Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomater Sci Polym Ed ; 33(15): 1924-1938, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35695022

RESUMO

The use of hydrogel-based contact lens materials holds promise for ophthalmic drug delivery by increasing drug residence time, improving drug bioavailability, reducing administration frequency, and enhancing special site targeting. Issues such as ease of manufacturing, lens comfort and appropriate release kinetics must be considered. Furthermore, the high water content of hydrogel materials can result in rapid and poorly controlled release kinetics. Herein, we modified common hydrogels used in contact lens manufacturing with phenylboronic acid (PBA). PBA addresses these material design issues since boronate esters are easily formed when boron acid and diols interact, opening up a pathway for simple modification of the model lens materials with saccharide based wetting agents. The wetting agents have the potential to improve lens comfort. Furthermore, the hydrophobicity of PBA and the presence of diols can be useful to help control drug release kinetics. In this work, polymerizable 3-(acrylamido)phenylboronic acid (APBA) was synthesized and incorporated into various hydrogels used in contact lens applications, including poly(2-hydroxyethylmethacrylate) (PHEMA), polyvinylpyrrolidone (PVP) and poly(N,N-dimethyl acrylamide) (PDMA) using UV induced free radical polymerization. The APBA structure and its incorporation into the hydrogel materials were confirmed by NMR and FTIR. The materials were shown to interact with and bind wetting agents such as hyaluronan (HA) and hydroxypropyl guar (HPG) by simple soaking in an aqueous solution. The equilibrium water content of the modified materials was characterized, demonstrating that most materials are still in the appropriate range after the introduction of the hydrophobic PBA. The release of three model ophthalmic drugs with varying hydrophilicity, atropine, atropine sulfate and dexamethasone, was examined. The presence of PBA in the materials was found to promote sustained drug release due to its hydrophobic nature. The results suggest that the modification of the materials with PBA was able to not only provide a mucoadhesive property that enhanced wetting agent interactions with the materials, but had the potential to alter drug release. Thus, the modification of contact lens materials with mucoadhesive functionality may be useful in the design of hydrogel contact lenses for ophthalmic drug release and wetting agent binding.


Assuntos
Lentes de Contato Hidrofílicas , Lentes de Contato , Acrilamidas , Atropina , Derivados da Atropina , Boro , Ácidos Borônicos , Preparações de Ação Retardada , Dexametasona , Sistemas de Liberação de Medicamentos , Ácido Hialurônico/química , Hidrogéis/química , Poli-Hidroxietil Metacrilato/química , Povidona , Água/química , Agentes Molhantes/química
2.
J Biomed Mater Res B Appl Biomater ; 109(10): 1512-1524, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33523550

RESUMO

Foreign Body Reaction (FBR) is a critical issue to be addressed when polyethylene terephthalate (PET) textile implants are considered in the medical field to treat pathologies involving hernia repair, revascularization strategies in arterial disease, and aneurysm or heart valve replacement. The natural porosity of textile materials tends to induce exaggerated tissue ingrowth which may prevent the implants from remaining flexible. The purpose of this study is to assess the influence of the textile topography of various woven substrates on the wetting properties of these substrates and on their in vitro interaction with mesenchymal stem cells (MSC) at 24 and 72 hr. The tests were performed both at yarn and fabric level under forced wetting and ingrowth conditions in order to replicate the mechanisms going on in vivo under blood pressure. Results demonstrate that cell proliferation is influenced by the textile wetting properties, which can be tuned at yarn and fabric level. In particular, it is shown that a satin weave obtained from porous spun yarn limits cell proliferation due to the high porosity of the yarn and the limited saturation index of the weave. Yarn and fabric saturation seems to play a predominant role in cell proliferation on textile substrates.


Assuntos
Materiais Biocompatíveis/química , Fibrose/metabolismo , Reação a Corpo Estranho/prevenção & controle , Próteses Valvulares Cardíacas , Polietilenotereftalatos/química , Alicerces Teciduais/química , Adesão Celular , Proliferação de Células , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Porosidade , Propriedades de Superfície , Têxteis , Engenharia Tecidual , Agentes Molhantes/química
3.
Antimicrob Agents Chemother ; 58(8): 4855-65, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24913168

RESUMO

The development of topical anti-human immunodeficiency virus (HIV) microbicides may provide women with strategies to protect themselves against sexual HIV transmission. Pericoital drug delivery systems intended for use immediately before sex, such as microbicide gels, must deliver high drug doses for maximal effectiveness. The goal of achieving a high antiretroviral dose is complicated by the need to simultaneously retain the dose and quickly release drug compounds into the tissue. For drugs with limited solubility in vaginal gels, increasing the gel volume to increase the dose can result in leakage. While solid dosage forms like films and tablets increase retention, they often require more than 15 min to fully dissolve, potentially increasing the risk of inducing epithelial abrasions during sex. Here, we demonstrate that water-soluble electrospun fibers, with their high surface area-to-volume ratio and ability to disperse antiretrovirals, can serve as an alternative solid dosage form for microbicides requiring both high drug loading and rapid hydration. We formulated maraviroc at up to 28 wt% into electrospun solid dispersions made from either polyvinylpyrrolidone or poly(ethylene oxide) nanofibers or microfibers and investigated the role of drug loading, distribution, and crystallinity in determining drug release rates into aqueous media. We show here that water-soluble electrospun materials can rapidly release maraviroc upon contact with moisture and that drug delivery is faster (less than 6 min under sink conditions) when maraviroc is electrospun in polyvinylpyrrolidone fibers containing an excipient wetting agent. These materials offer an alternative dosage form to current pericoital microbicides.


Assuntos
Fármacos Anti-HIV/química , Anti-Infecciosos Locais/química , Cicloexanos/química , Suspensões/química , Triazóis/química , Cremes, Espumas e Géis Vaginais/química , Administração Intravaginal , Fármacos Anti-HIV/farmacologia , Anti-Infecciosos Locais/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cicloexanos/farmacologia , Técnicas Eletroquímicas , Excipientes/química , Feminino , Infecções por HIV/prevenção & controle , Humanos , Cinética , Maraviroc , Nanofibras/química , Nanofibras/ultraestrutura , Polietilenoglicóis/química , Polissorbatos/química , Povidona/química , Suspensões/farmacologia , Triazóis/farmacologia , Cremes, Espumas e Géis Vaginais/farmacologia , Molhabilidade , Agentes Molhantes/química
4.
Waste Manag ; 34(2): 309-15, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24355830

RESUMO

The surface free energy, surface tension and contact angles were performed to investigate the properties of wetting agents. Adsorption of wetting agents changes wetting behavior of polymer resins. Flotability of polymer materials modulated by wetting agents was studied, and wetting agents change significantly flotability of polymer materials. The flotability decreases with increasing the concentration of wetting agents, and the wetting ability is lignin sulfonate (LS)>tannic acid (TA)>methylcellulose (MC)>triton X-100 (TX-100) (from strong to weak). There is significant difference in the flotability between polymer resins and plastics due to the presence of additives in the plastics. Flotation separation of two-component and multicomponent plastics was conducted based on the flotability modulated by wetting agents. The two-component mixtures can be efficiently separated using proper wetting agent through simple flotation flowsheet. The multicomponent plastic mixtures can be separated efficiently through multi-stage flotation using TA and LS as wetting agents, and the purity of separated component was above 94%, and the recovery was more than 93%.


Assuntos
Teste de Materiais/métodos , Polímeros/química , Eliminação de Resíduos/métodos , Resíduos/análise , Agentes Molhantes/química , Adsorção , Lignina , Metilcelulose , Octoxinol , Taninos
5.
Int J Pharm ; 404(1-2): 148-58, 2011 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-21094233

RESUMO

Spray-freeze-drying (SFD) of oleanolic acid (OA), a BCS Class IV compound, with polyvinylpyrrolidone-40 (PVP-40) as stabilizer and sodium caprate (SC) as wetting agent and penetration enhancer produced kinetically stable, amorphous solid dispersion systems with superior in vitro dissolution performance, and better and more uniform absorption in comparison with commercial OA tablet. Relative to the SC-free formulation, the presence of SC in the formulation resulted in a significant increase in the in vivo absorption rate of OA while exerting no apparent impact on the extent of OA absorption. The SFD-processed OA formulations and commercial OA tablet generally exhibited large inter-animal variability in oral bioavailability, consistent with the absorption characteristics of BCS Class IV compounds. Inclusion of SC coupled with the replacement of OA with its sodium salt (OA-Na) in the formulation was shown to substantially decrease the observed absorption variability. Above results suggested that increases in both dissolution rate and intestinal permeability of BCS Class IV compounds, as exemplified by the SFD-processed dispersion system containing both OA-Na and SC, are critical to reducing the large inter-individual absorption variability commonly observed with this class of drugs.


Assuntos
Ácidos Decanoicos/química , Excipientes/química , Liofilização , Ácido Oleanólico/administração & dosagem , Povidona/química , Tecnologia Farmacêutica/métodos , Agentes Molhantes/química , Administração Oral , Aerossóis , Animais , Disponibilidade Biológica , Células CACO-2 , Química Farmacêutica , Formas de Dosagem , Composição de Medicamentos , Estabilidade de Medicamentos , Humanos , Absorção Intestinal , Masculino , Ácido Oleanólico/sangue , Ácido Oleanólico/química , Ácido Oleanólico/farmacocinética , Permeabilidade , Ratos , Ratos Sprague-Dawley , Solubilidade , Propriedades de Superfície
6.
Waste Manag ; 28(3): 475-83, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17493796

RESUMO

The aim of this research was to separate the different plastics of a mixed post-consumer plastic waste by the combination of a three-stage sink-float method and selective flotation. By using the three-stage sink-float method, six mixed-plastic wastes, belonging to the 0.3-0.5 cm size class and including high density polyethylene (HDPE), polypropylene (PP), polyvinylchloride (PVC), polystyrene (PS), polyethylene terephthalate (PET) and acrylonitrile-butadiene-styrene copolymers (ABS) were separated into two groups, i.e., a low density plastic group (HDPE and PP) and a high density plastic group (PET, PVC, PS and ABS) by tap water. Plastic whose density is less than that of the medium solution floats to the surface, while the one whose density is greater than that of the medium solution sinks to the bottom. The experimental results elucidated that complete separation of HDPE from PP was achieved by the three-stage sink-float method with 50% v/v ethyl alcohol. To succeed in the separation of a PS/ABS mixture from a PET/PVC mixture by the three-stage sink-float method, a 30% w/v calcium chloride solution was employed. To further separate post-consumer PET/PVC and PS/ABS based on plastic type, selective flotation was carried out. In order to succeed in selective flotation separation, it is necessary to render hydrophilic the surface of one or more species while the others are kept in a hydrophobic state. In flotation studies, the effects of wetting agent, frother, pH of solution and electrolyte on separation were determined. The selective flotation results showed that when using 500 mg l(-1) calcium lignosulfonate, 0.01 ppm MIBC, and 0.1 mg l(-1) CaCl2 at pH 11, PET could be separated from PVC. To separate ABS from PS, 200 mg l(-1) calcium lignosulfonate and 0.1 mg l(-1) CaCl2 at pH 7 were used as a flotation solution. Wettability of plastic increases when adding CaCl2 and corresponds to a decrease in its contact angles and to a reduction in the recovery of plastic in the floated product.


Assuntos
Conservação dos Recursos Naturais/métodos , Plásticos/química , Eliminação de Resíduos/métodos , Eletrólitos/química , Utensílios Domésticos , Concentração de Íons de Hidrogênio , Lignina/análogos & derivados , Lignina/química , Resíduos , Agentes Molhantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA