Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
1.
Int J Food Microbiol ; 418: 110727, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38759292

RESUMO

Aspergillus flavus is a notorious fungus that contaminates food crops with toxic aflatoxins, posing a serious threat to human health and the agricultural economy. To overcome the inadequacy of traditional control methods and meet consumer preferences for natural-sources additives, there is an urgent demand for novel biocontrol agents that are safe and efficient. This study aims to investigate the antifungal properties of a novel antifungal agent derived from the biologically safe Lactiplantibacillus plantarum WYH. Firstly, antifungal peptides (AFPs) with a molecular weight of less than 3kD, exhibiting remarkable temperature stability and effectively retarding fungal growth in a dose-dependent manner specifically against A. flavus, were concentrated from the fermentation supernatant of L. plantarum WYH and were named as AFPs-WYH. Further analysis demonstrated that AFPs-WYH might exert antifungal effects through the induction of oxidative stress, disruption of mitochondrial function, alteration of membrane permeability, and cell apoptosis in A. flavus. To further validate our findings, a transcriptomics analysis was conducted on A. flavus treated with 2 and 5 mg/mL of AFPs-WYH, which elucidated the potential effect of AFPs-WYH administration on the regulation of genes involved in impairing fungal development and preventing aflatoxin biosynthesis pathways. Overall, AFPs-WYH reduced the A. flavus proliferation and affected the AFB1 biosynthesis, exhibiting a promising potential for food industry applications as a biopreservative and biocontrol agent.


Assuntos
Antifúngicos , Aspergillus flavus , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/crescimento & desenvolvimento , Antifúngicos/farmacologia , Agentes de Controle Biológico/farmacologia , Contaminação de Alimentos/prevenção & controle , Lactobacillus plantarum/metabolismo , Fermentação , Peptídeos/farmacologia , Aflatoxinas/biossíntese , Estresse Oxidativo/efeitos dos fármacos
2.
J Appl Microbiol ; 135(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38794887

RESUMO

AIMS: To develop antifungal lactic acid bacteria (LAB) and investigate their antifungal mechanisms against Aspergillus flavus in aflatoxin (AF) production. METHODS AND RESULTS: We isolated 179 LABs from cereal-based fermentation starters and investigated their antifungal mechanism against A. flavus through liquid chromatography-mass spectrometry and co-culture analysis techniques. Of the 179 isolates, antifungal activity was identified in Pediococcus pentosaceus, Lactobacillus crustorum, and Weissella paramesenteroides. These LABs reduced AF concentration by (i) inhibiting mycelial growth, (ii) binding AF to the cell wall, and (iii) producing antifungal compounds. Species-specific activities were also observed, with P. pentosaceus inhibiting AF production and W. paramesenteroides showing AF B1 binding activity. In addition, crucial extracellular metabolites for selecting antifungal LAB were involved in the 2',3'-cAMP-adenosine and nucleoside pathways. CONCLUSIONS: This study demonstrates that P. pentosaceus, L. crustorum, and W. paramesenteroides are key LAB strains with distinct antifungal mechanisms against A. flavus, suggesting their potential as biological agents to reduce AF in food materials.


Assuntos
Antifúngicos , Aspergillus flavus , Técnicas de Cocultura , Lactobacillales , Metabolômica , Aspergillus flavus/metabolismo , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Lactobacillales/metabolismo , Lactobacillales/crescimento & desenvolvimento , Fermentação , Aflatoxinas/biossíntese , Grão Comestível/microbiologia , Pediococcus pentosaceus/metabolismo , Antibiose , Microbiologia de Alimentos
3.
Toxins (Basel) ; 15(1)2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36668827

RESUMO

Aflatoxin, a carcinogenic secondary metabolite produced by Aspergillus flavus, is a significant threat to human health and agricultural production. Histone 2-hydroxyisobutyrylation is a novel post-translational modification that regulates various biological processes, including secondary metabolism. In this study, we identified the novel histone 2-hydroxyisobutyryltransferase Afngg1 in A. flavus, and explored its role in cell growth, development and aflatoxin biosynthesis. Afngg1 gene deletion markedly decreased lysine 2-hydroxyisobutyrylation modification of histones H4K5 and H4K8 compared with the control strain. Additionally, Afngg1 deletion inhibited mycelial growth of A. flavus, and the number of conidia and hydrophobicity were significantly decreased. Notably, aflatoxin B1 biosynthesis and sclerotia production were completely inhibited in the ΔAfngg1 strain. Furthermore, the pathogenicity of the ΔAfngg1 strain infecting peanut and corn grains was also diminished, including reduced spore production and aflatoxin biosynthesis compared with A. flavus control and Afngg1 complementation strains. Transcriptome analysis showed that, compared with control strains, differentially expressed genes in ΔAfngg1 were mainly involved in chromatin remodelling, cell development, secondary metabolism and oxidative stress. These results suggest that Afngg1 is involved in histone 2-hydroxyisobutyrylation and chromatin modification, and thus affects cell development and aflatoxin biosynthesis in A. flavus. Our results lay a foundation for in-depth research on the 2-hydroxyisobutyrylation modification in A. flavus, and may provide a novel target for aflatoxin contamination prevention.


Assuntos
Aflatoxinas , Aspergillus flavus , Proteínas Fúngicas , Humanos , Aflatoxina B1/biossíntese , Aflatoxinas/biossíntese , Aspergillus flavus/metabolismo , Aspergillus flavus/patogenicidade , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Histonas/metabolismo , Virulência
4.
Int J Food Microbiol ; 348: 109207, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-33930837

RESUMO

Aflatoxins are hepatotoxic and carcinogenic fungal secondary metabolites that usually contaminate crops and represent a serious health hazard for humans and animals worldwide. In this work, the effect of rhamnolipids (RLs) produced by Pseudomonas aeruginosa #112 on the growth and aflatoxins production by Aspergillus flavus MUM 17.14 was studied in vitro. At concentrations between 45 and 1500 mg/L, RLs reduced the mycelial growth of A. flavus by 23-40% and the production of aflatoxins by 93.9-99.5%. Purified mono-RLs and di-RLs exhibited a similar inhibitory activity on fungal growth. However, the RL mixture had a stronger inhibitory effect on aflatoxins production at concentrations up to 190 mg/L, probably due to a synergistic effect resulting from the combination of both congeners. Using transmission electron microscopy, it was demonstrated that RLs damaged the cell wall and the cytoplasmic membrane of the fungus, leading to the loss of intracellular content. This disruptive phenomenon explains the growth inhibition observed. Furthermore, RLs down-regulated the expression of genes aflC, aflE, aflP and aflQ involved in the aflatoxins biosynthetic pathway (6.4, 44.3, 38.1 and 2.0-fold, respectively), which is in agreement with the almost complete inhibition of aflatoxins production. Overall, the results herein gathered demonstrate for the first time that RLs could be used against aflatoxigenic fungi to attenuate the production of aflatoxins, and unraveled some of their mechanisms of action.


Assuntos
Aflatoxinas/biossíntese , Aspergillus flavus/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Glicolipídeos/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Produtos Agrícolas , Genes Fúngicos/genética , Humanos , Hifas/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Pseudomonas aeruginosa/metabolismo
5.
Sci Rep ; 11(1): 2803, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531617

RESUMO

Aflatoxin is a group of polyketide-derived carcinogenic and mutagenic secondary metabolites produced by Aspergillus flavus that negatively impact global food security and threaten the health of both humans and livestock. Aflatoxin biosynthesis is strongly affected by the fungal developmental stage, cultivation conditions, and environmental stress. In this study, a novel float culture method was used to examine the direct responses of the A. flavus transcriptome to temperature stress, oxidative stress, and their dual effects during the aflatoxin production stage. The transcriptomic response of A. flavus illustrated that the co-regulation of different secondary metabolic pathways likely contributes to maintaining cellular homeostasis and promoting cell survival under stress conditions. In particular, aflatoxin biosynthetic gene expression was downregulated, while genes encoding secondary metabolites with antioxidant properties, such as kojic acid and imizoquins, were upregulated under stress conditions. Multiple mitochondrial function-related genes, including those encoding NADH:ubiquinone oxidoreductase, ubiquinol-cytochrome C reductase, and alternative oxidase, were differentially expressed. These data can provide insights into the important mechanisms through which secondary metabolism in A. flavus is co-regulated and facilitate the deployment of various approaches for the effective control and prevention of aflatoxin contamination in food crops.


Assuntos
Aflatoxinas/biossíntese , Aspergillus flavus/genética , Produtos Agrícolas/microbiologia , Regulação Fúngica da Expressão Gênica , Aflatoxinas/análise , Aflatoxinas/toxicidade , Aspergillus flavus/metabolismo , Biologia Computacional , Microbiologia de Alimentos , Resposta ao Choque Térmico/genética , Temperatura Alta/efeitos adversos , Redes e Vias Metabólicas/genética , Estresse Oxidativo/genética , Pironas/metabolismo , RNA Fúngico/isolamento & purificação , RNA Fúngico/metabolismo , RNA-Seq , Metabolismo Secundário/genética , Esporos Fúngicos
6.
Braz J Microbiol ; 52(2): 821-835, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33447936

RESUMO

Antimicrobial peptides (AMPs) are biologically active molecules that can eradicate bacteria by destroying the bacterial membrane structure, causing the bacteria to rupture. However, little is known about the extent and effect of AMPs on filamentous fungi. In this study, we synthesized small molecular polypeptides by an inexpensive heat conjugation approach and examined their effects on the growth of Aspergillus flavus and its secondary metabolism. The antimicrobial agents significantly inhibited aflatoxin production, conidiation, and sclerotia formation in A. flavus. Furthermore, we found that the expression of aflatoxin structural genes was significantly inhibited, and the intracellular reactive oxygen species (ROS) level was reduced. Additionally, the antimicrobial agents can change membrane permeability. Overall, our results demonstrated that antimicrobial agents, safe to mammalian cells, have an obvious impact on aflatoxin production, which indicated that antimicrobial agents may be adopted as a new generation of potential agents for controlling aflatoxin contamination.


Assuntos
Aflatoxinas/biossíntese , Antifúngicos/síntese química , Antifúngicos/farmacologia , Aspergillus flavus/efeitos dos fármacos , Proteínas Citotóxicas Formadoras de Poros/síntese química , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Aspergillus flavus/genética , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Metabolismo Secundário , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo
7.
Virulence ; 12(1): 96-113, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33315533

RESUMO

Aspergillus flavus (A. flavus) is one of the most important model environmental fungi which can produce a potent toxin and carcinogen known as aflatoxin. Aflatoxin contamination causes massive agricultural economic loss and a critical human health issue each year. Although a functional vacuole has been highlighted for its fundamental importance in fungal virulence, the molecular mechanisms of the vacuole in regulating the virulence of A. flavus remain largely unknown. Here, we identified a novel vacuole-related protein in A. flavus, the ortholog of phosphatidylinositol-3-phosphate-5-kinase (Fab1) in Saccharomyces cerevisiae. This kinase was located at the vacuolar membrane, and loss of fab1 function was found to affect the growth, conidia and sclerotial development, cellular acidification and metal ion homeostasis, aflatoxin production and pathogenicity of A. flavus. Further functional analysis revealed that Fab1 was required to maintain the vacuole size and cell morphology. Additional quantitative proteomic analysis suggested that Fab1 was likely to play an important role in maintaining vacuolar/cellular homeostasis, with vacuolar dysregulation upon fab1 deletion leading to impaired aflatoxin synthesis in this fungus. Together, these results provide insight into the molecular mechanisms by which this pathogen produces aflatoxin and mediates its pathogenicity, and may facilitate dissection of the vacuole-mediated regulatory network in A. flavus.


Assuntos
1-Fosfatidilinositol 4-Quinase/genética , Aflatoxinas/biossíntese , Aspergillus flavus/enzimologia , Aspergillus flavus/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Aflatoxinas/genética , Aspergillus flavus/patogenicidade , Proteínas Fúngicas/metabolismo , Homeostase , Sementes/microbiologia , Zea mays/microbiologia
8.
Compr Rev Food Sci Food Saf ; 19(6): 2797-2842, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33337039

RESUMO

Filamentous fungi represent a rich source of extrolites, including secondary metabolites (SMs) comprising a great variety of astonishing structures and interesting bioactivities. State-of-the-art techniques in genome mining, genetic manipulation, and secondary metabolomics have enabled the scientific community to better elucidate and more deeply appreciate the genetic and biosynthetic chemical arsenal of these microorganisms. Aspergillus flavus is best known as a contaminant of food and feed commodities and a producer of the carcinogenic family of SMs, aflatoxins. This fungus produces many SMs including polyketides, ribosomal and nonribosomal peptides, terpenoids, and other hybrid molecules. This review will discuss the chemical diversity, biosynthetic pathways, and biological/ecological role of A. flavus SMs, as well as their significance concerning food safety and security.


Assuntos
Aspergillus flavus/química , Aspergillus flavus/metabolismo , Metaboloma , Aflatoxinas/biossíntese , Aspergillus flavus/genética , Vias Biossintéticas , Inocuidade dos Alimentos , Proteínas Fúngicas/biossíntese , Genes Fúngicos , Policetídeos/metabolismo
9.
Int J Mol Sci ; 21(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977505

RESUMO

Aflatoxins (AFs) have always been regarded as the most effective carcinogens, posing a great threat to agriculture, food safety, and human health. Aspergillus flavus is the major producer of aflatoxin contamination in crops. The prevention and control of A. flavus and aflatoxin continues to be a global problem. In this study, we demonstrated that the cell-free culture filtrate of Aspergillus oryzae and a non-aflatoxigenic A. flavus can effectively inhibit the production of AFB1 and the growth and reproduction of A. flavus, indicating that both of the non-aflatoxigenic Aspergillus strains secrete inhibitory compounds. Further transcriptome sequencing was performed to analyze the inhibitory mechanism of A. flavus treated with fermenting cultures, and the results revealed that genes involved in the AF biosynthesis pathway and other biosynthetic gene clusters were significantly downregulated, which might be caused by the reduced expression of specific regulators, such as AflS, FarB, and MtfA. The WGCNA results further revealed that genes involved in the TCA cycle and glycolysis were potentially involved in aflatoxin biosynthesis. Our comparative transcriptomics also revealed that two conidia transcriptional factors, brlA and abaA, were found to be significantly downregulated, which might lead to the downregulation of conidiation-specific genes, such as the conidial hydrophobins genes rodA and rodB. In summary, our research provides new insights for the molecular mechanism of controlling AF synthesis to control the proliferation of A. flavus and AF pollution.


Assuntos
Aflatoxinas , Aspergillus flavus/fisiologia , Regulação Fúngica da Expressão Gênica , RNA-Seq , Esporos Fúngicos , Transcriptoma , Aflatoxinas/biossíntese , Aflatoxinas/genética , Glycine max/microbiologia , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo
10.
Int J Food Microbiol ; 334: 108799, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-32799117

RESUMO

Aspergillus flavus is a common and ubiquitous fungal species able to colonize several agricultural commodities, in both pre- and post-harvest conditions. This species represents a very harmful plant pathogen for its ability to synthesize aflatoxin B1, responsible for human primary hepatocellular carcinoma and classified as a group I (human carcinogenic) by the International Agency for Research on Cancer. Several approaches have been proposed to control A. flavus development and related aflatoxin production in field and storage conditions. The Succinate Dehydrogenase Inhibitor (SDHI) fungicide boscalid has been shown to control A. flavus growth and aflatoxin contamination both in vitro and in field experiments. However, this compound is classified as medium-high risk fungicide for triggering fungal resistance and, indeed, resistant strains can occur on crops treated with boscalid. In this paper, we selected laboratory A. flavus strains resistant to boscalid grown on agar medium containing 50 mg/L of boscalid. In order to investigate the molecular mechanism responsible for the resistant phenotype, specific primer pairs were designed to amplify the whole SdhB, SdhC and SdhD genes. By amino acid sequence analysis, two point mutations, Tyrosine replacing Histidine at codon 249 of SdhB (H249Y) and Arginine replacing Glycine at codon 91 of SdhC (G91R), were identified. The effect of SDHI boscalid and isopyrazam on mycelial growth and conidial germination was evaluated. Both resistant genotypes showed high resistance (MIC and EC50 > 1000 mg/L) to boscalid. A positive cross-resistance was found between boscalid and isopyrazam. Specific sub-lethal doses of both fungicides (0.5 mg/L of boscalid and 0.01 mg/L of isopyrazam) interfered with the mechanisms associated to pigmentation of colonies. In particular, fungal colonies appeared depigmented lacking the typical A. flavus green colour shown on un-amended fungicide medium. A strict correlation between lack of pigmentation and increasing aflatoxin production was also observed.


Assuntos
Aflatoxinas/biossíntese , Aspergillus flavus/genética , Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , Succinato Desidrogenase/antagonistas & inibidores , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/metabolismo , Compostos de Bifenilo/farmacologia , Farmacorresistência Fúngica/efeitos dos fármacos , Mutação , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Norbornanos/farmacologia , Pigmentação/efeitos dos fármacos , Polimorfismo Genético , Pirazóis/farmacologia , Succinato Desidrogenase/genética
11.
Environ Microbiol ; 22(12): 5232-5247, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32813277

RESUMO

Mitogen-activated protein kinase (MAPK) cascades are highly conserved in eukaryotic cells and are known to play crucial roles in the regulation of various cellular processes. However, compared with kinase-mediated phosphorylation, dephosphorylation catalysed by phosphatases has not been well characterized in filamentous fungi. In this study, we identified five MAPK pathway-related phosphatases (Msg5, Yvh1, Ptp1, Ptp2 and Oca2) and characterized their functions in Aspergillus flavus, which produces aflatoxin B1 (AFB1 ), one of the most toxic and carcinogenic secondary metabolites. These five phosphatases were identified as negative regulators of MAPK (Slt2, Fus3 and Hog1) pathways. Deletion of Msg5 and Yvh1 resulted in significant defects in conidiation, sclerotia formation, aflatoxin production and crop infection. Additionally, double knockout mutants (ΔMsg5/ΔPtp1, ΔMsg5/ΔPtp2 and ΔMsg5/ΔOca2) displayed similar defects to those observed in the ΔMsg5 single mutant, indicating that Msg5 plays a major role in the regulation of development and pathogenicity in A. flavus. Importantly, we found that the active site at C439 is essential for the function of the Msg5 phosphatase. Furthermore, the MAP kinase Fus3 was found to be involved in the regulation of development, aflatoxin biosynthesis and pathogenicity, and its conserved phosphorylation residues (Thr and Tyr) were critical for the full range of its functions in A. flavus. Overall, our results reveal that MAPK related tyrosine phosphatases play important roles in the regulation of development, secondary metabolism and pathogenicity in A. flavus, and could be developed as potential targets for preventing damage caused by this fungal pathogen.


Assuntos
Aspergillus flavus/patogenicidade , Proteínas Fúngicas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Metabolismo Secundário , Aflatoxinas/biossíntese , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/metabolismo , Proteínas Fúngicas/genética , Sistema de Sinalização das MAP Quinases , Mutação , Fosforilação , Proteínas Tirosina Fosfatases/genética , Virulência
12.
mBio ; 11(4)2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665272

RESUMO

The apparent rarity of sex in many fungal species has raised questions about how much sex is needed to purge deleterious mutations and how differences in frequency of sex impact fungal evolution. We sought to determine how differences in the extent of recombination between populations of Aspergillus flavus impact the evolution of genes associated with the synthesis of aflatoxin, a notoriously potent carcinogen. We sequenced the genomes of, and quantified aflatoxin production in, 94 isolates of A. flavus sampled from seven states in eastern and central latitudinal transects of the United States. The overall population is subdivided into three genetically differentiated populations (A, B, and C) that differ greatly in their extent of recombination, diversity, and aflatoxin-producing ability. Estimates of the number of recombination events and linkage disequilibrium decay suggest relatively frequent sex only in population A. Population B is sympatric with population A but produces significantly less aflatoxin and is the only population where the inability of nonaflatoxigenic isolates to produce aflatoxin was explained by multiple gene deletions. Population expansion evident in population B suggests a recent introduction or range expansion. Population C is largely nonaflatoxigenic and restricted mainly to northern sampling locations through restricted migration and/or selection. Despite differences in the number and type of mutations in the aflatoxin gene cluster, codon optimization and site frequency differences in synonymous and nonsynonymous mutations suggest that low levels of recombination in some A. flavus populations are sufficient to purge deleterious mutations.IMPORTANCE Differences in the relative frequencies of sexual and asexual reproduction have profound implications for the accumulation of deleterious mutations (Muller's ratchet), but little is known about how these differences impact the evolution of ecologically important phenotypes. Aspergillus flavus is the main producer of aflatoxin, a notoriously potent carcinogen that often contaminates food. We investigated if differences in the levels of production of aflatoxin by A. flavus could be explained by the accumulation of deleterious mutations due to a lack of recombination. Despite differences in the extent of recombination, variation in aflatoxin production is better explained by the demography and history of specific populations and may suggest important differences in the ecological roles of aflatoxin among populations. Furthermore, the association of aflatoxin production and populations provides a means of predicting the risk of aflatoxin contamination by determining the frequencies of isolates from low- and high-production populations.


Assuntos
Aflatoxinas/biossíntese , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Metagenômica , Recombinação Genética , Aspergillus flavus/classificação , DNA Fúngico/genética , Variação Genética , Desequilíbrio de Ligação , Família Multigênica , Mutação , Análise de Sequência de DNA
13.
Environ Microbiol ; 22(8): 3522-3534, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32515100

RESUMO

In warm regions, agricultural fields are occupied by complex Aspergillus flavus communities composed of isolates in many vegetative compatibility groups (VCGs) with varying abilities to produce highly toxic, carcinogenic aflatoxins. Aflatoxin contamination is reduced with biocontrol products that enable atoxigenic isolates from atoxigenic VCGs to dominate the population. Shifts in VCG frequencies similar to those caused by the introduction of biocontrol isolates were detected in Sonora, Mexico, where biocontrol is not currently practiced. The shifts were attributed to founder events. Although VCGs reproduce clonally, significant diversity exists within VCGs. Simple sequence repeat (SSR) fingerprinting revealed that increased frequencies of VCG YV150 involved a single haplotype. This is consistent with a founder event. Additionally, great diversity was detected among 82 YV150 isolates collected over 20 years across Mexico and the United States. Thirty-six YV150 haplotypes were separated into two populations by Structure and SplitsTree analyses. Sixty-five percent of isolates had MAT1-1 and belonged to one population. The remaining had MAT1-2 and belonged to the second population. SSR alleles varied within populations, but recombination between populations was not detected despite co-occurrence at some locations. Results suggest that YV150 isolates with opposite mating-type have either strongly restrained or lost sexual reproduction among themselves.


Assuntos
Aflatoxinas/biossíntese , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/genética , Efeito Fundador , Variação Genética/genética , Aflatoxinas/genética , Aspergillus flavus/metabolismo , Agentes de Controle Biológico/metabolismo , Impressões Digitais de DNA , México , Repetições de Microssatélites/genética , Estados Unidos , Zea mays/microbiologia
14.
Toxins (Basel) ; 12(3)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121226

RESUMO

The study of fungal species evolved radically with the development of molecular techniques and produced new evidence to understand specific fungal mechanisms such as the production of toxic secondary metabolites. Taking advantage of these technologies to improve food safety, the molecular study of toxinogenic species can help elucidate the mechanisms underlying toxin production and enable the development of new effective strategies to control fungal toxicity. Numerous studies have been made on genes involved in aflatoxin B1 (AFB1) production, one of the most hazardous carcinogenic toxins for humans and animals. The current review presents the roles of these different genes and their possible impact on AFB1 production. We focus on the toxinogenic strains Aspergillus flavus and A. parasiticus, primary contaminants and major producers of AFB1 in crops. However, genetic reports on A. nidulans are also included because of the capacity of this fungus to produce sterigmatocystin, the penultimate stable metabolite during AFB1 production. The aim of this review is to provide a general overview of the AFB1 enzymatic biosynthesis pathway and its link with the genes belonging to the AFB1 cluster. It also aims to illustrate the role of global environmental factors on aflatoxin production and the recent data that demonstrate an interconnection between genes regulated by these environmental signals and aflatoxin biosynthetic pathway.


Assuntos
Aflatoxinas/biossíntese , Aflatoxinas/genética , Animais , Interação Gene-Ambiente , Humanos
15.
Toxins (Basel) ; 12(3)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32121605

RESUMO

Aflatoxin B1 (AFB1) and aflatoxin B2 (AFB2) are the most common aflatoxins produced by Aspergillus flavus in peanuts, with high carcinogenicity and teratogenicity. Identification of DNA markers associated with resistance to aflatoxin production is likely to offer breeders efficient tools to develop resistant cultivars through molecular breeding. In this study, seeds of 99 accessions of a Chinese peanut mini-mini core collection were investigated for their reaction to aflatoxin production by a laboratory kernel inoculation assay. Two resistant accessions (Zh.h0551 and Zh.h2150) were identified, with their aflatoxin content being 8.11%-18.90% of the susceptible control. The 99 peanut accessions were also genotyped by restriction site-associated DNA sequencing (RAD-Seq) for a genome-wide association study (GWAS). A total of 60 SNP (single nucleotide polymorphism) markers associated with aflatoxin production were detected, and they explained 16.87%-31.70% of phenotypic variation (PVE), with SNP02686 and SNP19994 possessing 31.70% and 28.91% PVE, respectively. Aflatoxin contents of accessions with "AG" (existed in Zh.h0551 and Zh.h2150) and "GG" genotypes of either SNP19994 or SNP02686 were significantly lower than that of "AA" genotypes in the mean value of a three-year assay. The resistant accessions and molecular markers identified in this study are likely to be helpful for deployment in aflatoxin resistance breeding in peanuts.


Assuntos
Aflatoxinas/biossíntese , Arachis/genética , Arachis/microbiologia , Resistência à Doença/genética , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único
16.
Sci Rep ; 10(1): 5508, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32218462

RESUMO

A study was conducted to determine the cytosolic in vitro hepatic enzymatic kinetic parameters Vmax, KM, and intrinsic clearance (CLint) for aflatoxin B1 (AFB1) reductase [aflatoxicol (AFL) production] and AFL dehydrogenase (AFB1 production) in four commercial poultry species (chicken, quail, turkey and duck). Large differences were found in AFB1 reductase activity, being the chicken the most efficient producer of AFL (highest CLint value). Oxidation of AFL to AFB1 showed only slight differences among the different poultry species. On average all species produced AFB1 from AFL at a similar rate, except for the turkey which produced AFB1 from AFL at a significantly lower rate than chickens and quail, but not ducks. Although the turkey and duck showed differences in AFL oxidation Vmax and KM parameters, their CLint values did not differ significantly. The ratio AFB1 reductase/AFL dehydrogenase enzyme activity was inversely related to the known in vivo sensitivity to AFB1 being highest for the chicken, lowest for the duck and intermediate for turkeys and quail. Since there is no evidence that AFL is a toxic metabolite of AFB1, these results suggest that AFL production is a detoxication reaction in poultry. Conversion of AFB1 to AFL prevents the formation of the AFB1-8,9-exo-epoxide which, upon conversion to AFB1-dihydrodiol, is considered to be the metabolite responsible for the acute toxic effects of AFB1.


Assuntos
Aflatoxina B1/farmacocinética , Aflatoxina B1/toxicidade , Aflatoxinas/biossíntese , Fígado/efeitos dos fármacos , Fígado/metabolismo , Animais , Carcinógenos/farmacocinética , Carcinógenos/toxicidade , Galinhas , Citosol/metabolismo , Resistência a Medicamentos , Patos , Inativação Metabólica , Aves Domésticas , Codorniz , Perus
17.
J Sci Food Agric ; 100(6): 2800-2806, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31975411

RESUMO

BACKGROUND: Contamination of food or the environment by fungi, especially those resistant to conventional fungicides or drugs, represents a hazard to human health. The objective of this study is to identify safe, natural antifungal agents that can remove fungal pathogens or contaminants rapidly from food and / or environmental sources. RESULTS: Fifteen antifungal compounds (nine benzo derivatives as candidates; six conventional fungicides as references) were investigated. Three benzo analogs, namely octyl gallate (OG), trans-cinnamaldehyde (CA), and 2-hydroxy-5-methoxybenzaldehyde (2H5M), at 1 g L-1 (3.54 mmol), 1 mL L-1 (7.21 mmol), 1 mL L-1 (5.39 mmol), respectively, achieved ≥99.9% fungal death after 0.5, 2.5 or 24 h of treatments, respectively, in in vitro phosphate-buffered saline (PBS) bioassay. However, when OG, CA, and 2H5M were examined in commercial food matrices, organic apple, or grape juices, only CA maintained a similar level of antifungal activity, compared with a PBS bioassay. trans-Cinnamaldehyde showed higher antifungal activity at pH 3.5, equivalent to that of commercial fruit juices, than at pH 5.6. In soil sample tests, the application of 1 mL L-1 (7.21 mmol) CA to conventional maize / tomato soil samples (pH 6.8) for 2.5 h resulted in ≥99.9% fungal death, indicating CA could also eliminate fungal contaminants in soil. While the conventional fungicide thiabendazole exerted antifungal activity comparable to CA, thiabendazole enhanced the production of carcinogenic aflatoxins by Aspergillus flavus, an undesirable side effect. CONCLUSION: trans-Cinnamaldehyde could be developed as a potent antifungal agent in food processing or soil sanitation by reducing the time / cost necessary for fungal removal. Published 2020. This article is a U.S. Government work and is in the public domain in the USA.


Assuntos
Microbiologia de Alimentos , Fungos/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Microbiologia do Solo , Acroleína/análogos & derivados , Acroleína/farmacologia , Aflatoxinas/biossíntese , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/metabolismo , Benzaldeídos/farmacologia , Contaminação de Alimentos , Sucos de Frutas e Vegetais/microbiologia , Ácido Gálico/análogos & derivados , Ácido Gálico/farmacologia , Concentração de Íons de Hidrogênio
18.
Rev. argent. microbiol ; 51(4): 292-301, dic. 2019. graf
Artigo em Inglês | LILACS | ID: biblio-1057392

RESUMO

Abstract Aflatoxin is a carcinogenic secondary metabolite produced mainly by Aspergillus flavus and Aspergillus parasiticus, which can seriously endanger the health of humans and animals. Oxidative stress is a common defense response, and it is known that reactive oxygen species (ROS) can induce the synthesis of a series of secondary metabolites, including aflatoxin. By using mutants lacking the afap 1 gene, the role of afap 1 gene in oxidative stress and aflatoxin synthesis was assessed. The growth of the mutant strains was significantly inhibited by the increase in the concentration of H2O2, inhibition was complete at 40mmol/l. However, in the quantitative analysis by HPLC, the concentration of AFB1 increased with the increased H 2O 2 until 10mmol/l. Following an analysis based on the information provided by the NCBI BLAST analysis, it was assumed that Afap1, a basic leucine zipper (bZIP) transcription factor, was associated with the oxidative stress in this fungus. Treatment with 5mmol/l H 2O 2 completely inhibited the growth of the mutant strains in afap 1 but did not affect the growth of the CA14PTs strain (non-mutant strain). In addition, the concentration of AFB 1 in the mutant strains was approximately V of that observed in the CA14PTs strain. These results suggested that Afap1 plays a key role in the regulation of oxidative stress and aflatoxin production in A. flavus. ©2018 Published by Elsevier España, S.L.U. on behalf of Asociación Argentina de Microbiología. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/ licenses/by-nc-nd/4.0/).


Resumen La aflatoxina es un metabolito secundario cancerígeno producido principalmente por Aspergillus flavus y Aspergillus parasiticus, que pone en riesgo grave a la salud de los humanos y los animales. El estrés oxidativo es una respuesta de defensa común, y es sabido que las especies reactivas de oxígeno (ROS) pueden inducir la síntesis de una serie de metabolitos secundarios, incluida la aflatoxina. Empleando mutantes carentes del gen afap1 se evaluó el papel de Afap1 en el estrés oxidativo y la síntesis de aflatoxinas. El crecimiento de las cepas mutadas se vio significativamente inhibido con el aumento de la concentración de H 2O 2, la inhibición fue completa a 40mmol/l. Sin embargo, en el análisis cuantitativo por HPLC, la concentración de la aflatoxina AFBi aumentó con el aumento de la concentración de H 2O 2 hasta 10mmol/l. Tras un análisis apoyado en la información provista por la herramienta NCBI BLAST, se supuso que Afap1, un factor de transcripción de la cremallera de leucina básica (bZIP), estaba asociado con el estrés oxidativo en este hongo. El tratamiento con 5mmol/l de H 2O 2 inhibió completamente el crecimiento de las cepas mutantes en afap1, pero no afectó el crecimiento de la cepa CA14PTs (cepa no mutada). Además, la concentración de AFB 1 en las cepas mutadas fue de aproximadamente 1/4 de la observada en CA14PTs. Estos resultados sugieren que Afap1 juega un papel clave en la regulación del estrés oxidativo y la producción de aflatoxinas en A. flavus.


Assuntos
Aspergillus flavus/patogenicidade , Aflatoxinas/biossíntese , Fatores de Transcrição/análise , Estresse Oxidativo/fisiologia
19.
Toxins (Basel) ; 11(12)2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31779084

RESUMO

This study investigated the aflatoxin production potentials of selected fungi using a polyphasic approach. Internally transcribed spacer region of the fungi was amplified using the polymerase chain reaction. Forty-five Aspergillus strains were further assessed for aflatoxin production using the conventional methods such as growth on yeast extract sucrose, ß-cyclodextrin neutral red desiccated coconut agar (ß-CNRDCA); expression of the aflatoxin regulatory genes and the use of both thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). A large proportion (82.22%) of the isolates harbored the Nor-1 gene while 55.56%, 68.89%, and 80% possessed the ver-1, omt-A, and aflR genes, respectively. All 100% the isolates harbored the aflJ gene. Twenty-three isolates were positive for aflatoxin production based on the yeast extract sucrose medium (YES) test; ammonium vapor test (51%), yellow pigment production (75.5%), and ß-CNRDCA tests; and blue/green fluorescence (57.7%). Based on TLC detection 42.2% produced aflatoxins while in the HPLC, total aflatoxin (AFTOT) production concentrations ranged from 6.77-71,453 µg/g. Detectable aflatoxin B1 (AFB1) concentrations obtained from the HPLC ranged between 3.76 and 70,288 µg/g; 6.77 and 242.50 µg/g for aflatoxin B2 (AFB2); 1.87 and 745.30 µg/g for aflatoxin G1 (AFG1); and 1.67 and 768.52 µg/g for aflatoxin G2 (AFG2). AFTOT contamination levels were higher than European Union tolerable limits (4 µg/kg). The regression coefficient was one (R2 = 1) while significant differences exist in the aflatoxin concentrations of Aspergillus (p ≤ 0.05). This study reports the potentials of Aspergillus oryzae previously known as a non-aflatoxin producer to produce AFG1, AFG2, AFB1, and AFB2 toxins. Aspergillus species in feedlots of animals reared for food are capable of producing aflatoxins which could pose hazards to health.


Assuntos
Aflatoxinas/biossíntese , Aflatoxinas/genética , Aspergillus/química , Aspergillus/genética , Ração Animal/microbiologia , Aspergillus oryzae/química , Aspergillus oryzae/metabolismo , Vias Biossintéticas/genética , Cromatografia Líquida de Alta Pressão , Meios de Cultura , Genes Fúngicos , Reação em Cadeia da Polimerase
20.
Toxins (Basel) ; 11(11)2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31698851

RESUMO

Aflatoxin (AF) contamination of maize is a major concern for food safety. The use of chemical fungicides is controversial, and it is necessary to develop new effective methods to control Aspergillus flavus growth and, therefore, to avoid the presence of AFs in grains. In this work, we tested in vitro the effect of six essential oils (EOs) extracted from aromatic plants. We selected those from Satureja montana and Origanum virens because they show high levels of antifungal and antitoxigenic activity at low concentrations against A. flavus. EOs are highly volatile compounds and we have developed a new niosome-based encapsulation method to extend their shelf life and activity. These new formulations have been successfully applied to reduce fungal growth and AF accumulation in maize grains in a small-scale test, as well as placing the maize into polypropylene woven bags to simulate common storage conditions. In this latter case, the antifungal properties lasted up to 75 days after the first application.


Assuntos
Aflatoxinas/biossíntese , Aspergillus flavus/crescimento & desenvolvimento , Grão Comestível/microbiologia , Armazenamento de Alimentos , Fungicidas Industriais/farmacologia , Óleos Voláteis/farmacologia , Zea mays/microbiologia , Aspergillus flavus/metabolismo , Composição de Medicamentos , Grão Comestível/química , Contaminação de Alimentos/prevenção & controle , Fungicidas Industriais/administração & dosagem , Lipossomos , Óleos Voláteis/administração & dosagem , Zea mays/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA