Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 288
Filtrar
1.
Biochemistry ; 63(14): 1730-1737, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38915291

RESUMO

The cockroach allergen Bla g 1 encloses an exceptionally large hydrophobic cavity, which allows it to bind and deliver unsaturated fatty acid ligands. Bla g 1-mediated delivery of naturally occurring (nMix) ligands has been shown to destabilize lipid membranes, contributing to its digestive/antiviral functions within the source organism. However, the consequences of this activity on Bla g 1 allergenicity following human exposure remain unknown. In this work, we show that Bla g 1-mediated membrane disruption can induce a proinflammatory immune response in mammalian cells via two complementary pathways. At high concentrations, the cytotoxic activity of Bla g 1 induces the release of proinflammatory cytosolic contents including damage-associated molecular patterns (DAMPs) such as heat-shock Protein-70 (HSP70) and the cytokine interleukin-1 (IL-1ß). Sublytic concentrations of Bla g 1 enhanced the ability of phospholipase A2 (PLA2) to extract and hydrolyze phospholipid substrates from cellular membranes, stimulating the production of free polyunsaturated fatty acids (PUFAs) and various downstream inflammatory lipid mediators. Both of these effects are dependent on the presence of Bla g 1's natural fatty-acid (nMix) ligands with CC50 values corresponding to the concentrations required for membrane destabilization reported in previous studies. Taken together, these results suggest that mechanisms through which Bla g 1-mediated lipid delivery and membrane destabilization could directly contribute to cockroach allergic sensitization.


Assuntos
Alérgenos , Membrana Celular , Baratas , Animais , Humanos , Membrana Celular/metabolismo , Baratas/imunologia , Baratas/metabolismo , Alérgenos/metabolismo , Alérgenos/imunologia , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Fosfolipases A2/metabolismo , Fosfolipases A2/imunologia , Proteínas de Choque Térmico HSP70/metabolismo , Ácidos Graxos Insaturados/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química
2.
Sci Rep ; 14(1): 8255, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589549

RESUMO

Antigen-specific priming of T cells results in the activation of T cells that exert effector functions by interaction of their T-cell receptor (TCR) with the corresponding self-MHC molecule presenting a peptide on the surface of a target cell. Such antigen-specific T cells potentially can also interact with peptide-MHC complexes that contain peptides from unrelated antigens, a phenomenon that often is referred to as heterologous immunity. For example, some individuals that were pre-immunized against an allergen, could subsequently mount better anti-viral T-cell responses than non-allergic individuals. So far only few peptide pairs that experimentally have been shown to provoke heterologous immunity were  identified, and available prediction tools that can identify potential candidates are imprecise. We developed the MORITS algorithm to rapidly screen large lists of peptides for sequence similarities, while giving enhanced consideration to peptide residues presented by MHC that are particularly relevant for TCR interactions. In combination with established peptide-MHC binding prediction tools, the MORITS algorithm revealed peptide similarities between the SARS-CoV-2 proteome and certain allergens. The method outperformed previously published workflows and may help to identify novel pairs of peptides that mediate heterologous immune responses.


Assuntos
Peptídeos , Receptores de Antígenos de Linfócitos T , Humanos , Peptídeos/química , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T , Alérgenos/metabolismo
3.
Front Immunol ; 14: 1303265, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38106417

RESUMO

Background: Dermatophagoides farinae (DFA) is an important species of house dust mites (HDMs) that causes allergic diseases. Previous studies have focused on allergens with protein components to explain the allergic effect of HDMs; however, there is little knowledge on the role of microRNAs (miRNAs) in the allergic effect of HDMs. This study aimed to unravel the new mechanism of dust mite sensitization from the perspective of cross-species transport of extracellular vesicles-encapsulated miRNAs from HDMs. Methods: Small RNA (sRNA) sequencing was performed to detect miRNAs expression profiles from DFA, DFA-derived exosomes and DFA culture supernatants. A quantitative fluorescent real-time PCR (qPCR) assay was used to detect miRNAs expression in dust specimens. BEAS-2B cells endocytosed exosomes were modeled in vitro to detect miRNAs from DFA and the expression of related inflammatory factors. Representative dfa-miR-276-3p and dfa-novel-miR2 were transfected into BEAS-2B cells, and then differentially expressed genes (DEGs) were analyzed by RNA sequencing. Protein-protein interaction (PPI) network analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) terms enrichment analyses were performed on the first 300 nodes of DEGs. Results: sRNA sequencing identified 42 conserved miRNAs and 66 novel miRNAs in DFA, DFA-derived exosomes, and DFA culture supernatants. A homology analysis was performed on the top 18 conserved miRNAs with high expression levels. The presence of dust mites and miRNAs from HDMs in living environment were also validated. Following uptake of DFA-derived exosomes by BEAS-2B cells, exosomes transported miRNAs from DFA to target cells and produced pro-inflammatory effects in corresponding cells. RNA sequencing identified DEGs in dfa-miR-276-3p and dfa-novel-miR2 transfected BEAS-2B cells. GO and KEGG enrichment analyses revealed the role of exosomes with cross-species transporting of DFA miRNAs in inflammatory signaling pathways, such as JAK-STAT signaling pathway, PI3K/AKT signaling pathway and IL-6-mediated signaling pathway. Conclusion: Our findings demonstrate the miRNAs expression profiles in DFA for the first time. The DFA miRNAs are delivered into living environments via exosomes, and engulfed by human bronchial epithelial cells, and cross-species regulation may contribute to inflammation-related processes.


Assuntos
Exossomos , Hipersensibilidade , MicroRNAs , Animais , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Dermatophagoides farinae/genética , Dermatophagoides farinae/metabolismo , Exossomos/genética , Exossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células Epiteliais/metabolismo , Pyroglyphidae , Inflamação/genética , Inflamação/metabolismo , Hipersensibilidade/metabolismo , Alérgenos/metabolismo , Poeira , Expressão Gênica
4.
Front Immunol ; 14: 1216580, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868982

RESUMO

Since the late 1970s, there has been an alarming increase in the incidence of asthma and its morbidity and mortality. Acute obstruction and inflammation of allergic asthmatic airways are frequently caused by inhalation of exogenous substances such as allergens cross-linking IgE receptors expressed on the surface of the human lung mast cells (HLMC). The degree of constriction of human airways produced by identical amounts of inhaled allergens may vary from day to day and even hour to hour. Endogenous factors in the human mast cell (HMC)'s microenvironment during allergen exposure may markedly modulate the degranulation response. An increase in allergic responsiveness may significantly enhance bronchoconstriction and breathlessness. This review focuses on the role that the ubiquitous endogenous purine nucleotide, extracellular adenosine 5'-triphosphate (ATP), which is a component of the damage-associated molecular patterns, plays in mast cells' physiology. ATP activates P2 purinergic cell-surface receptors (P2R) to trigger signaling cascades resulting in heightened inflammatory responses. ATP is the most potent enhancer of IgE-mediated HLMC degranulation described to date. Current knowledge of ATP as it relates to targeted receptor(s) on HMC along with most recent studies exploring HMC post-receptor activation pathways are discussed. In addition, the reviewed studies may explain why brief, minimal exposures to allergens (e.g., dust, cat, mouse, and grass) can unpredictably lead to intense clinical reactions. Furthermore, potential therapeutic approaches targeting ATP-related enhancement of allergic reactions are presented.


Assuntos
Asma , Hipersensibilidade , Receptores Purinérgicos P2 , Humanos , Animais , Camundongos , Mastócitos , Transdução de Sinais , Trifosfato de Adenosina/metabolismo , Asma/metabolismo , Pulmão , Hipersensibilidade/metabolismo , Alérgenos/metabolismo , Receptores Purinérgicos P2/metabolismo
5.
Am J Respir Cell Mol Biol ; 69(6): 649-665, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37552547

RESUMO

Asthma pathobiology includes oxidative stress that modifies cell membranes and extracellular phospholipids. Oxidized phosphatidylcholines (OxPCs) in lung lavage from allergen-challenged human participants correlate with airway hyperresponsiveness and induce bronchial narrowing in murine thin-cut lung slices. OxPCs activate many signaling pathways, but mechanisms for these responses are unclear. We hypothesize that OxPCs stimulate intracellular free Ca2+ flux to trigger airway smooth muscle contraction. Intracellular Ca2+ flux was assessed in Fura-2-loaded, cultured human airway smooth muscle cells. Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC) induced an approximately threefold increase in 20 kD myosin light chain phosphorylation. This correlated with a rapid peak in intracellular cytoplasmic Ca2+ concentration ([Ca2+]i) (143 nM) and a sustained plateau that included slow oscillations in [Ca2+]i. Sustained [Ca2+]i elevation was ablated in Ca2+-free buffer and by TRPA1 inhibition. Conversely, OxPAPC-induced peak [Ca2+]i was unaffected in Ca2+-free buffer, by TRPA1 inhibition, or by inositol 1,4,5-triphosphate receptor inhibition. Peak [Ca2+]i was ablated by pharmacologic inhibition of ryanodine receptor (RyR) Ca2+ release from the sarcoplasmic reticulum. Inhibiting the upstream RyR activator cyclic adenosine diphosphate ribose with 8-bromo-cyclic adenosine diphosphate ribose was sufficient to abolish OxPAPC-induced cytoplasmic Ca2+ flux. OxPAPC induced ∼15% bronchial narrowing in thin-cut lung slices that could be prevented by pharmacologic inhibition of either TRPA1 or RyR, which similarly inhibited OxPC-induced myosin light chain phosphorylation in cultured human airway smooth muscle cells. In summary, OxPC mediates airway narrowing by triggering TRPA1 and RyR-mediated mobilization of intracellular and extracellular Ca2+ in airway smooth muscle. These data suggest that OxPC in the airways of allergen-challenged subjects and subjects with asthma may contribute to airway hyperresponsiveness.


Assuntos
Asma , Hipersensibilidade Respiratória , Humanos , Animais , Camundongos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Miócitos de Músculo Liso/metabolismo , Cadeias Leves de Miosina/metabolismo , ADP-Ribose Cíclica/metabolismo , Asma/metabolismo , Contração Muscular/fisiologia , Hipersensibilidade Respiratória/metabolismo , Fosfatidilcolinas/metabolismo , Alérgenos/metabolismo , Cálcio/metabolismo , Canal de Cátion TRPA1/metabolismo
6.
J Allergy Clin Immunol ; 152(5): 1141-1152.e2, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37562753

RESUMO

BACKGROUND: Dendritic cells (DCs) are heterogeneous, comprising multiple subsets with unique functional specifications. Our previous work has demonstrated that the specific conventional type 2 DC subset, CSF1R+cDC2s, plays a critical role in sensing aeroallergens. OBJECTIVE: It remains to be understood how CSF1R+cDC2s recognize inhaled allergens. We sought to elucidate the transcriptomic programs and receptor-ligand interactions essential for function of this subset in allergen sensitization. METHODS: We applied single-cell RNA sequencing to mouse lung DCs. Conventional DC-selective knockout mouse models were employed, and mice were subjected to inhaled allergen sensitization with multiple readouts of asthma pathology. Under the clinical arm of this work, human lung transcriptomic data were integrated with mouse data, and bronchoalveolar lavage (BAL) specimens were collected from subjects undergoing allergen provocation, with samples assayed for C1q. RESULTS: We found that C1q is selectively enriched in lung CSF1R+cDC2s, but not in other lung cDC2 or cDC1 subsets. Depletion of C1q in conventional DCs significantly attenuates allergen sensing and features of asthma. Additionally, we found that C1q binds directly to human dust mite allergen, and the C1q receptor CD91 (LRP1) is required for lung CSF1R+cDC2s to recognize the C1q-allergen complex and induce allergic lung inflammation. Lastly, C1q is enriched in human BAL samples following subsegmental allergen challenge, and human RNA sequencing data demonstrate close homology between lung IGSF21+DCs and mouse CSF1R+cDC2s. CONCLUSIONS: C1q is secreted from the CSF1R+cDC2 subset among conventional DCs. Our data indicate that the C1q-LRP1 axis represents a candidate for translational therapeutics in the prevention and suppression of allergic lung inflammation.


Assuntos
Asma , Pneumonia , Animais , Humanos , Camundongos , Alérgenos/metabolismo , Asma/metabolismo , Complemento C1q/metabolismo , Células Dendríticas , Camundongos Knockout , Pneumonia/metabolismo , Receptores Proteína Tirosina Quinases , Receptores de Fator Estimulador de Colônias/metabolismo
7.
Biol Pharm Bull ; 46(6): 811-816, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258146

RESUMO

Mast cells (MCs) play an important role in allergies, leading to the development of MC-targeted therapies. Ephedra herb (Mao) has potent anti-allergic activity, but contains ephedrine alkaloids (EAs); therefore, its hazardous effects are taken into consideration during its clinical use. We previously reported that Mao attenuates robust MC degranulation by an allergen through high-affinity immunoglobulin E (IgE) receptor (FcεRI) internalization, in which an EA-independent mechanism was suggested to be at play. This study aimed to deepen our understanding of the potential of Mao against FcεRI internalization using two strains with different EA contents. Mao extracts were administered to bone marrow-derived MCs (BMMCs), and their cellular responses, including FcεRI internalization, were analyzed. In addition, physiological events were evaluated using a passive cutaneous anaphylactic (PCA) reaction mouse model. BMMCs mediate the production of diverse inflammatory mediators. Among these, the potent chemokine CCL2 is thought to be differentially regulated from other pro-inflammatory mediators. We found that Mao significantly induces CCL2 expression in BMMCs despite suppressing robust degranulation through FcεRI internalization. Importantly, this was a distinctly EAs-independent response. In the PCA reaction, local MC activation following allergen challenge was suppressed by Mao treatment, which strengthened the view that Mao sufficiently decreased the rapid activation of MCs and promoted CCL2 secretion. Collectively, these observations provide additional insights into the mechanism of Mao-induced silent FcεRI internalization in MCs and the complex and heterogeneous secretory responses operating in MCs.


Assuntos
Alcaloides , Antineoplásicos , Camundongos , Animais , Receptores de IgE/metabolismo , Efedrina/metabolismo , Degranulação Celular , Mastócitos/metabolismo , Antineoplásicos/farmacologia , Alcaloides/farmacologia , Alérgenos/metabolismo , Mediadores da Inflamação/metabolismo , Imunoglobulinas , Monoaminoxidase/metabolismo , Monoaminoxidase/farmacologia
8.
Front Endocrinol (Lausanne) ; 14: 1092277, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926031

RESUMO

Introduction: Asthma is a chronic airway inflammatory disease marked by airway inflammation, remodeling and hyperresponsiveness to allergens. Allergic asthma is normally well controlled through the use of beta-2-adrenergic agonists and inhaled corticosteroids; however, a subset of patients with comorbid obesity experience resistance to currently available therapeutics. Patients with asthma and comorbid obesity are also at a greater risk for severe disease, contributing to increased risk of hospitalization. Bariatric surgery improves asthma control and airway hyperresponsiveness in patients with asthma and comorbid obesity, however, the underlying mechanisms for these improvements remain to be elucidated. We hypothesized that vertical sleeve gastrectomy (VSG), a model of metabolic surgery in mice, would improve glucose tolerance and airway inflammation, resistance, and fibrosis induced by chronic allergen challenge and obesity. Methods: Male C57BL/6J mice were fed a high fat diet (HFD) for 13 weeks with intermittent house dust mite (HDM) allergen administration to induce allergic asthma, or saline as control. At week 11, a subset of mice underwent VSG or Sham surgery with one week recovery. A separate group of mice did not undergo surgery. Mice were then challenged with HDM or saline along with concurrent HFD feeding for 1-1.5 weeks before measurement of lung mechanics and harvesting of tissues, both of which occurred 24 hours after the final HDM challenge. Systemic and pulmonary cytokine profiles, lung histology and gene expression were analyzed. Results: High fat diet contributed to increased body weight, serum leptin levels and development of glucose intolerance for both HDM and saline treatment groups. When compared to saline-treated mice, HDM-challenged mice exhibited greater weight gain. VSG improved glucose tolerance in both saline and HDM-challenged mice. HDM-challenged VSG mice exhibited an increase in airway hyperresponsiveness to methacholine when compared to the non-surgery group. Discussion: The data presented here indicate increased airway hyperresponsiveness in allergic mice undergoing bariatric surgery.


Assuntos
Asma , Masculino , Animais , Camundongos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Asma/etiologia , Pulmão/metabolismo , Inflamação/metabolismo , Alérgenos/metabolismo , Obesidade/complicações , Obesidade/cirurgia , Obesidade/metabolismo , Glucose/metabolismo
9.
Food Res Int ; 164: 112297, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36737898

RESUMO

Peanuts are prone to trigger allergic reactions with high mortality rate. There is currently no effective way to prevent peanut allergy. In order to reduce the allergy risk of peanuts, it's significant to reduce sensitization of peanut prior to ingestion. In this study, the effects of five major apple polyphenols (epicatechin, phlorizin, rutin, chlorogenic acid, and catechin) -peanut protein on the sensitization of peanut allergens were studied by BALB/c peanut allergy model to access the contribution of each polyphenol in apple to peanut allergen sensitization reduction. Then, the mechanism was explored in terms of the effect of polyphenols on the simulated gastric digestion of peanut protein and the changes in structure of Ara h 1. The results showed that polyphenol binding could alleviate allergencitiy of peanut and regulate MAPK related signaling pathway. Among the five major apple polyphenols, epicatechin had the strongest inhibitory effect. The binding of epicatechin to the constitutive epitopes arginine led to changes in the spatial structure of Ara h 1, which resulted in the effective linear epitopes reduction. Modification of peanut allergens with polyphenols could effectively reduce the sensitization of peanut protein.


Assuntos
Catequina , Hipersensibilidade a Amendoim , Arachis , Hipersensibilidade a Amendoim/prevenção & controle , Polifenóis , Alérgenos/metabolismo , Imunoglobulina E/metabolismo , Epitopos
10.
Int J Mol Sci ; 24(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36768806

RESUMO

This study systematically investigated the differences in allergenicity of casein in cow milk (CM), goat milk (GM), camel milk (CAM), and mare milk (MM) from protein structures using bioinformatics. Primary structure sequence analysis reveals high sequence similarity between the α-casein of CM and GM, while all allergenic subtypes are likely to have good hydrophilicity and thermal stability. By analyzing linear B-cell epitope, T-cell epitope, and allergenic peptides, the strongest casein allergenicity is observed for CM, followed by GM, and the casein of MM has the weakest allergenicity. Meanwhile, 7, 9, and 16 similar or identical amino acid fragments in linear B-cell epitopes, T-cell epitopes, and allergenic peptides, respectively, were observed in different milks. Among these, the same T-cell epitope FLGAEVQNQ was shared by κ-CN in all four different species' milk. Epitope results may provide targets of allergenic fragments for reducing milk allergenicity through physical or/and chemical methods. This study explained the underlying secrets for the high allergenicity of CM to some extent from the perspective of casein and provided new insights for the dairy industry to reduce milk allergy. Furthermore, it provides a new idea and method for comparing the allergenicity of homologous proteins from different species.


Assuntos
Camelus , Caseínas , Animais , Feminino , Cavalos , Bovinos , Caseínas/química , Alérgenos/metabolismo , Cabras/metabolismo , Epitopos de Linfócito T , Imunoglobulina E , Peptídeos , Epitopos de Linfócito B , Proteínas do Leite
11.
Immunol Lett ; 253: 41-53, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36623708

RESUMO

The gut comprises the largest body interface with the environment and is continuously exposed to nutrients, food antigens, and commensal microbes, as well as to harmful pathogens. Subsets of both macrophages and dendritic cells (DCs) are present throughout the intestinal tract, where they primarily inhabit the gut-associate lymphoid tissue (GALT), such as Peyer's patches and isolated lymphoid follicles. In addition to their role in taking up and presenting antigens, macrophages and DCs possess extensive functional plasticity and these cells play complementary roles in maintaining immune homeostasis in the gut by preventing aberrant immune responses to harmless antigens and microbes and by promoting host defense against pathogens. The ability of macrophages and DCs to induce either inflammation or tolerance is partially lineage imprinted, but can also be dictated by their activation state, which in turn is determined by their specific microenvironment. These cells express several surface and intracellular receptors that detect danger signals, nutrients, and hormones, which can affect their activation state. DCs and macrophages play a fundamental role in regulating T cells and their effector functions. Thus, modulation of intestinal mucosa immunity by targeting antigen presenting cells can provide a promising approach for controlling pathological inflammation. In this review, we provide an overview on the characteristics, functions, and origins of intestinal macrophages and DCs, highlighting the intestinal microenvironmental factors that influence their functions during homeostasis. Unraveling the mechanisms by which macrophages and DCs regulate intestinal immunity will deepen our understanding on how the immune system integrates endogenous and exogenous signals in order to maintain the host's homeostasis.


Assuntos
Tecido Linfoide , Macrófagos , Humanos , Inflamação/metabolismo , Alérgenos/metabolismo , Células Dendríticas , Mucosa Intestinal
12.
Food Chem ; 403: 134314, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36179632

RESUMO

Tropomyosin (TM) is a major shellfish allergen and a minor fish allergen. Different digestion profiles affect potential allergen anaphylaxis of protein. In this study, released peptides of fish-TM, shrimp-TM, and clam-TM by in vitro digestion of simulated gastric fluid (SGF), simulated intestinal fluid (SIF), and gastrointestinal (GI) were analyzed using sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS) based proteomics. Results showed that digestion products of shrimp-TM yielded a lot of peptides matched T/B cell epitopes while core regions matched epitopes were distributed along the entire chain. Pepsin or trypsin-based digestion products of shrimp-TM presented many more peptides matched T/B cell epitopes compared with those of fish-TM and clam-TM. Besides, a differentiating peptide of VEKDKALSNAEGEVAAL (72-88) overlapped T/B cell epitopes could be used as a candidate peptide marker to identify tropomyosin allergen. These findings would supply new insight into the different allergenicity of tropomyosin.


Assuntos
Bivalves , Hipersensibilidade Alimentar , Penaeidae , Perciformes , Animais , Tropomiosina/metabolismo , Mapeamento de Epitopos , Epitopos de Linfócito B/metabolismo , Imunoglobulina E/metabolismo , Proteômica , Penaeidae/metabolismo , Alérgenos/metabolismo , Bivalves/genética , Bivalves/metabolismo , Perciformes/metabolismo , Peptídeos/metabolismo , Digestão
13.
J Dairy Sci ; 105(12): 9476-9487, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36307246

RESUMO

Dairy processing can alter the digestion stability and bioavailability of cow milk proteins in the gastrointestinal tract. However, analysis of stable linear epitopes on cow milk allergens that could enter into intestinal mucosal is limited. Thus, this study aimed to investigate the digestion and transportation properties and residual allergen epitopes entering into gastrointestinal mucosa of 3 commercial dairy products, including pasteurized milk (PM), ultra-heat-treated milk (UHTM), and dried skim milk (DSM). In this work, the digestive stability of the 3 kinds of dairy products has been performed in a standard multistep static digestion model in vitro and characterized by Tricine-SDS-polyacrylamide gel electrophoresis and reversed-phase HPLC. With respect to gastrointestinal digestion in vitro, the main allergens including ß-lactoglobulin (ß-LG), α-lactalbumin (α-LA), and caseins were degraded gradually, and the resistance peptides remained in the PM with a molecular weight of range from 3.4 to 5.0 kDa. Simultaneously, the potential allergenicity of the cow milk proteins was diminished gradually and is basically consistent after 60 min of gastrointestinal digestion. After gastrointestinal digestion, the remaining peptides were transported via an Ussing chamber and identified by liquid chromatography-MS/MS. By alignment, 10 epitopes peptides were identified from 16 stable peptides, including 5 peptides (AA 92-100, 125-135, 125-138, and 149-162) in ß-LG, 2 peptides in α-LA (AA 80-93 and 63-79), 2 peptides in αS1-casein (AA 84-90 and 125-132), and 1 peptide (AA 25-32) in αS2-casein were identified by dot-blotting mainly exist in UHTM and PM. This study demonstrates dairy processing can affect the digestion and transport characteristics of milk proteins and in turn alter epitope peptides release.


Assuntos
Alérgenos , Imunoglobulina E , Bovinos , Feminino , Animais , Alérgenos/metabolismo , Epitopos , Espectrometria de Massas em Tandem/veterinária , Caseínas/análise , Leite/química , Lactoglobulinas/análise , Proteínas do Leite/análise , Lactalbumina/análise , Peptídeos/química , Digestão
14.
Vet Res ; 53(1): 72, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100942

RESUMO

Epithelial cells are known to produce mediators which can influence the behaviour of neighbouring immune cells. Although the oral mucosa has gained increased interest as a route to induce allergy desensitisation and mucosal pathogen immunisation in dogs, there is only limited knowledge on the factors which impact mediator secretion by canine oral epithelial cells. The study's objective was to enlarge the knowledge on the stimuli that can influence the secretion of some pro- and anti-inflammatory cytokines and the chemokine CXCL8 by canine buccal epithelial cells. To investigate this, buccal epithelial cells were isolated from a biopsy of a dog and immortalised by lentiviral transduction of the SV40 large T antigen. The cells were stained with a CD49f and cytokeratin 3 antibody to confirm their epithelial origin. Cells were incubated with allergen extracts, Toll-like receptor ligands (TLRL), recombinant cytokines and vitamin A and D metabolites. Subsequently, the secretion of the cytokines interleukin (IL)-4, IL-6, IL-10, IL-17A, IFN-γ, TGF-ß1 and the chemokine CXCL8 was assayed by ELISA. Immortalised canine buccal epithelial cells stained positive for CD49f but not for cytokeratin 3. The cells produced detectable amounts of CXCL8 and TGF-ß1. A Dermatophagoides farinae extract, an Alternaria alternata extract, Pam3CSK4, heat-killed Listeria monocytogenes, FSL-1, flagellin and canine recombinant IL-17A significantly increased CXCL8 secretion, while the vitamin D metabolite calcitriol significantly suppressed the production of this chemokine. This study showed that certain allergens, TLRL, IL-17A and calcitriol modulate CXCL8 secretion in a cell line of canine buccal epithelial cells.


Assuntos
Interleucina-17 , Interleucina-8 , Alérgenos/metabolismo , Animais , Calcitriol/metabolismo , Citocinas/metabolismo , Cães , Células Epiteliais/metabolismo , Integrina alfa6/metabolismo , Interleucina-8/metabolismo , Queratina-3/metabolismo , Ligantes , Receptores Toll-Like/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
15.
J Proteomics ; 269: 104724, 2022 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-36096435

RESUMO

Exploration of important insect proteins - including allergens - and proteomes can be limited by protein extraction buffer selection and the complexity of the proteome. Herein, LC-MS/MS-based proteomics experiments were used to assess the protein extraction efficiencies for a suite of extraction buffers and the effect of ingredient processing on proteome and allergen detection. Discovery proteomics revealed that SDS-based buffer yields the maximum number of protein groups from three types of BSF samples. Bioinformatic analysis revealed that buffer composition and ingredient processing could influence allergen detection. Upon applying multi-level filtering criteria, 33 putative allergens were detected by comparing the detected BSF proteins to sequences from public allergen protein databases. A targeted LC-MRM-MS assay was developed for the pan-allergen tropomyosin and used to assess the influence of buffer composition and ingredient processing using peptide abundance measurements. SIGNIFICANCE: We demonstrated that the selection of protein extraction buffer and the processing method could influence protein yield and cross-reactive allergen detection from processed and un-processed black soldier fly (BSF) samples. In total, 33 putative allergens were detected by comparing the detected BSF proteins to sequences from public allergen protein databases. An LC-MRM-MS assay was developed for tropomyosin, indicating the importance of buffer selection and processing conditions to reduce BSF samples' allergenicity.


Assuntos
Alérgenos , Dípteros , Alérgenos/metabolismo , Animais , Cromatografia Líquida , Dípteros/metabolismo , Proteínas de Insetos/metabolismo , Larva/metabolismo , Peptídeos/metabolismo , Proteoma/metabolismo , Espectrometria de Massas em Tandem , Tropomiosina/metabolismo
16.
J Adv Res ; 39: 257-273, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35660073

RESUMO

BACKGROUND: Despite, a large number of bioactive anthraquinones (AQs) isolated from host-living fungi, only plant-derived AQs were introduced in the global consumer markets. Host-living fungi represents renewable and extendible resources of diversified metabolites to be exploited for bioactives production. Unique classes of AQs from fungi include halogenated and steroidal AQs, and absent from planta are of potential to explore for biological activity against urging diseases such as cancer and multidrug-resistant pathogens. The structural diversity of fungal AQs, monomers, dimers, trimers, halogenated, etc… results in a vast range of pharmacological activities. AIM OF REVIEW: The current study capitalizes on uncovering the diversity and distribution of host-living fungal systems producing AQs in different terrestrial ecosystems ranging from plant endophytes, lichens, animals and insects. Furthermore, the potential bioactivities of fungal derived AQs i.e., antibacterial, antifungal, antiviral (anti-HIV), anticancer, antioxidant, diuretic and laxative activities are assembled in relation to their structure activity relationship (SAR). Analyzing for structure-activity relationship among fungal AQs may facilitate bioengineering of more potential analogues. Withal, elucidation of AQs biosynthetic pathways in fungi is discussed from different fungal hosts to open up new possibilities for potential biotechnological applications. Such comprehensive review unravels terrestrial host-living fungal systems as a treasure trove in drug discovery, in addition to future perspectives and trends for their exploitation in pharmaceutical industries. KEY SCIENTIFIC CONCEPTS OF REVIEW: Such comprehensive review unravels terrestrialhost-living fungal systems as a treasure trove in drug discovery, in addition to future perspectives and trends for their exploitation in pharmaceutical industries.


Assuntos
Antraquinonas , Fungos , Alérgenos/metabolismo , Animais , Antraquinonas/metabolismo , Descoberta de Drogas , Ecossistema , Endófitos/metabolismo , Fungos/química , Fungos/metabolismo , Plantas
17.
Food Funct ; 13(7): 4194-4204, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35322825

RESUMO

Aquatic food allergy has become a key food safety problem and therefore it is urgent to study the mechanism of aquatic food allergy. Turbot parvalbumin (PV) is a major marine food allergen that could cause allergic reactions but the cellular and molecular mechanisms remain to be defined. In this study, we used flow cytometry and ELISA, a coupled co-culture system of dendritic cells and T cells, and revealed that PV could promote the maturation of dendritic cells, mainly by inducing bone marrow-derived dendritic cells (BMDCs) to express MHC II and CD86, and promote the cytokines/chemokines IL-6, IFN-γ, IL-23, and IL-12p70, whereas inhibiting TNF-α expression. Our results suggested that murine BMDCs play a crucial role in the effect of PV on the induction of Th2 responses.


Assuntos
Linguados , Hipersensibilidade Alimentar , Alérgenos/metabolismo , Animais , Medula Óssea , Células da Medula Óssea , Diferenciação Celular , Células Dendríticas , Hipersensibilidade Alimentar/metabolismo , Imunidade , Camundongos , Parvalbuminas/metabolismo
18.
J Gerontol A Biol Sci Med Sci ; 77(3): 433-442, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34723336

RESUMO

The role of cellular senescence in the development of asthma is not well known. We aimed to evaluate the susceptibility of mice with cellular senescence to asthma development and determine whether the mTOR pathway played an important role in this process. Cellular senescence was induced in mice by intranasal instillation of 2% cigarette smoke extract (CSE). Subsequently, a low dose (0.1 µg) of house dust mite (HDM) allergens, which cause no inflammation and airway hyperresponsiveness (AHR) in mice without cellular senescence, was administered intranasally. To evaluate the role of the mTOR pathway in this model, rapamycin (TORC1 inhibitor) was injected intraperitoneally before CSE instillation. CSE significantly increased senescence-associated ß-gal activity in lung homogenate and S100A8/9+ p-mTOR+ population in lung cells. Moreover, S100A8/9+ or HMGB1+ populations in airway epithelial cells with p-mTOR activity increased remarkably. Rapamycin attenuated all changes. Subsequent administration of low-dose HDM allergen induced murine asthma characterized by increased AHR, serum HDM-specific immunoglobulin E, and eosinophilic airway inflammation; these asthma characteristics disappeared after rapamycin injection. In vitro experiments showed significant activation of bone marrow-derived cells cocultured with S100A9 or HMGB1 overexpressing MLE-12 cells treated with HDM allergen, compared to those treated with HDM allergen only. CSE increased the levels of senescence markers (S100A8/9 and HMGB1) in airway epithelial cells, making the mice susceptible to asthma development due to low-dose HDM allergens by activating dendritic cells. Because rapamycin significantly attenuated asthma characteristics, the mTOR pathway may be important in this murine model.


Assuntos
Asma , Fumar Cigarros , Proteína HMGB1 , Alérgenos/efeitos adversos , Alérgenos/metabolismo , Animais , Asma/etiologia , Senescência Celular , Modelos Animais de Doenças , Proteína HMGB1/efeitos adversos , Proteína HMGB1/metabolismo , Pulmão , Camundongos , Camundongos Endogâmicos BALB C , Pyroglyphidae , Sirolimo/metabolismo , Serina-Treonina Quinases TOR/metabolismo
19.
Insect Sci ; 29(2): 411-429, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34296820

RESUMO

Salivary gland-specific transcriptomes of nine heteropteran insects with distinct feeding strategies (predaceous, hematophagous, and phytophagous) were analyzed and annotated to compare and identify the venom components as well as their expression profiles. The transcriptional abundance of venom genes was verified via quantitative real-time PCR. Hierarchical clustering of 30 representative differentially expressed venom genes from the nine heteropteran species revealed unique groups of salivary gland-specific genes depending on their feeding strategy. The commonly transcribed genes included a paralytic neurotoxin (arginine kinase), digestive enzymes (cathepsin and serine protease), an anti-inflammatory protein (cystatin), hexamerin, and an odorant binding protein. Both predaceous and hematophagous (bed bug) heteropteran species showed relatively higher transcription levels of genes encoding proteins involved in proteolysis and cytolysis, whereas phytophagous heteropterans exhibited little or no expression of these genes, but had a high expression of vitellogenin, a multifunctional allergen. Saliva proteomes from four representative species were also analyzed. All venom proteins identified via saliva proteome analysis were annotated using salivary gland transcriptome data. The proteomic expression profiles of venom proteins were in good agreement with the salivary gland-specific transcriptomic profiles. Our results indicate that profiling of the salivary gland transcriptome provides important information on the composition and evolutionary features of venoms depending on their feeding strategy.


Assuntos
Proteoma , Transcriptoma , Alérgenos/análise , Alérgenos/metabolismo , Animais , Insetos , Proteoma/análise , Proteoma/metabolismo , Proteômica/métodos , Saliva/química , Glândulas Salivares/metabolismo , Peçonhas/análise , Peçonhas/metabolismo
20.
ACS Chem Biol ; 16(11): 2651-2664, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34761908

RESUMO

Covalent conjugation of allergens to toll-like receptor (TLR) agonists appears to be a powerful strategy for the development of safety compounds for allergen-specific immunomodulatory response toward tolerance in allergy. In this work, we have synthesized two family of ligands, an 8-oxoadenine derivative as a ligand for TLR7 and a pyrimido[5,4-b]indole as a ligand for TLR4, both conjugated with a T-cell peptide of Pru p 3 allergen, the lipid transfer protein (LTP) responsible for LTP-dependent food allergy. These conjugates interact with dendritic cells, inducing their specific maturation, T-cell proliferation, and cytokine production in peach allergic patients. Moreover, they increased the Treg-cell frequencies in these patients and could induce the IL-10 production. These outcomes were remarkable in the case of the TLR7 ligand conjugated with Pru p 3, opening the door for the potential application of these allergen-adjuvant systems in food allergy immunotherapy.


Assuntos
Hipersensibilidade Alimentar/metabolismo , Imunomodulação , Peptídeos/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptor 7 Toll-Like/metabolismo , Alérgenos/metabolismo , Proteínas de Transporte/metabolismo , Proliferação de Células , Citocinas/biossíntese , Hipersensibilidade Alimentar/imunologia , Humanos , Ligantes , Linfócitos T/citologia , Linfócitos T/imunologia , Receptor 4 Toll-Like/agonistas , Receptor 7 Toll-Like/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA