Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Science ; 379(6629): eabj7412, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36656933

RESUMO

Multicellular life requires altruistic cooperation between cells. The adaptive immune system is a notable exception, wherein germinal center B cells compete vigorously for limiting positive selection signals. Studying primary human lymphomas and developing new mouse models, we found that mutations affecting BTG1 disrupt a critical immune gatekeeper mechanism that strictly limits B cell fitness during antibody affinity maturation. This mechanism converted germinal center B cells into supercompetitors that rapidly outstrip their normal counterparts. This effect was conferred by a small shift in MYC protein induction kinetics but resulted in aggressive invasive lymphomas, which in humans are linked to dire clinical outcomes. Our findings reveal a delicate evolutionary trade-off between natural selection of B cells to provide immunity and potentially dangerous features that recall the more competitive nature of unicellular organisms.


Assuntos
Linfócitos B , Transformação Celular Neoplásica , Linfoma Difuso de Grandes Células B , Proteínas de Neoplasias , Animais , Humanos , Camundongos , Afinidade de Anticorpos/genética , Linfócitos B/patologia , Centro Germinativo , Mutação , Proteínas de Neoplasias/genética , Linfoma Difuso de Grandes Células B/genética , Transformação Celular Neoplásica/genética , Seleção Genética
2.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34415295

RESUMO

Protein engineering and design principles employing the 20 standard amino acids have been extensively used to achieve stable protein scaffolds and deliver their specific activities. Although this confers some advantages, it often restricts the sequence, chemical space, and ultimately the functional diversity of proteins. Moreover, although site-specific incorporation of non-natural amino acids (nnAAs) has been proven to be a valuable strategy in protein engineering and therapeutics development, its utility in the affinity-maturation of nanobodies is not fully explored. Besides, current experimental methods do not routinely employ nnAAs due to their enormous library size and infinite combinations. To address this, we have developed an integrated computational pipeline employing structure-based protein design methodologies, molecular dynamics simulations and free energy calculations, for the binding affinity prediction of an nnAA-incorporated nanobody toward its target and selection of potent binders. We show that by incorporating halogenated tyrosines, the affinity of 9G8 nanobody can be improved toward epidermal growth factor receptor (EGFR), a crucial cancer target. Surface plasmon resonance (SPR) assays showed that the binding of several 3-chloro-l-tyrosine (3MY)-incorporated nanobodies were improved up to 6-fold into a picomolar range, and the computationally estimated binding affinities shared a Pearson's r of 0.87 with SPR results. The improved affinity was found to be due to enhanced van der Waals interactions of key 3MY-proximate nanobody residues with EGFR, and an overall increase in the nanobody's structural stability. In conclusion, we show that our method can facilitate screening large libraries and predict potent site-specific nnAA-incorporated nanobody binders against crucial disease-targets.


Assuntos
Afinidade de Anticorpos , Desenho de Fármacos/métodos , Código Genético , Modelos Moleculares , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/genética , Afinidade de Anticorpos/genética , Afinidade de Anticorpos/imunologia , Sítios de Ligação , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas , Estabilidade Proteica , Relação Estrutura-Atividade
3.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33658386

RESUMO

V(D)J recombination generates mature B cells that express huge repertoires of primary antibodies as diverse immunoglobulin (Ig) heavy chain (IgH) and light chain (IgL) of their B cell antigen receptors (BCRs). Cognate antigen binding to BCR variable region domains activates B cells into the germinal center (GC) reaction in which somatic hypermutation (SHM) modifies primary variable region-encoding sequences, with subsequent selection for mutations that improve antigen-binding affinity, ultimately leading to antibody affinity maturation. Based on these principles, we developed a humanized mouse model approach to diversify an anti-PD1 therapeutic antibody and allow isolation of variants with novel properties. In this approach, component Ig gene segments of the anti-PD1 antibody underwent de novo V(D)J recombination to diversify the anti-PD1 antibody in the primary antibody repertoire in the mouse models. Immunization of these mouse models further modified the anti-PD1 antibodies through SHM. Known anti-PD1 antibodies block interaction of PD1 with its ligands to alleviate PD1-mediated T cell suppression, thereby boosting antitumor T cell responses. By diversifying one such anti-PD1 antibody, we derived many anti-PD1 antibodies, including anti-PD1 antibodies with the opposite activity of enhancing PD1/ligand interaction. Such antibodies theoretically might suppress deleterious T cell activities in autoimmune diseases. The approach we describe should be generally applicable for diversifying other therapeutic antibodies.


Assuntos
Afinidade de Anticorpos/genética , Cadeias Pesadas de Imunoglobulinas , Cadeias Leves de Imunoglobulina , Receptores de Antígenos de Linfócitos B , Hipermutação Somática de Imunoglobulina , Recombinação V(D)J/imunologia , Animais , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Leves de Imunoglobulina/genética , Cadeias Leves de Imunoglobulina/imunologia , Camundongos , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/imunologia
4.
Sci Rep ; 10(1): 19533, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177627

RESUMO

Antibodies are proteins working in our immune system with high affinity and specificity for target antigens, making them excellent tools for both biotherapeutic and bioengineering applications. The prediction of antibody affinity changes upon mutations ([Formula: see text]) is important for antibody engineering. Numerous computational methods have been proposed based on different approaches including molecular mechanics and machine learning. However, the accuracy by each individual predictor is not enough for efficient antibody development. In this study, we develop a new prediction method by combining multiple predictors based on machine learning. Our method was tested on the SiPMAB database, evaluating the Pearson's correlation coefficient between predicted and experimental [Formula: see text]. Our method achieved higher accuracy (R = 0.69) than previous molecular mechanics or machine-learning based methods (R = 0.59) and the previous method using the average of multiple predictors (R = 0.64). Feature importance analysis indicated that the improved accuracy was obtained by combining predictors with different importance, which have different protocols for calculating energies and for generating mutant and unbound state structures. This study demonstrates that machine learning is a powerful framework for combining different approaches to predict antibody affinity changes.


Assuntos
Afinidade de Anticorpos/genética , Aprendizado de Máquina , Mutação , Anticorpos/química , Anticorpos/genética , Biologia Computacional/métodos , Bases de Dados como Assunto , Fator A de Crescimento do Endotélio Vascular/imunologia
5.
MAbs ; 12(1): 1803646, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32744131

RESUMO

IN VITRO: affinity maturation of therapeutic monoclonal antibodies is commonly applied to achieve desired properties, such as improved binding kinetics and affinity. Currently there are no universally accepted protocols for generation of variegated antibody libraries or selection thereof. Here, we performed affinity maturation using a yeast-based single-chain variable fragment (scFv) expression system to compare two mutagenesis methods: random mutagenesis across the entire V(D)J region by error-prone PCR, and a novel combinatorial mutagenesis process limited to the complementarity-determining regions (CDRs). We applied both methods of mutagenesis to four human antibodies against well-known immuno-oncology target proteins. Detailed sequence analysis showed an even mutational distribution across the entire length of the scFv for the error-prone PCR method and an almost exclusive targeting of the CDRs for the combinatorial method. Though there were distinct mutagenesis profiles for each target antibody and mutagenesis method, we found that both methods improved scFv affinity with similar efficiency. When a subset of the affinity-matured antibodies was expressed as full-length immunoglobulin, the measured affinity constants were mostly comparable to those of the respective scFv, but the full-length antibodies were inferior to their scFv counterparts for one of the targets. Furthermore, we found that improved affinity for the full-length antibody did not always translate into enhanced binding to cell-surface expressed antigen or improved immune checkpoint blocking ability, suggesting that screening with full-length antibody or antigen-binding fragment formats might be advantageous and the subject of a future study.


Assuntos
Afinidade de Anticorpos/genética , Mutagênese , Anticorpos de Cadeia Única , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Humanos , Reação em Cadeia da Polimerase , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética
6.
Sci Rep ; 10(1): 4807, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179767

RESUMO

"Antibody-breeding" has provided therapeutic/diagnostic antibody mutants with greater performance than native antibodies. Typically, random point mutations are introduced into the VH and VL domains of parent antibodies to generate diverse libraries of single-chain Fv fragments (scFvs), from which evolved mutants are selected. We produced an scFv against estradiol-17ß with 11 amino acid substitutions and a >100-fold improved affinity constant (Ka = 1.19 × 1010 M-1) over the parent scFv, enabling immunoassays with >30-fold higher sensitivity. We systematically analyzed contributions of these substitutions to the affinity enhancement. Comparing various partial scFv revertants based on their Kas indicated that a revertant with four substitutions (VH-L100gQ, VL-I29V, -L36M, -S77G) exhibited somewhat higher affinity (Ka = 1.46 × 1010 M-1). Finally, the VH-L100gQ substitution, occurring in VH complementarity-determining region (CDR) 3, was found to be the highest-priority for improving the affinity, and VL-I29V and/or VL-L36M cooperated significantly. These findings encouraged us to reconsider the potential of VH-CDR3-targeting mutagenesis, which has been frequently attempted. The substitution(s) wherein might enable a "high rate of return" in terms of selecting mutants with dramatically enhanced affinities. The "high risk" of generating a tremendous excess of "junk mutants" can be overcome with the efficient selection systems that we developed.


Assuntos
Afinidade de Anticorpos/genética , Estradiol/imunologia , Mutação , Anticorpos de Cadeia Única/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Humanos , Anticorpos de Cadeia Única/química
7.
Rev. habanera cienc. méd ; 19(1): 30-39, ene.-feb. 2020. graf
Artigo em Espanhol | LILACS, CUMED | ID: biblio-1099143

RESUMO

Introducción: La inmunoelectroforesis es una técnica de precipitación que permite la caracterización de muestras biológicas complejas. En el Departamento de Inmunología del Instituto de Ciencias Básicas y Preclínicas Victoria de Girón se cuenta con un antisuero hiperinmune obtenido por inmunizaciones de carneros contra proteínas totales séricas humanas y con otro antisuero anti IgA de calostro humano. Objetivo: Identificar IgG, IgM e IgA en suero humano y determinar respuesta anti IgM humana en el antisuero anti IgA de calostro humano obtenido en carnero. Material y Métodos: Se realizó un estudio observacional, descriptivo y transversal desde noviembre de 2017 hasta junio de 2018. Se desarrolló una inmunoelectroforesis de suero humano normal empleando el antisuero hiperinmune. Resultados: Se identificaron IgG, IgM e IgA además de albúmina y otras fracciones proteicas y se determinó respuesta anti IgM humana en el antisuero anti IgA de calostro humano obtenido en carnero. Conclusiones: Este trabajo permitió identificar y determinar la respuesta anticlases mayores de inmunoglobulinas en la muestra de estudio(AU)


Introduction: Immunoelectrophoresis is a precipitation technique that allows the characterization of complex biological samples. The Immunology Department of the Institute of Basic and Pre-Clinical Sciences Victoria de Girón has a hyperimmune antiserum obtained by immunization of sheep against human serum total proteins and it also has an anti-human IgA antiserum obtained from human colostrum. Objective: The aim of this study was to identify IgG, IgM and IgA in human serum and to determine response to anti-human IgM in human colostral IgA with antiserum obtained in sheep. Material and Methods: An observational descriptive cross-sectional study was conducted from November 2017 to June 2018. Immunoelectrophoresis of normal human serum was performed using hyperimmune antiserum. Results: These procedures allowed to identify IgG, IgM and IgA in addition to albumin and other protein fractions and to determine response to anti-human IgM in human colostral IgA with antiserum obtained in sheep. Conclusions: This work allowed us to identify and determine significant anti-class responses of immunoglobulins in the sample studied(AU)


Assuntos
Humanos , Animais , Imunoeletroforese/métodos , Soros Imunes/imunologia , Afinidade de Anticorpos/genética , Epidemiologia Descritiva , Estudos Transversais
8.
MAbs ; 12(1): 1690959, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31829766

RESUMO

Complement-dependent cytotoxicity (CDC) is a potent effector mechanism, engaging both innate and adaptive immunity. Although strategies to improve the CDC activity of antibody therapeutics have primarily focused on enhancing the interaction between the antibody crystallizable fragment (Fc) and the first subcomponent of the C1 complement complex (C1q), the relative importance of intrinsic affinity and binding valency of an antibody to the target antigen is poorly understood. Here we show that antibody binding affinity to a cell surface target antigen evidently affects the extent and efficacy of antibody-mediated complement activation. We further report the fundamental role of antibody binding valency in the capacity to recruit C1q and regulate CDC. More specifically, an array of affinity-modulated variants and functionally monovalent bispecific derivatives of high-affinity anti-epidermal growth factor receptor (EGFR) and anti-human epidermal growth factor receptor 2 (HER2) therapeutic immunoglobulin Gs (IgGs), previously reported to be deficient in mediating complement activation, were tested for their ability to bind C1q by biolayer interferometry using antigen-loaded biosensors and to exert CDC against a panel of EGFR and HER2 tumor cells of various histological origins. Significantly, affinity-reduced variants or monovalent derivatives, but not their high-affinity bivalent IgG counterparts, induced near-complete cell cytotoxicity in tumor cell lines that had formerly been shown to be resistant to complement-mediated attack. Our findings suggest that monovalent target engagement may contribute to an optimal geometrical positioning of the antibody Fc to engage C1q and deploy the complement pathway.


Assuntos
Anticorpos Biespecíficos/metabolismo , Imunoglobulina G/metabolismo , Anticorpos Biespecíficos/genética , Afinidade de Anticorpos/genética , Citotoxicidade Celular Dependente de Anticorpos , Reações Antígeno-Anticorpo , Linhagem Celular Tumoral , Ativação do Complemento , Complemento C1q/metabolismo , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Humanos , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/genética , Interferometria , Mutagênese Sítio-Dirigida , Ligação Proteica/genética , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo
9.
MAbs ; 12(1): 1682866, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31777319

RESUMO

Recent development of monoclonal antibodies as mainstream anticancer agents demands further optimization of their safety for use in humans. Potent targeting and/or effector activities on normal tissues is an obvious toxicity concern. Optimization of specific tumor targeting could be achieved by taking advantage of the extracellular acidity of solid tumors relative to normal tissues. Here, we applied a structure-based computational approach to engineer anti-human epidermal growth factor receptor 2 (Her2) antibodies with selective binding in the acidic tumor microenvironment. We used an affinity maturation platform in which dual-pH histidine-scanning mutagenesis was implemented for pH selectivity optimization. Testing of a small set of designs for binding to the recombinant Her2 ectodomain led to the identification of antigen-binding fragment (Fab) variants with the desired pH-dependent binding behavior. Binding selectivity toward acidic pH was improved by as much as 25-fold relative to the parental bH1-Fab. In vitro experiments on cells expressing intact Her2 confirmed that designed variants formatted as IgG1/k full-size antibodies have high affinity and inhibit the growth of tumor spheroids at a level comparable to that of the benchmark anti-Her2 antibody trastuzumab (Herceptin®) at acidic pH, whereas these effects were significantly reduced at physiological pH. In contrast, both Herceptin and the parental bH1 antibody exhibited strong cell binding and growth inhibition irrespective of pH. This work demonstrates the feasibility of computational optimization of antibodies for selective targeting of the acidic environment such as that found in many solid tumors.


Assuntos
Antineoplásicos Imunológicos/química , Imunoterapia/métodos , Neoplasias/terapia , Afinidade de Anticorpos/genética , Antineoplásicos Imunológicos/uso terapêutico , Linhagem Celular Tumoral , Histidina/genética , Humanos , Concentração de Íons de Hidrogênio , Mutagênese Sítio-Dirigida , Neoplasias/imunologia , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas , Receptor ErbB-2/imunologia , Trastuzumab/uso terapêutico , Microambiente Tumoral
10.
PLoS Comput Biol ; 15(8): e1007207, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31442220

RESUMO

Antibodies developed for research and clinical applications may exhibit suboptimal stability, expressibility, or affinity. Existing optimization strategies focus on surface mutations, whereas natural affinity maturation also introduces mutations in the antibody core, simultaneously improving stability and affinity. To systematically map the mutational tolerance of an antibody variable fragment (Fv), we performed yeast display and applied deep mutational scanning to an anti-lysozyme antibody and found that many of the affinity-enhancing mutations clustered at the variable light-heavy chain interface, within the antibody core. Rosetta design combined enhancing mutations, yielding a variant with tenfold higher affinity and substantially improved stability. To make this approach broadly accessible, we developed AbLIFT, an automated web server that designs multipoint core mutations to improve contacts between specific Fv light and heavy chains (http://AbLIFT.weizmann.ac.il). We applied AbLIFT to two unrelated antibodies targeting the human antigens VEGF and QSOX1. Strikingly, the designs improved stability, affinity, and expression yields. The results provide proof-of-principle for bypassing laborious cycles of antibody engineering through automated computational affinity and stability design.


Assuntos
Afinidade de Anticorpos , Desenho de Fármacos , Região Variável de Imunoglobulina/genética , Engenharia de Proteínas/métodos , Animais , Afinidade de Anticorpos/genética , Biologia Computacional , Células HEK293 , Humanos , Fragmentos de Imunoglobulinas/química , Fragmentos de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/genética , Região Variável de Imunoglobulina/química , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/imunologia , Biblioteca de Peptídeos , Engenharia de Proteínas/estatística & dados numéricos , Estabilidade Proteica , Software , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/imunologia
11.
Front Immunol ; 10: 390, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30899264

RESUMO

Monoclonal antibody (mAb) immunotherapy has transformed the treatment of allergy, autoimmunity, and cancer. The interaction of mAb with Fc gamma receptors (FcγR) is often critical for efficacy. The genes encoding the low-affinity FcγR have single nucleotide polymorphisms (SNPs) and copy number variation that can impact IgG Fc:FcγR interactions. Leukocyte-based in vitro assays remain one of the industry standards for determining mAb efficacy and predicting adverse responses in patients. Here we addressed the impact of FcγR genetics on immune cell responses in these assays and investigated the importance of assay format. FcγR genotyping of 271 healthy donors was performed using a Multiplex Ligation-Dependent Probe Amplification assay. Freeze-thawed/pre-cultured peripheral blood mononuclear cells (PBMCs) and whole blood samples from donors were stimulated with reagents spanning different mAb functional classes to evaluate the association of FcγR genotypes with T-cell proliferation and cytokine release. Using freeze-thawed/pre-cultured PBMCs, agonistic T-cell-targeting mAb induced T-cell proliferation and the highest levels of cytokine release, with lower but measurable responses from mAb which directly require FcγR-mediated cellular effects for function. Effects were consistent for individual donors over time, however, no significant associations with FcγR genotypes were observed using this assay format. In contrast, significantly elevated IFN-γ release was associated with the FCGR2A-131H/H genotype compared to FCGR2A-131R/R in whole blood stimulated with Campath (p ≤ 0.01) and IgG1 Fc hexamer (p ≤ 0.05). Donors homozygous for both the high affinity FCGR2A-131H and FCGR3A-158V alleles mounted stronger IFN-γ responses to Campath (p ≤ 0.05) and IgG1 Fc Hexamer (p ≤ 0.05) compared to donors homozygous for the low affinity alleles. Analysis revealed significant reductions in the proportion of CD14hi monocytes, CD56dim NK cells (p ≤ 0.05) and FcγRIIIa expression (p ≤ 0.05), in donor-matched freeze-thawed PBMC compared to whole blood samples, likely explaining the difference in association between FcγR genotype and mAb-mediated cytokine release in the different assay formats. These findings highlight the significant impact of FCGR2A and FCGR3A SNPs on mAb function and the importance of using fresh whole blood assays when evaluating their association with mAb-mediated cytokine release in vitro. This knowledge can better inform on the utility of in vitro assays for the prediction of mAb therapy outcome in patients.


Assuntos
Anticorpos Monoclonais/imunologia , Afinidade de Anticorpos/genética , Síndrome da Liberação de Citocina/genética , Técnicas Imunológicas , Polimorfismo de Nucleotídeo Único , Receptores de IgG/genética , Anticorpos Monoclonais/farmacologia , Citocinas/biossíntese , Genótipo , Humanos , Leucócitos Mononucleares/imunologia , Receptores de IgG/imunologia
12.
Mol Immunol ; 90: 143-149, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28755586

RESUMO

The Cys residues are almost perfectly conserved in all antibodies. They contribute significantly to the antibody fragment stability. The relevance of two natural contiguous Cys residues of an anti-recombinant human-follicle stimulation hormone (rhFSH) in a format of single-chain variable fragment (scFv) was studied. This scFv contains 5 Cys residues: VH22 and VH92 in the variable heavy chain (VH) and VL23, VL87 and VL88 in the variable light chain (VL). The influence of two unusual contiguous Cys at positions VL87 and VL88 was studied by considering the wild type fragment and mutant variants: VL-C88S, VL-C87S, VL-C87Y. The analysis was carried out using antigen-binding ability measurement by indirect specific ELISA and a detailed molecular modeling that comprises homology methods, long molecular dynamics simulations and docking. We found that VL-C87 affected the antibody fragment stability without interfering with the disulfide bond formation. The effect of mutating the VL-C87 by a usual residue at this position like Tyr caused distant structural changes at the VH region that confers a higher mobility to the VH-CDR2 and VH-CDR3 loops improving the scFv binding to the antigen.


Assuntos
Cisteína/química , Hormônio Foliculoestimulante Humano/imunologia , Região Variável de Imunoglobulina/imunologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Anticorpos de Cadeia Única/imunologia , Sequência de Aminoácidos , Afinidade de Anticorpos/genética , Afinidade de Anticorpos/imunologia , Reações Antígeno-Anticorpo/imunologia , Ensaio de Imunoadsorção Enzimática , Humanos , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/imunologia , Região Variável de Imunoglobulina/química , Conformação Molecular , Alinhamento de Sequência
13.
J Biochem ; 161(1): 79-86, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27650603

RESUMO

The X-ray crystal structure of an anti-leukotriene (LT) C4 monoclonal antibody (mAbLTC) in complex with LTC4 was determined, however, crystallographic studies alone are not enough to fully understand the structures of the antigen-binding site. To elucidate the individual contribution of Tyr-54 and Asn-58 in the light chain of mAbLTC, both of which formed a hydrogen bond with glutamic acid of LTC4, we examined whether substitution of the residues affects the antigen binding affinity and specificity using an anti-LTC4 single chain variable fragment (scFvLTC). Among the Tyr-54(L) mutants, Y54(L)W showed a dramatic increase in the affinity to LTE4 which was comparable to that to LTD4 Essentially the same results were obtained using the Y54(L)W mutant expressed in Escherichia coli and Pichia pastoris. The structural modeling suggested the formation of a novel hydrogen bond between the substituted tryptophan in the antibody and the cysteine residue in LTE4 The affinity of Y54(L)R, Y54(L)E and Y54(L)L to LTC4 was markedly reduced, whereas other tested Tyr-54(L) mutants as well as Asn-58(L) mutants did not show significant change in LT binding. The results may provide an insight into the molecular basis of specific LT recognition by the antibody.


Assuntos
Afinidade de Anticorpos/genética , Leucotrieno E4/química , Mutação de Sentido Incorreto , Anticorpos de Cadeia Única/química , Substituição de Aminoácidos , Animais , Camundongos , Anticorpos de Cadeia Única/genética
14.
Immunity ; 43(6): 1053-63, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26682982

RESUMO

The high-mannose patch on the HIV-1 envelope (Env) glycoprotein is the epicenter for binding of the potent broadly neutralizing PGT121 family of antibodies, but strategies for generating such antibodies by vaccination have not been defined. We generated structures of inferred antibody intermediates by X-ray crystallography and electron microscopy to elucidate the molecular events that occurred during evolution of this family. Binding analyses revealed that affinity maturation was primarily focused on avoiding, accommodating, or binding the N137 glycan. The overall antibody approach angle to Env was defined very early in the maturation process, yet some variation evolved in the PGT121 family branches that led to differences in glycan specificities in their respective epitopes. Furthermore, we determined a crystal structure of the recombinant BG505 SOSIP.664 HIV-1 trimer with a PGT121 family member at 3.0 Å that, in concert with these antibody intermediate structures, provides insights to advance design of HIV vaccine candidates.


Assuntos
Afinidade de Anticorpos/imunologia , Epitopos/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Afinidade de Anticorpos/genética , Antígenos Virais/química , Antígenos Virais/imunologia , Varredura Diferencial de Calorimetria , Cristalografia por Raios X , Epitopos/química , Células HEK293 , Anticorpos Anti-HIV/química , Humanos , Processamento de Imagem Assistida por Computador , Microscopia Eletrônica de Transmissão , Mutagênese Sítio-Dirigida , Polissacarídeos/imunologia , Hipermutação Somática de Imunoglobulina , Proteínas do Envelope Viral/imunologia , Difração de Raios X , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
15.
J Immunol ; 195(7): 3482-9, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26320256

RESUMO

Maintaining antitumor immunity remains a persistent impediment to cancer immunotherapy. We and others have previously reported that high-avidity CD8(+) T cells are more susceptible to tolerance induction in the tumor microenvironment. In the present study, we used a novel model where T cells derived from two independent TCR transgenic mouse lines recognize the same melanoma antigenic epitope but differ in their avidity. We tested whether providing CD4(+) T cell help would improve T cell responsiveness as a function of effector T cell avidity. Interestingly, delivery of CD4(+) T cell help during in vitro priming of CD8(+) T cells improved cytokine secretion and lytic capacity of high-avidity T cells, but not low-avidity T cells. Consistent with this observation, copriming with CD4(+) T cells improved antitumor immunity mediated by higher avidity, melanoma-specific CD8(+) T cells, but not T cells with similar specificity but lower avidity. Enhanced tumor immunity was associated with improved CD8(+) T cell expansion and reduced tolerization, and it was dependent on presentation of both CD4(+) and CD8(+) T cell epitopes by the same dendritic cell population. Our findings demonstrate that CD4(+) T cell help preferentially augments high-avidity CD8(+) T cells and provide important insight for understanding the requirements to elicit and maintain durable tumor immunity.


Assuntos
Afinidade de Anticorpos/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Citotoxicidade Imunológica/imunologia , Tolerância Imunológica/imunologia , Animais , Afinidade de Anticorpos/genética , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Epitopos de Linfócito T/imunologia , Ativação Linfocitária/imunologia , Melanoma/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
16.
MAbs ; 7(2): 377-89, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25621507

RESUMO

Monovalent bispecific IgGs cater to a distinct set of mechanisms of action but are difficult to engineer and manufacture because of complexities associated with correct heavy and light chain pairing. We have created a novel design, "DuetMab," for efficient production of these molecules. The platform uses knobs-into-holes (KIH) technology for heterodimerization of 2 distinct heavy chains and increases the efficiency of cognate heavy and light chain pairing by replacing the native disulfide bond in one of the CH1-CL interfaces with an engineered disulfide bond. Using two pairs of antibodies, cetuximab (anti-EGFR) and trastuzumab (anti-HER2), and anti-CD40 and anti-CD70 antibodies, we demonstrate that DuetMab antibodies can be produced in a highly purified and active form, and show for the first time that monovalent bispecific IgGs can concurrently bind both antigens on the same cell. This last property compensates for the loss of avidity brought about by monovalency and improves selectivity toward the target cell.


Assuntos
Anticorpos Biespecíficos , Afinidade de Anticorpos/genética , Cetuximab , Imunoglobulina G , Trastuzumab , Anticorpos Biespecíficos/biossíntese , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/genética , Cetuximab/biossíntese , Cetuximab/química , Cetuximab/genética , Células HEK293 , Humanos , Imunoglobulina G/biossíntese , Imunoglobulina G/química , Imunoglobulina G/genética , Trastuzumab/biossíntese , Trastuzumab/química , Trastuzumab/genética
17.
J Allergy Clin Immunol ; 134(3): 604-12, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25171866

RESUMO

BACKGROUND: Previous studies of immunoglobulin gene sequences in patients with allergic diseases using low-throughput Sanger sequencing have limited the analytic depth for characterization of IgE repertoires. OBJECTIVES: We used a high-throughput, next-generation sequencing approach to characterize immunoglobulin heavy-chain gene (IGH) repertoires in patients with seasonal allergic rhinitis (AR) with the aim of better understanding the underlying disease mechanisms. METHODS: IGH sequences in matched peripheral blood and nasal biopsy specimens from nonallergic healthy control subjects (n = 3) and patients with grass pollen-related AR taken in season (n = 3) or out of season (n = 4) were amplified and pyrosequenced on the 454 GS FLX+ System. RESULTS: A total of 97,610 IGH (including 8,135 IgE) sequences were analyzed. Use of immunoglobulin heavy-chain variable region gene families 1 (IGHV1) and 5 (IGHV5) was higher in IgE clonotypic repertoires compared with other antibody classes independent of atopic status. IgE repertoires measured inside the grass pollen season were more diverse and more mutated (particularly in the biopsy specimens) and had more evidence of antigen-driven selection compared with those taken outside of the pollen season or from healthy control subjects. Clonal relatedness was observed for IgE between the blood and nasal biopsy specimens. Furthermore in patients with AR, but not healthy control subjects, we found clonal relatedness between IgE and IgG classes. CONCLUSION: This is the first report that exploits next-generation sequencing to determine local and peripheral blood IGH repertoires in patients with respiratory allergic disease. We demonstrate that natural pollen exposure was associated with changes in IgE repertoires that were suggestive of ongoing germinal center reactions. Furthermore, these changes were more often apparent in nasal biopsy specimens compared with peripheral blood and in patients with AR compared with healthy control subjects.


Assuntos
Imunoglobulina E/genética , Cadeias Pesadas de Imunoglobulinas/genética , Rinite Alérgica Sazonal/imunologia , Adulto , Alérgenos/imunologia , Afinidade de Anticorpos/genética , Diversidade de Anticorpos/genética , Antígenos de Plantas/imunologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunoglobulina E/sangue , Masculino , Pessoa de Meia-Idade , Mutação/genética , Poaceae , Pólen/imunologia , Estações do Ano , Adulto Jovem
18.
Nature ; 514(7524): 642-5, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25119033

RESUMO

To protect against human immunodeficiency virus (HIV-1) infection, broadly neutralizing antibodies (bnAbs) must be active at the portals of viral entry in the gastrointestinal or cervicovaginal tracts. The localization and persistence of antibodies at these sites is influenced by the neonatal Fc receptor (FcRn), whose role in protecting against infection in vivo has not been defined. Here, we show that a bnAb with enhanced FcRn binding has increased gut mucosal tissue localization, which improves protection against lentiviral infection in non-human primates. A bnAb directed to the CD4-binding site of the HIV-1 envelope (Env) protein (denoted VRC01) was modified by site-directed mutagenesis to increase its binding affinity for FcRn. This enhanced FcRn-binding mutant bnAb, denoted VRC01-LS, displayed increased transcytosis across human FcRn-expressing cellular monolayers in vitro while retaining FcγRIIIa binding and function, including antibody-dependent cell-mediated cytotoxicity (ADCC) activity, at levels similar to VRC01 (the wild type). VRC01-LS had a threefold longer serum half-life than VRC01 in non-human primates and persisted in the rectal mucosa even when it was no longer detectable in the serum. Notably, VRC01-LS mediated protection superior to that afforded by VRC01 against intrarectal infection with simian-human immunodeficiency virus (SHIV). These findings suggest that modification of FcRn binding provides a mechanism not only to increase serum half-life but also to enhance mucosal localization that confers immune protection. Mutations that enhance FcRn function could therefore increase the potency and durability of passive immunization strategies to prevent HIV-1 infection.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Antígenos de Histocompatibilidade Classe I/imunologia , Receptores Fc/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Administração Retal , Animais , Anticorpos Neutralizantes/análise , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/genética , Anticorpos Antivirais/análise , Anticorpos Antivirais/sangue , Anticorpos Antivirais/genética , Afinidade de Anticorpos/genética , Afinidade de Anticorpos/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Sítios de Ligação/genética , Antígenos CD4/metabolismo , Feminino , HIV/química , HIV/imunologia , Anticorpos Anti-HIV/análise , Anticorpos Anti-HIV/sangue , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/imunologia , Proteína gp160 do Envelope de HIV/química , Proteína gp160 do Envelope de HIV/imunologia , Meia-Vida , Imunidade nas Mucosas/imunologia , Imunização Passiva , Mucosa Intestinal/imunologia , Macaca mulatta , Masculino , Camundongos , Mutagênese Sítio-Dirigida , Receptores de IgG/imunologia , Receptores de IgG/metabolismo , Reto/imunologia , Vírus da Imunodeficiência Símia/imunologia , Transcitose
19.
Cancer Immunol Res ; 2(5): 381-92, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24795350

RESUMO

The antibodies produced initially in response to most antigens are high molecular weight (MW) immunoglobulins (IgM) with low affinity for the antigen, while the antibodies produced later are lower MW classes (e.g., IgG and IgA) with, on average, orders of magnitude higher affinity for that antigen. These changes, often termed affinity maturation, take place largely in small B-cell clusters (germinal center; GC) in lymphoid tissues in which proliferating antigen-stimulated B cells express the highly mutagenic cytidine deaminase that mediates immunoglobulin class-switching and sequence diversification of the immunoglobulin variable domains of antigen-binding receptors on B cells (BCR). Of the large library of BCR-mutated B cells thus rapidly generated, a small minority with affinity-enhancing mutations are selected to survive and differentiate into long-lived antibody-secreting plasma cells and memory B cells. BCRs are also endocytic receptors; they internalize and cleave BCR-bound antigen, yielding peptide-MHC complexes that are recognized by follicular helper T cells. Imperfect correlation between BCR affinity for antigen and cognate T-cell engagement may account for the increasing affinity heterogeneity that accompanies the increasing average affinity of antibodies. Conservation of mechanisms underlying mutation and selection of high-affinity antibodies over the ≈200 million years of evolution separating bird and mammal lineages points to the crucial role of antibody affinity enhancement in adaptive immunity.


Assuntos
Anticorpos/imunologia , Anticorpos/metabolismo , Afinidade de Anticorpos/imunologia , Animais , Afinidade de Anticorpos/genética , Antígenos/imunologia , Antígenos/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Citidina Desaminase/metabolismo , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Haptenos/imunologia , Haptenos/metabolismo , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/metabolismo , Humanos , Memória Imunológica , Mutação , Ligação Proteica , Proteínas/imunologia , Proteínas/metabolismo , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/metabolismo
20.
MAbs ; 6(2): 409-21, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24492248

RESUMO

Antibody-dependent cell-mediated cytotoxicity (ADCC) has been suggested as an essential mechanism for the in vivo activity of cetuximab, an epidermal growth factor receptor (EGFR)-targeting therapeutic antibody. Thus, enhancing the affinity of human IgG1 antibodies to natural killer (NK) cell-expressed FcγRIIIa by glyco- or protein-engineering of their Fc portion has been demonstrated to improve NK cell-mediated ADCC and to represent a promising strategy to improve antibody therapy. However, human polymorphonuclear (PMN) effector cells express the highly homologous FcγRIIIb isoform, which is described to be ineffective in triggering ADCC. Here, non-fucosylated or protein-engineered anti-EGFR antibodies with optimized FcγRIIIa affinities demonstrated the expected benefit in NK cell-mediated ADCC, but did not mediate ADCC by PMN, which could be restored by FcγRIIIb blockade. Furthermore, eosinophils and PMN from paroxysmal nocturnal hemoglobinuria patients that expressed no or low levels of FcγRIIIb mediated effective ADCC with FcγRIII-optimized anti-EGFR antibody. Additional experiments with double FcγRIIa/FcγRIII-optimized constructs demonstrated enhanced PMN-mediated ADCC compared with single FcγRIII-optimized antibody. In conclusion, our data demonstrate that FcγRIIIb engagement impairs PMN-mediated ADCC activity of FcγRIII-optimized anti-EGFR antibodies, while further optimization of FcγRIIa binding significantly restores PMN recruitment.


Assuntos
Anticorpos Monoclonais Humanizados/metabolismo , Eosinófilos/imunologia , Hemoglobinúria Paroxística/imunologia , Hemoglobinúria Paroxística/terapia , Imunoglobulina G/metabolismo , Imunoterapia/métodos , Neutrófilos/imunologia , Anticorpos Monoclonais Humanizados/genética , Afinidade de Anticorpos/genética , Citotoxicidade Celular Dependente de Anticorpos/genética , Células Cultivadas , Cetuximab , Citotoxicidade Imunológica/genética , Receptores ErbB/imunologia , Glicosilação , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulina G/genética , Imunoterapia/tendências , Polimorfismo Genético , Engenharia de Proteínas , Receptores de IgG/genética , Receptores de IgG/imunologia , Receptores de IgG/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA