightin reduction compared with the negative control. Overexpression of miR-92a-1-p5 caused decreased expression of flightin and malformed wings of aphids, with a mutant ratio of 62.50%. Morphological analysis of flight musculature showed the consistent result as that with flightin knockdown. These results suggest that flightin is essential for flight musculature formation and wing extension in A. pisum, which can be modulated by miR-92a-1-p5.


Assuntos
Afídeos , MicroRNAs , Animais , Afídeos/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Músculos , Pisum sativum/genética , Asas de Animais/anatomia & histologia
18.
Plant Cell Rep ; 41(1): 195-208, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34647139

RESUMO

KEY MESSAGE: Methyl jasmonate treatment and aphid resistance assays reveal different roles in herbivore defensive responses between tobacco glandular and non-glandular trichomes. These roles correlate with trichome gene expression patterns. In plants, trichomes greatly contribute to biotic stress resistance. To better understand the different defensive functions between glandular and non-glandular trichomes, we used Nicotiana tabacum as a model. This species bears three types of trichomes: long and short stalk glandular trichomes (LGT and SGT, respectively), and non-glandular trichomes (NGT). Tobacco accession T.I.1068 (lacking NGT) and T.I.1112 (lacking LGT) were used for the experiment. After methyl jasmonate (MeJA) treatment, LGT formation was promoted not only in T.I.1068, but also in T.I.1112, whereas NGT remained absent in T.I.1068, and was slightly reduced in T.I.1112. Diterpenoids, which play important roles in herbivore resistance, accumulated abundantly in T.I.1068 and were elevated by MeJA; however, they were not found in T.I.1112 but became detectable after MeJA treatment. The aphid resistance of T.I.1068 was higher than that of T.I.1112, and both were enhanced by MeJA, which was closely correlated with LGT density. Trichomes detached from T.I.1068 and T.I.1112 were used for RNA-Seq analysis, the results showed that pentose phosphate, photosynthesis, and diterpenoid biosynthesis genes were much more expressed in T.I.1068 than in T.I.1112, which was consistent with the vigorous diterpenoid biosynthesis in T.I.1068. In T.I.1112, citrate cycle, propanoate, and glyoxylate metabolism processes were enriched, and some defensive protein genes were expressed at higher levels than those in T.I.1068.These results suggested that LGT plays a predominant role in aphid resistance, whereas NGT could strengthen herbivore resistance by accumulating defensive proteins, and the roles of LGT and NGT are associated with their gene expression patterns.


Assuntos
Acetatos/farmacologia , Afídeos/fisiologia , Ciclopentanos/farmacologia , Herbivoria , Nicotiana/fisiologia , Oxilipinas/farmacologia , Defesa das Plantas contra Herbivoria/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Transcriptoma , Animais , Tricomas/fisiologia
19.
Nat Commun ; 12(1): 7087, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873158

RESUMO

Cucumber mosaic virus (CMV) often accompanies a short RNA molecule called a satellite RNA (satRNA). When infected with CMV in the presence of Y-satellite RNA (Y-sat), tobacco leaves develop a green mosaic, then turn yellow. Y-sat has been identified in the fields in Japan. Here, we show that the yellow leaf colour preferentially attracts aphids, and that the aphids fed on yellow plants, which harbour Y-sat-derived small RNAs (sRNAs), turn red and subsequently develop wings. In addition, we found that leaf yellowing did not necessarily reduce photosynthesis, and that viral transmission was not greatly affected despite the low viral titer in the Y-sat-infected plants. Y-sat-infected plants can therefore support a sufficient number of aphids to allow for efficient virus transmission. Our results demonstrate that Y-sat directly alters aphid physiology via Y-sat sRNAs to promote wing formation, an unprecedented survival strategy that enables outward spread via the winged insect vector.


Assuntos
Afídeos/genética , Cucumovirus/genética , Proteínas de Insetos/genética , Insetos Vetores/genética , RNA Satélite/genética , RNA Viral/genética , Animais , Afídeos/fisiologia , Afídeos/virologia , Cucumovirus/fisiologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Proteínas de Insetos/metabolismo , Insetos Vetores/fisiologia , Insetos Vetores/virologia , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/parasitologia , Folhas de Planta/virologia , Plantas Geneticamente Modificadas , RNA Satélite/fisiologia , RNA Viral/fisiologia , Nicotiana/genética , Nicotiana/parasitologia , Nicotiana/virologia , Vírion/genética , Vírion/fisiologia , Replicação Viral/genética , Replicação Viral/fisiologia
20.
Insect Biochem Mol Biol ; 136: 103623, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34246764

RESUMO

Aphids were the first animals described as photoperiodic due to their seasonal switch from viviparous parthenogenesis to sexual reproduction (cyclical parthenogenesis) caused by the shortening of the photoperiod in autumn. This switch produces a single sexual generation of oviparous females and males that mate and lay diapausing cold-resistant eggs that can overcome the unfavourable environmental conditions typical of winter in temperate regions. Previous studies have hinted at a possible implication of two insulin-like peptides (ILP1 and ILP4) in the aphid seasonal response, changing their expression levels between different photoperiodic conditions. Moreover, in situ localization of their transcripts in particular neurosecretory cells (NSCs) in the aphid brain supported the idea that these neuropeptides could correspond to the formerly called virginoparin, an uncharacterized factor originally proposed to be transported directly to the aphid embryos to promote their development as parthenogenetic individuals. To further investigate the fate of these ILPs, we raised a specific antiserum against one of them (ILP4) and mapped this neuropeptide by immunohistochemistry (IHC) in Acyrthosiphon pisum and Megoura viciae aphids. Coincident with in situ localization, our results show that ILP4 is synthesized in two groups (one in each brain hemisphere) of four neurosecretory cells in the pars intercerebralis (NSC group I) and then it is transported outside the brain to the corpora cardiaca. From there, three nerves (two laterals and one medial) transport it to the abdomen. Although no precise site of release has been found, the terminations of these nerves near the germaria would be compatible with the proposal of a direct connection between group I of NSCs and the reproductive system by localized release. In addition, we detected some collateral arborizations originating from the eight NSCs going to the pars lateralis, where clock neurons and some photoreceptors have been previously localized, suggesting a possible communication between the circadian and photoperiodic systems.


Assuntos
Afídeos , Hormônios de Inseto/metabolismo , Insulina/metabolismo , Oligopeptídeos/metabolismo , Fotoperíodo , Ácido Pirrolidonocarboxílico/análogos & derivados , Animais , Afídeos/metabolismo , Afídeos/fisiologia , Encéfalo/metabolismo , Relógios Circadianos/fisiologia , Diapausa/fisiologia , Imuno-Histoquímica , Proteínas de Insetos/metabolismo , Neuropeptídeos/metabolismo , Partenogênese/fisiologia , Peptídeos/metabolismo , Ácido Pirrolidonocarboxílico/metabolismo , Reprodução/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA