Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pept Sci ; 30(6): e3570, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38317283

RESUMO

Chemical pesticides remain the predominant method for pest management in numerous countries. Given the current landscape of agriculture, the development of biopesticides has become increasingly crucial. The strategy empowers farmers to efficiently manage pests and diseases, while prioritizing minimal adverse effects on the environment and human health, hence fostering sustainable management. In recent years, there has been a growing interest and optimism surrounding the utilization of peptide biopesticides for crop protection. These sustainable and environmentally friendly substances have been recognized as viable alternatives to synthetic pesticides due to their outstanding environmental compatibility and efficacy. Numerous studies have been conducted to synthesize and identify peptides that exhibit activity against significant plant pathogens. One of the peptide classes is cyclotides, which are cyclic cysteine-rich peptides renowned for their wide range of sequences and functions. In this review, we conducted a comprehensive analysis of cyclotides, focusing on their structural attributes, developmental history, significant biological functions in crop protection, techniques for identification and investigation, and the application of biotechnology to enhance cyclotide synthesis. The objective is to emphasize the considerable potential of cyclotides as the next generation of plant protection agents on the global scale.


Assuntos
Agricultura , Ciclotídeos , Ciclotídeos/química , Agricultura/métodos , Agentes de Controle Biológico/química , Praguicidas/química , Humanos
2.
Pest Manag Sci ; 79(7): 2433-2442, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36811278

RESUMO

BACKGROUND: Synthetic insecticides are the most useful tools for preventing losses caused by insect pest's infestation during storage. However, the use of pesticides should be limited because of the development of insect resistance and their adverse effects on human health and environment. In the last decades, natural insecticidal products, principally essential oils (EOs) and their active components, exhibited potential alternatives for pest control. Nevertheless, due to their volatile nature, encapsulation could be considered as the most appropriate solution. Therefore, this work aims to investigate the fumigant ability of inclusion complexes of Rosmarinus officinalis EO and its major constituents (1,8-cineole, α-pinene and camphor) with 2-hydroxypropyl-beta-cyclodextrin (HP-ß-CD) against Ectomyelois ceratoniae (Pyralidae) larvae. RESULTS: The encapsulation within HP-ß-CD reduced greatly the release rate of the encapsulated molecules. Therefore, free compounds were more toxic than those encapsulated. Moreover, results revealed that encapsulated volatiles exhibited interesting insecticidal toxicity towards E. ceratoniae larvae. In fact, after 30 days mortality rates were 53.85, 94.23, 3.85 and 42.31% for α-pinene, 1,8-cineole, camphor and EO, respectively, encapsulated within HP-ß-CD. In addition, results showed also that 1,8-cineole free and encapsulated was more effective toward E. ceratoniae larvae than the other tested volatiles. Additionally, the HP-ß-CD/volatiles complexes exhibited best persistence compared to the volatiles components. The half-life of the encapsulated α-pinene, 1,8-cineole, camphor and EO (7.83, 8.75, 6.87 and 11.20 days) was significantly longer than that of the free ones (3.46, 5.02, 3.38 and 5.58 days). CONCLUSION: These results sustain the utility of R. officinalis EO and its main components encapsulated in CDs as treatment to stored-date commodities. © 2023 Society of Chemical Industry.


Assuntos
Agentes de Controle Biológico , Ciclodextrinas , Inseticidas , Mariposas , Óleos Voláteis , Rosmarinus , Animais , Humanos , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Cânfora/farmacologia , Eucaliptol , Inseticidas/farmacologia , Larva , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Agentes de Controle Biológico/química , Agentes de Controle Biológico/farmacologia
3.
J Appl Microbiol ; 131(3): 1431-1439, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33524179

RESUMO

AIMS: In this study, volatile compounds released from mycelia of some aromatic mushrooms were investigated for their inhibitory activity against plant-pathogenic bacteria and fungi. METHODS AND RESULTS: A screening revealed that volatile compounds from mycelia of Porostereum spadiceum remarkably inhibited the colony formation of plant-pathogenic bacteria, including Clavibacter michiganensis subsp. michiganensis and Ralstonia solanacearum while also inhibiting the conidial germination of plant-pathogenic fungi including Alternaria brassicicola and Colletotrichum orbiculare. The volatile compounds were isolated from the culture filtrate of P. spadiceum, and 3,4-dichloro-4-methoxybenzaldehyde (DCMB) was identified as a major compound. DCMB significantly inhibited bacterial colonization at 10 µg ml-1 and fungal conidial germination at 0·1-1 µg ml-1 as a vapour. CONCLUSIONS: This is the first report on the production of the volatile compound DCMB by P. spadiceum and on the antimicrobial activity of DCMB against plant-pathogenic bacteria and fungi at low concentrations. It may be possible to use the compound as an agent for protecting crops from bacterial and fungal diseases during cultivation and storage. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides an understanding of antimicrobial activity of the mushroom volatile compound that may be useful as a novel biological control agent for protecting various plant diseases.


Assuntos
Anti-Infecciosos , Benzaldeídos/farmacologia , Polyporales/química , Compostos Orgânicos Voláteis/farmacologia , Alternaria/patogenicidade , Anti-Infecciosos/farmacologia , Bactérias/patogenicidade , Agentes de Controle Biológico/química , Colletotrichum/patogenicidade , Doenças das Plantas/microbiologia
4.
Int J Mol Sci ; 21(23)2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33291499

RESUMO

Soybean is an important crop as both human food and animal feed. However, the yield of soybean is heavily impacted by biotic stresses including insect attack and pathogen infection. Insect bites usually make the plants vulnerable to pathogen infection, which causes diseases. Fungi, oomycetes, bacteria, viruses, and nematodes are major soybean pathogens. The infection by pathogens and the defenses mounted by soybean are an interactive and dynamic process. Using fungi, oomycetes, and bacteria as examples, we will discuss the recognition of pathogens by soybean at the molecular level. In this review, we will discuss both the secretory peptides for soybean plant infection and those for pathogen inhibition. Pathogenic secretory peptides and peptides secreted by soybean and its associated microbes will be included. We will also explore the possible use of externally applied antimicrobial peptides identical to those secreted by soybean and its associated microbes as biopesticides.


Assuntos
Produtos Biológicos/farmacologia , Interações Hospedeiro-Patógeno , Peptídeos/farmacologia , Monofosfato de Adenosina/biossíntese , Animais , Antibiose , Bactérias , Agentes de Controle Biológico/química , Agentes de Controle Biológico/farmacologia , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Resistência à Doença , Endófitos , Fungos/fisiologia , Humanos , Imunidade Inata , Oomicetos , Peptídeos/química , Peptídeos/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Processamento de Proteína Pós-Traducional , Glycine max/química , Glycine max/imunologia , Virulência , Vírus
5.
Molecules ; 25(12)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599693

RESUMO

Marrubium vulgare is a plant with high bioactive potential. It contains marrubiin, a labdane diterpene that is characteristic for this genus, as well as a complex mixture of phenolic compounds. According to numerous studies, M. vulgare acts as a good antioxidant agent, and due to this, it could potentially be useful in treatments of cancer, diabetes mellitus, and liver diseases. In addition, its anti-inflammatory, wound-healing, antihypertensive, hypolipidemic, and sedative potential are discussed. Apart from that, its antimicrobial activity, especially against Gram+ bacteria, fungi, herpes simplex virus, and parasites such as Toxoplasma gondii, Trichomonas vaginalis, and Plasmodium berghei-berghei was recorded. Additionally, it could be used as a chicken lice repellent, herbicide, and natural insecticide against mosquito larvae and natural molluscicide. In veterinary medicine, M. vulgare can be used as an anthelmintic against the eggs and larvae of bovine strongyles parasites, and as an antibiotic against bovine mastitis caused by resistant bacterial strains. Due to the mentioned benefits, there is a tendency for the cultivation of M. vulgare in order to ensure high-quality raw material, but more firm scientific evidence and well-designed clinical trials are necessary for the well-established use of M. vulgare herb and its preparations.


Assuntos
Marrubium/química , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Animais , Anti-Helmínticos/química , Anti-Helmínticos/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Agentes de Controle Biológico/química , Agentes de Controle Biológico/farmacologia , Bovinos , Doenças dos Bovinos/tratamento farmacológico , Doenças dos Bovinos/parasitologia , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Marrubium/fisiologia , Plantas Medicinais/química , Substâncias Protetoras/química , Substâncias Protetoras/farmacologia , Cicatrização/efeitos dos fármacos
6.
Ecotoxicol Environ Saf ; 201: 110812, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32512419

RESUMO

Pesticides are widely used chemical compounds in agriculture to destroy insects, pests and weeds. In modern era, they form an indispensable part of agricultural and health practices. Globally, nearly 3 billion kg of pesticides are used every year with a budget of ~40 billion USD. This extensive usage has increased the crop yield as well as led to significant reduction in harvest losses and thereby, enhanced food availability. On the other hand, indiscriminate usage of these chemicals has led to several environmental implications and caused adverse effects on human health. Epidemiological evidences have revealed the harmful effects of pesticides exposure on various organs including liver, brain, lungs and colon. Recent investigations have shown that pesticides can also lead to fatal consequences such as cancer among individuals. These chemicals enter ecosystem, thus hampering the sensitive environmental equilibrium through bio-accumulation. Due to their non-biodegradable nature, they can persist in nature for years and are regarded as potent biohazard. Worldwide, very few surveillance methods have been considered, which can bring awareness among the individuals, therefore the present review is an attempt to delineate consequences induced by various types of pesticide exposure on the environment. Further, the prospective of biopesticides use could facilitate the increase of crop production without compromising human health.


Assuntos
Agentes de Controle Biológico/toxicidade , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/toxicidade , Praguicidas/toxicidade , Agentes de Controle Biológico/química , Produção Agrícola/métodos , Ecossistema , Exposição Ambiental/análise , Poluentes Ambientais/química , Humanos , Praguicidas/química
7.
Molecules ; 25(12)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560197

RESUMO

The essential oil of basil (Ocimum basilicum) has significant biological activity against insect pests and can be extracted through various techniques. This work aimed to optimize and validate the extraction process of the essential oil of O. basilicum submitted to different drying temperatures of the leaves and extracted by the combination of a Clevenger method and ultrasound. The biological activity of the extracted oil under different conditions was evaluated for potential control of Sitophilus zeamais. The extraction method was optimized according to the sonication time by ultrasound (0, 8, 19, 31 and 38 min) and hydrodistillation (20, 30, 45, 60 and 70 min) and drying temperature (20, 30, 45, 60 and 70 °C). The bioactivity of the essential oil was assessed against adults of S. zeamais and the effects of each variable and its interactions on the mortality of the insects were evaluated. The best yield of essential oil was obtained with the longest sonication and hydrodistillation times and the lowest drying temperature of leaves. Higher toxicity of the essential oil against S. zeamais was obtained by the use of ultrasound for its extraction. The identification and the relative percentage of the compounds of the essential oil were performed with a gas chromatograph coupled to a mass selective detector. The performance of the method was assessed by studying selectivity, linearity, limits of detection (LOD) and quantification (LOQ), precision and accuracy. The LOD and LOQ values for linalool were 2.19 and 6.62 µg mL-1 and for estragole 2.001 and 6.063 µg mL-1, respectively. The coefficients of determination (R2) were >0.99. The average recoveries ranged between 71 and 106%, with coefficient of variation ≤6.4%.


Assuntos
Agentes de Controle Biológico , Besouros/crescimento & desenvolvimento , Ocimum basilicum/química , Óleos Voláteis , Controle Biológico de Vetores , Ondas Ultrassônicas , Animais , Agentes de Controle Biológico/química , Agentes de Controle Biológico/isolamento & purificação , Agentes de Controle Biológico/farmacologia , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Óleos Voláteis/farmacologia
8.
Antonie Van Leeuwenhoek ; 113(8): 1167-1177, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32410087

RESUMO

Plants have their own defense mechanisms such as induced systemic resistance (ISR) and systemic-acquired resistance. Bacillus spp. are familiar biocontrol agents that trigger ISR against various phytopathogens by eliciting various metabolites and producing defense enzyme in the host plant. In this study, B. paralicheniformis (strain EAL) was isolated from the medicinal plant Enicostema axillare. Butanol extract of B. paralicheniformis showed potential antagonism against Fusarium oxysporum compared to control well (sterile distilled water) A liquid chromatography mass spectrometry analysis showed 80 different compounds. Among the 80 compounds, we selected citrulline, carnitine, and indole-3-ethanol based on mass-to-charge ratio, database difference, and resolution of mass spectrum. The synthetic form of the above compounds showed biocontrol activity against F. oxysporum under in vitro condition in combination, not as individual compounds. However, the PCR amplification of 11 antimicrobial peptide genes showed that none of the genes amplified in the strain. B. paralicheniformis inoculation challenged with F. oxysporum on tomato plants enhanced production of defense enzymes such as peroxidase (POD), superoxide dismutase (SOD), phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), and proline compared to control plants (without inoculation of B. paralicheniformis) at significant level (p < 0.005). Stem of tomato plants expressed higher POD (2.2-fold), SOD (2.2-fold), PPO (1.9-fold), and PAL (1.3-fold) contents followed by the leaf and root. Elevated proline accumulation was observed in the leaf (1.8-fold) of tomato plants. Thus, results clearly showed potentiality of B. paralicheniformis (EAL) in activation of antioxidant defense enzyme against F. oxysporum-infected tomato plants and prevention of oxidative damage though hydroxyl radicals scavenging activities that suppress the occurrence of wilt diseases.


Assuntos
Bacillus/genética , Bacillus/metabolismo , Agentes de Controle Biológico/química , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/isolamento & purificação , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Bacillus/isolamento & purificação , Agentes de Controle Biológico/isolamento & purificação , Agentes de Controle Biológico/farmacologia , Carnitina/farmacologia , Catecol Oxidase , Cromatografia Líquida/métodos , Citrulina/farmacologia , Fusarium/efeitos dos fármacos , Indóis/farmacologia , Solanum lycopersicum , Peroxidase/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Doenças das Plantas/prevenção & controle , Folhas de Planta/metabolismo , Raízes de Plantas/microbiologia , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Prolina/metabolismo , Metabolismo Secundário , Superóxido Dismutase/metabolismo , Espectrometria de Massas em Tandem/métodos
9.
Int J Mol Sci ; 20(21)2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31671552

RESUMO

Ureases from different biological sources display non-ureolytic properties that contribute to plant defense, in addition to their classical enzymatic urea hydrolysis. Antifungal and entomotoxic effects were demonstrated for Jaburetox, an intrinsically disordered polypeptide derived from jack bean (Canavalia ensiformis) urease. Here we describe the properties of Soyuretox, a polypeptide derived from soybean (Glycine max) ubiquitous urease. Soyuretox was fungitoxic to Candida albicans, leading to the production of reactive oxygen species. Soyuretox further induced aggregation of Rhodnius prolixus hemocytes, indicating an interference on the insect immune response. No relevant toxicity of Soyuretox to zebrafish larvae was observed. These data suggest the presence of antifungal and entomotoxic portions of the amino acid sequences encompassing both Soyuretox and Jaburetox, despite their small sequence identity. Nuclear Magnetic Resonance (NMR) and circular dichroism (CD) spectroscopic data revealed that Soyuretox, in analogy with Jaburetox, possesses an intrinsic and largely disordered nature. Some folding is observed upon interaction of Soyuretox with sodium dodecyl sulfate (SDS) micelles, taken here as models for membranes. This observation suggests the possibility for this protein to modify its secondary structure upon interaction with the cells of the affected organisms, leading to alterations of membrane integrity. Altogether, Soyuretox can be considered a promising biopesticide for use in plant protection.


Assuntos
Agentes de Controle Biológico/farmacologia , Glycine max/enzimologia , Peptídeos/farmacologia , Urease/química , Animais , Agentes de Controle Biológico/química , Candida albicans/efeitos dos fármacos , Candida albicans/metabolismo , Dicroísmo Circular , Hemócitos/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Simulação de Dinâmica Molecular , Peptídeos/química , Proteínas de Plantas/química , Dobramento de Proteína , Espécies Reativas de Oxigênio/metabolismo , Rhodnius/efeitos dos fármacos
10.
Nat Commun ; 10(1): 4563, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594941

RESUMO

Ribosome-synthesized post-translationally modified peptides (RiPPs) represent a rapidly expanding class of natural products with various biological activities. Linear azol(in)e-containing peptides (LAPs) comprise a subclass of RiPPs that display outstanding diversity of mechanisms of action while sharing common structural features. Here, we report the discovery of a new LAP biosynthetic gene cluster in the genome of Rhizobium Pop5, which encodes the precursor peptide and modification machinery of phazolicin (PHZ) - an extensively modified peptide exhibiting narrow-spectrum antibacterial activity against some symbiotic bacteria of leguminous plants. The cryo-EM structure of the Escherichia coli 70S-PHZ complex reveals that the drug interacts with the 23S rRNA and uL4/uL22 proteins and obstructs ribosomal exit tunnel in a way that is distinct from other compounds. We show that the uL4 loop sequence determines the species-specificity of antibiotic action. PHZ expands the known diversity of LAPs and may be used in the future as biocontrol agent for agricultural needs.


Assuntos
Antibacterianos/farmacologia , Azóis/farmacologia , Agentes de Controle Biológico/farmacologia , Peptídeos/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Ribossomos/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/metabolismo , Azóis/química , Azóis/metabolismo , Agentes de Controle Biológico/química , Agentes de Controle Biológico/metabolismo , Microscopia Crioeletrônica , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , Testes de Sensibilidade Microbiana , Família Multigênica , Biossíntese Peptídica/genética , Peptídeos/química , Peptídeos/metabolismo , Phaseolus/microbiologia , RNA Ribossômico 23S/metabolismo , RNA Ribossômico 23S/ultraestrutura , Rhizobium/genética , Rhizobium/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Especificidade da Espécie , Simbiose
11.
Molecules ; 24(16)2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31443325

RESUMO

Propolis is a natural mixture produced by bees from plant resin substances. This study focuses on the general characteristics of five samples of Polish extract propolis originating from agricultural areas. Chemical composition with high performance liquid chromatography‒diode array detector method, total content of flavonoids and polyphenols, and antioxidative activity were determined in the ethanol extracts of propolis (EEP) samples. Minimum inhibitory concentration (MIC), minimum bactericidal/fungicidal concentration (MBC/MFC) and time-kill curves were studied for foodborne pathogens and food spoilage microorganisms. In EEPs the predominant flavonoid compounds were pinocembrin, chrysin, pinobanksin, apigenin, and kaempferol and the predominant phenolic acids were p-coumaric acid, ferulic acid, and caffeic acid. A strong antioxidative action of propolis in vitro was observed (IC50 for DPPH radical was at the level of 0.9-2.1 µg/mL). EEPs had MIC values for bacteria in the range of 1-16 mg/mL, whereas MIC for fungi ranged from 2 to 32 mg/mL. Extract of propolis originating from southern Poland was distinguished by higher content of bioactive components, and stronger antioxidative and antimicrobial activity than EPPs from the remaining areas of Poland. The results indicate the possibility of applying ethanol extracts from Polish propolis to protect food against microbiological spoilage.


Assuntos
Anti-Infecciosos/farmacologia , Agentes de Controle Biológico/farmacologia , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/prevenção & controle , Própole/química , Anti-Infecciosos/química , Antifúngicos/química , Antifúngicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Agentes de Controle Biológico/química , Cromatografia Líquida de Alta Pressão , Etanol/química , Etanol/farmacologia , Testes de Sensibilidade Microbiana , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polônia
12.
Pestic Biochem Physiol ; 157: 108-121, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31153458

RESUMO

Karanjin, a furanoflavonol from Pongamia pinnata L is used in agricultural practices for its pesticidal, insecticidal and acaricidal activities. It is commercially available as a bio-pesticide targeting a wide variety of pests. The present study was intended to evaluate the biochemical interactions of karanjin with bovine serum albumin (BSA) and study its toxicological effects on mammalian and bacterial cell lines. Karanjin bound to BSA at a single site with a dissociation constant of 19.7 µM. Evaluation of BSA-karanjin interactions at three different temperatures indicated the involvement of static mode of quenching. Binding experiments in the presence of warfarin and computational docking analysis indicated that karanjin bound closer to the warfarin binding site located in the Subdomain IIA of BSA. Using Förster resonance energy transfer analysis the distance between TRP 213 of BSA and karanjin was found to be 20 Å. Collective results from synchronous fluorescence spectra analysis, differential scanning calorimetry, and circular dichroism analysis indicated that binding of karanjin induced conformational changes in the secondary structure of BSA. Karanjin exhibited low toxicity against human cervical cancer cells and normal mouse fibroblast L929 cells and modestly inhibited the growth of B. subtilis and E. coli cells. The data presented in this study provides insights for understanding the binding interactions of karanjin with BSA and its possible toxicological effects on mammalian cell lines and bacteria.


Assuntos
Benzopiranos/metabolismo , Benzopiranos/toxicidade , Óleos de Plantas/química , Óleos de Plantas/toxicidade , Pongamia/química , Sementes/química , Animais , Sítios de Ligação , Agentes de Controle Biológico/química , Agentes de Controle Biológico/toxicidade , Bovinos , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência , Humanos , Camundongos , Ligação Proteica , Soroalbumina Bovina/metabolismo
13.
Arch Microbiol ; 201(6): 713-722, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30868174

RESUMO

The genus Pantoea contains a broad range of plant-associated bacteria, including some economically important plant pathogens as well as some beneficial members effective as biological control agents of plant pathogens. The most well-characterized representatives of biological control agents from this genus generally produce one or more antimicrobial compounds adding to biocontrol efficacy. Some Pantoea species evaluated as biocontrol agents for fire blight disease of apple and pear produce a histidine-reversible antibiotic. Three commonly studied histidine-reversible antibiotics produced by Pantoea spp. are herbicolin O, MccEh252, and pantocin A. Pantocin A is a novel ribosomally encoded and post-translationally modified peptide natural product. Here, we review the current knowledge on the chemistry, genetics, biosynthesis, and incidence and environmental relevance of pantocin A and related histidine-reversible antibiotics produced by Pantoea.


Assuntos
Agentes de Controle Biológico/metabolismo , Glicopeptídeos/metabolismo , Pantoea/metabolismo , Peptídeos/metabolismo , Doenças das Plantas/microbiologia , Agentes de Controle Biológico/química , Agentes de Controle Biológico/farmacologia , Glicopeptídeos/química , Glicopeptídeos/farmacologia , Pantoea/química , Pantoea/genética , Peptídeos/química , Peptídeos/farmacologia
14.
Molecules ; 24(6)2019 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-30884857

RESUMO

Bacillus velezensis is an aerobic, gram-positive, endospore-forming bacterium that promotes plant growth. Numerous strains of this species have been reported to suppress the growth of microbial pathogens, including bacteria, fungi, and nematodes. Based on recent phylogenetic analysis, several Bacillus species have been reclassified as B. velezensis. However, this information has yet to be integrated into a well-organized resource. Genomic analysis has revealed that B. velezensis possesses strain-specific clusters of genes related to the biosynthesis of secondary metabolites, which play significant roles in both pathogen suppression and plant growth promotion. More specifically, B. velezensis exhibits a high genetic capacity for synthesizing cyclic lipopeptides (i.e., surfactin, bacillomycin-D, fengycin, and bacillibactin) and polyketides (i.e., macrolactin, bacillaene, and difficidin). Secondary metabolites produced by B. velezensis can also trigger induced systemic resistance in plants, a process by which plants defend themselves against recurrent attacks by virulent microorganisms. This is the first study to integrate previously published information about the Bacillus species, newly reclassified as B. velezensis, and their beneficial metabolites (i.e., siderophore, bacteriocins, and volatile organic compounds).


Assuntos
Bacillus/metabolismo , Genoma Bacteriano/genética , Lipopeptídeos/biossíntese , Desenvolvimento Vegetal/genética , Peptídeos Catiônicos Antimicrobianos , Bacillus/genética , Agentes de Controle Biológico/química , Lipopeptídeos/química , Oligopeptídeos/biossíntese , Oligopeptídeos/química , Peptídeos/química , Peptídeos/metabolismo , Filogenia , Plantas/microbiologia
15.
Microbiol Res ; 210: 65-73, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29625661

RESUMO

Rhizome rot of turmeric caused by Pythium aphanidermatum is a major threat to turmeric-cultivating areas of India. This study intends to evaluate the performance of fluorescent pseudomonads against Rhizome rot disease and understand the resistance mechanism in Turmeric plants. Fluorescent pseudomonads were screened against Pythium aphanidermatum using dual culture. Selected strains were evaluated for the performance of growth promoting attributes and the presence of antibiotic genes through PCR analysis. Strain FP7 recorded the maximum percent inhibition of P. aphanidermatum under in vitro conditions. Strains FP7 and TPF54 both increased plant growth in turmeric plants in vitro. Strain FP7 alone contained all the evaluated antibiotic biosynthetic genes. Talc and liquid-based formulations were prepared with effective strain and tested for its biocontrol activities under both glasshouse and field conditions. Enzymatic activities of the induced defense enzymes such as PO, PPO, PAL, CAT and SOD were estimated and subjected to spectrophotometric analysis. A combination of rhizome dip and soil drench of FP7 liquid formulation treatment remarkably recorded the minimum disease incidence, higher defense enzymes, maximum plant growth and yield under glasshouse and field conditions. Application of strain FP7 increased the defense molecules, plant growth and yield in turmeric plants thereby reducing the incidence of rhizome rot disease. Moreover, this study has a potential to be adopted for sustainable and eco-friendly turmeric production.


Assuntos
Antibacterianos/biossíntese , Antibacterianos/farmacologia , Curcuma/crescimento & desenvolvimento , Curcuma/microbiologia , Resistência à Doença , Desenvolvimento Vegetal/efeitos dos fármacos , Pseudomonas fluorescens/metabolismo , Rizoma/microbiologia , Antibacterianos/química , Antifúngicos/química , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Agentes de Controle Biológico/química , Agentes de Controle Biológico/metabolismo , Agentes de Controle Biológico/farmacologia , Catalase/metabolismo , Catecol Oxidase/metabolismo , Curcuma/efeitos dos fármacos , Genes Bacterianos/genética , Índia , Peroxidase/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Pseudomonas fluorescens/genética , Pythium/efeitos dos fármacos , Pythium/patogenicidade , Rizoma/enzimologia , Microbiologia do Solo
16.
Environ Sci Pollut Res Int ; 25(11): 10218-10227, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27921244

RESUMO

Essential oils (EOs) from plants may be alternative sources of molecules toxic against mosquito vectors of public health relevance. Most of researches in this field focused on EOs as larvicides or ovicides, while limited efforts focused on the exploitation of EOs as oviposition deterrents. In the present study, the larvicidal and oviposition deterrent activity of Syzygium lanceolatum leaf EO was evaluated against six mosquito species, Anopheles stephensi, An. subpictus, Aedes aegypti, Ae. albopictus, Culex quinquefasciatus, and Cx. tritaeniorhynchus. The chemical composition of the S. lanceolatum EO was analyzed by GC-MS analysis, showing the presence of phenyl propanal, ß-caryophyllene, α-humulene, and caryophyllene oxide as major constituents. S. lanceolatum EO showed high acute toxicity on An. stephensi (LC50 = 51.20 µg/ml), Ae. aegypti (LC50 = 55.11 µg/ml), Cx. quinquefasciatus (LC50 = 60.01 µg/ml), An. subpictus (LC50 = 61.34 µg/ml), Ae. albopictus (LC50 = 66.71 µg/ml), and Cx. tritaeniorhynchus (LC50 = 72.24 µg/ml) larvae. Furthermore, the EO was effective as oviposition deterrent against the six tested mosquito species, with OAI on An. stephensi, An. subpictus, Ae. aegypti, Ae. albopictus, Cx. quinquefasciatus, and Cx. tritaeniorhynchus reaching -0.83, -0.81, -0.84, -0.83, -0.84, and -0.86, respectively. The toxicity of S. lanceolatum EO against several biological control agents of mosquitoes, including water bugs (Anisops bouvieri and Diplonychus indicus) and fishes (Gambusia affinis and Poecilia reticulata), was extremely low, with LC50 ranging between 4148 and 15,762 µg/ml. Overall, our results pointed out the promising potential of the S. lanceolatum leaf EO as a source of environmental-friendly oviposition deterrents and larvicides effective against a wide number of mosquito species of importance for parasitology.


Assuntos
Agentes de Controle Biológico/química , Inseticidas/análise , Larva/efeitos dos fármacos , Óleos Voláteis/química , Folhas de Planta/química , Sesquiterpenos/química , Aedes , Animais , Anopheles , Agentes de Controle Biológico/farmacologia , Culex , Feminino , Inseticidas/química , Sesquiterpenos Monocíclicos , Mosquitos Vetores , Myrtaceae , Oviposição , Sesquiterpenos Policíclicos , Syzygium
17.
Sci Rep ; 7(1): 2386, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28539590

RESUMO

Cry1A insecticidal toxins bind sequentially to different larval gut proteins facilitating oligomerization, membrane insertion and pore formation. Cry1Ac interaction with cadherin triggers oligomerization. However, a mutation in an ABC transporter gene (ABCC2) is linked to Cry1Ac resistance in Plutella xylostella. Cry1AcMod, engineered to lack helix α-1, was able to form oligomers without cadherinbinding and effectively countered Cry1Ac resistance linked to ABCC2. Here we analyzed Cry1Ac and Cry1AcMod binding and oligomerization by western blots using brush border membrane vesicles (BBMV) from a strain of P. xylostella susceptible to Cry1Ac (Geneva 88) and a strain with resistance to Cry1Ac (NO-QAGE) linked to an ABCC2 mutation. Resistance correlated with lack of specific binding and reduced oligomerization of Cry1Ac in BBMV from NO-QAGE. In contrast, Cry1AcMod bound specifically and still formed oligomers in BBMV from both strains. We compared association of pre-formed Cry1Ac oligomer, obtained by incubating Cry1Ac toxin with a Manduca sexta cadherin fragment, with BBMV from both strains. Our results show that pre-formed oligomers associate more efficiently with BBMV from Geneva 88 than with BBMV from NO-QAGE, indicating that the ABCC2 mutation also affects the association of Cry1Ac oligomer with the membrane. These data indicate, for the first time, that ABCC2 facilitates Cry1Ac oligomerization and oligomer membrane insertion in P. xylostella.


Assuntos
Proteínas de Bactérias/química , Agentes de Controle Biológico/química , Endotoxinas/química , Proteínas Hemolisinas/química , Proteínas de Insetos/química , Inseticidas/química , Larva/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Agentes de Controle Biológico/metabolismo , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Micropartículas Derivadas de Células/química , Micropartículas Derivadas de Células/metabolismo , Endotoxinas/genética , Endotoxinas/metabolismo , Endotoxinas/farmacologia , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Resistência a Inseticidas , Inseticidas/metabolismo , Larva/química , Larva/metabolismo , Manduca/efeitos dos fármacos , Microvilosidades/química , Microvilosidades/efeitos dos fármacos , Microvilosidades/metabolismo , Mariposas/efeitos dos fármacos , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Mutação , Ligação Proteica , Engenharia de Proteínas , Isoformas de Proteínas , Multimerização Proteica
18.
Microb Pathog ; 107: 321-326, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28389346

RESUMO

To investigate biological control methods against post-harvest phytopathogenic fungi in apples, tests on the antifungal activity of essential oil of Melissa officinalis were carried out. The essential oil, obtained by hydrodistillation, was analyzed by gas chromatography coupled with mass spectrometry (GC-MS). Analysis of the essential oil was able to detect 88.7% of the components. The main components are P-mentha-1,2,3-triol (13.1%), P-menth-3-en-8-ol (8.8%), pulegone (8.8%), piperitynone oxide (8.4%) and 2-piperitone oxide (7.3%). The determination of the antifungal activity of the essential oil of M. officinalisis carried out in vitro using the technique of poison food (PF) and the volatile activity test (VA). To carry out these two tests, three phytopathogens that cause the deterioration of apples have been selected: Botrytis cinerea, Penicillium expansum and Rhizopus stolonifer. The overall results of this study suggest that M. officinalis essential oil has potential as a bio-antifungal preservative for the control of post-harvest diseases of apple.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Fungos/efeitos dos fármacos , Malus/microbiologia , Melissa/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Agentes de Controle Biológico/química , Agentes de Controle Biológico/farmacologia , Botrytis/efeitos dos fármacos , Botrytis/patogenicidade , Conservantes de Alimentos , Armazenamento de Alimentos , Frutas/microbiologia , Fungos/crescimento & desenvolvimento , Fungos/patogenicidade , Fungicidas Industriais , Cromatografia Gasosa-Espectrometria de Massas/métodos , Testes de Sensibilidade Microbiana , Marrocos , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Penicillium/efeitos dos fármacos , Penicillium/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Rhizopus/efeitos dos fármacos , Rhizopus/patogenicidade
19.
Ann Agric Environ Med ; 23(2): 206-22, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27294621

RESUMO

Pantoea agglomerans, a gammaproteobacterium of plant origin, possesses many beneficial traits that could be used for the prevention and/or treatment of human and animal diseases, combating plant pathogens, promotion of plant growth and bioremediation of the environment. It produces a number of antibiotics (herbicolin, pantocins, microcin, agglomerins, andrimid, phenazine, among others) which could be used for combating plant, animal and human pathogens or for food preservation. Japanese researchers have demonstrated that the low-molecular-mass lipopolysaccharide of P. agglomerans isolated by them and described as 'Immunopotentiator from Pantoea agglomerans 1 (IP-PA1)' reveals the extremely wide spectrum of healing properties, mainly due to its ability for the maintenance of homeostasis by macrophage activation. IP-PA1 was proved to be effective in the prevention and treatment of a broad range of human and animal disorders, such as tumours, hyperlipidaemia, diabetes, ulcer, various infectious diseases, atopic allergy and stress-induced immunosuppression; it also showed a strong analgesic effect. It is important that most of these effects could be achieved by the safe oral administration of IP-PA1. Taking into account that P. agglomerans occurs commonly as a symbiont of many species of insects, including mosquitoes transmitting the Plasmodium parasites causing malaria, successful attempts were made to apply the strategy of paratransgenesis, in which bacterial symbionts are genetically engineered to express and secrete anti-Plasmodium effector proteins. This strategy shows prospects for a successful eradication of malaria, a deadly disease killing annually over one million people, as well as of other vector-borne diseases of humans, animals and plants. Pantoea agglomerans has been identified as an antagonist of many plant pathogens belonging to bacteria and fungi, as a result of antibiotic production, competition mechanisms or induction of plant resistance. Its use as a biocontrol agent permits the decrease of pesticide doses, being a healthy and environmental-friendly procedure. The application of the preparations of this bacterium efficiently protects the stored pome, stone and citrus fruits against invasion of moulds. P. agglomerans strains associated with both rhizosphere and plant tissues (as endophytes) efficiently promote the growth of many plants, including rice and wheat, which are the staple food for the majority of mankind. The promotion mechanisms are diverse and include fixation of atmospheric nitrogen, production of phytohormones, as well as degradation of phytate and phosphate solubilizing which makes the soil phosphorus available for plants. Accordingly, P. agglomerans is regarded as an ideal candidate for an environmental-friendly bioinoculant replacing chemical fertilizers. It has been documented that the Pantoea strains show biodegradation activity on various chemical pollutants of soil and water, including petroleum hydrocarbons and toxic metals. P. agglomerans prevents the penetration of harmful industrial contaminants into deeper parts of soil by biofilm formation, and has an ability to produce hydrogen from waste. Thus, this bacterium appears as a valuable bioremediator which, in some cases, may be acquired as a cheap form of energy. In conclusion, in spite of the proven pathologic role of P. agglomerans in causing occupational diseases of allergic and/or immunotoxic background and accidental infections, the beneficial traits of this species, and of related species of Pantoea genus, are of great value for potential use in many areas of biotechnology. Hence, any restrictions on the use of these organisms and their products should be declined, providing safety precautions at work with the Pantoea biopreparations are maintained.


Assuntos
Adjuvantes Imunológicos/química , Agentes de Controle Biológico/química , Controle de Doenças Transmissíveis/métodos , Recuperação e Remediação Ambiental/métodos , Fertilizantes/análise , Pantoea/química , Agentes de Controle Biológico/farmacologia , Pantoea/fisiologia
20.
Appl Environ Microbiol ; 81(17): 5889-99, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26092465

RESUMO

Some filamentous fungi in Aspergillus section Flavi produce carcinogenic secondary compounds called aflatoxins. Aflatoxin contamination is routinely managed in commercial agriculture with strains of Aspergillus flavus that do not produce aflatoxins. These non-aflatoxin-producing strains competitively exclude aflatoxin producers and reshape fungal communities so that strains with the aflatoxin-producing phenotype are less frequent. This study evaluated the genetic variation within naturally occurring atoxigenic A. flavus strains from the endemic vegetative compatibility group (VCG) YV36. AF36 is a strain of VCG YV36 and was the first fungus used in agriculture for aflatoxin management. Genetic analyses based on mating-type loci, 21 microsatellite loci, and a single nucleotide polymorphism (SNP) in the aflC gene were applied to a set of 237 YV36 isolates collected from 1990 through 2005 from desert legumes and untreated fields and from fields previously treated with AF36 across the southern United States. One haplotype dominated across time and space. No recombination with strains belonging to VCGs other than YV36 was detected. All YV36 isolates carried the SNP in aflC that prevents aflatoxin biosynthesis and the mat1-2 idiomorph at the mating-type locus. These results suggest that VCG YV36 has a clonal population structure maintained across both time and space. These results demonstrate the genetic stability of atoxigenic strains belonging to a broadly distributed endemic VCG in both untreated populations and populations where the short-term frequency of VCG YV36 has increased due to applications of a strain used to competitively exclude aflatoxin producers. This work supports the hypothesis that strains of this VCG are not involved in routine genetic exchange with aflatoxin-producing strains.


Assuntos
Aspergillus flavus/genética , Produtos Agrícolas/microbiologia , Variação Genética , Aflatoxinas/biossíntese , Aspergillus/genética , Aspergillus/metabolismo , Aspergillus flavus/classificação , Aspergillus flavus/metabolismo , Agentes de Controle Biológico/química , Proteínas Fúngicas/genética , Polimorfismo de Nucleotídeo Único , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA