Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.364
Filtrar
1.
Cells ; 13(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38727308

RESUMO

Bisindole alkaloids are a source of inspiration for the design and discovery of new-generation anticancer agents. In this study, we investigated the cytotoxic and antiproliferative activities of three spirobisindole alkaloids from the traditional anticancer Philippine medicinal plant Voacanga globosa, along with their mechanisms of action. Thus, the alkaloids globospiramine (1), deoxyvobtusine (2), and vobtusine lactone (3) showed in vitro cytotoxicity and antiproliferative activities against the tested cell lines (L929, KB3.1, A431, MCF-7, A549, PC-3, and SKOV-3) using MTT and CellTiter-Blue assays. Globospiramine (1) was also screened against a panel of breast cancer cell lines using the sulforhodamine B (SRB) assay and showed moderate cytotoxicity. It also promoted the activation of apoptotic effector caspases 3 and 7 using Caspase-Glo 3/7 and CellEvent-3/7 apoptosis assays. Increased expressions of cleaved caspase 3 and PARP in A549 cells treated with 1 were also observed. Apoptotic activity was also confirmed when globospiramine (1) failed to promote the rapid loss of membrane integrity according to the HeLa cell membrane permeability assay. Network pharmacology analysis, molecular docking, and molecular dynamics simulations identified MAPK14 (p38α), a pharmacological target leading to cancer cell apoptosis, as a putative target. Low toxicity risks and favorable drug-likeness were also predicted for 1. Overall, our study demonstrated the anticancer potentials and apoptotic mechanisms of globospiramine (1), validating the traditional medicinal use of Voacanga globosa.


Assuntos
Apoptose , Proliferação de Células , Simulação de Acoplamento Molecular , Humanos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células A549 , Caspases/metabolismo , Linhagem Celular Tumoral , Simulação de Dinâmica Molecular , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química
2.
Pharm Biol ; 62(1): 394-403, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38739003

RESUMO

CONTEXT: Tabersonine has been investigated for its role in modulating inflammation-associated pathways in various diseases. However, its regulatory effects on triple-negative breast cancer (TNBC) have not yet been fully elucidated. OBJECTIVE: This study uncovers the anticancer properties of tabersonine in TNBC cells, elucidating its role in enhancing chemosensitivity to cisplatin (CDDP). MATERIALS AND METHODS: After tabersonine (10 µM) and/or CDDP (10 µM) treatment for 48 h in BT549 and MDA-MB-231 cells, cell proliferation was evaluated using the cell counting kit-8 and colony formation assays. Quantitative proteomics, online prediction tools and molecular docking analyses were used to identify potential downstream targets of tabersonine. Transwell and wound-healing assays and Western blot analysis were used to assess epithelial-mesenchymal transition (EMT) phenotypes. RESULTS: Tabersonine demonstrated inhibitory effects on TNBC cells, with IC50 values at 48 h being 18.1 µM for BT549 and 27.0 µM for MDA-MB-231. The combined treatment of CDDP and tabersonine synergistically suppressed cell proliferation in BT549 and MDA-MB-231 cells. Enrichment analysis revealed that the proteins differentially regulated by tabersonine were involved in EMT-related signalling pathways. This combination treatment also effectively restricted EMT-related phenotypes. Through the integration of online target prediction and proteomic analysis, Aurora kinase A (AURKA) was identified as a potential downstream target of tabersonine. AURKA expression was reduced in TNBC cells post-treatment with tabersonine. DISCUSSION AND CONCLUSIONS: Tabersonine significantly enhances the chemosensitivity of CDDP in TNBC cells, underscoring its potential as a promising therapeutic agent for TNBC treatment.


Assuntos
Aurora Quinase A , Proliferação de Células , Cisplatino , Transição Epitelial-Mesenquimal , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Cisplatino/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Aurora Quinase A/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Antineoplásicos/farmacologia , Simulação de Acoplamento Molecular , Sinergismo Farmacológico , Alcaloides Indólicos/farmacologia
3.
Pestic Biochem Physiol ; 200: 105814, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582586

RESUMO

To explore active natural products against tobacco powdery mildew caused by Golovinomyces cichoracearum, an extract from the fermentation of endophytic Aspergillus fumigatus 0338 was investigated. The mechanisms of action for active compounds were also studied in detail. As a result, 14 indole alkaloid derivatives were isolated, with seven being newly discovered (1-7) and the remaining seven previously described (8-14). Notably, compounds 1-3 are rare linearly fused 6/6/5 tricyclic prenylated indole alkaloids, with asperversiamide J being the only known natural product of this kind. The isopentenyl substitutions at the 5-position in compounds 4 and 5 are also rare, with only compounds 1-(5-prenyl-1H-indol-3-yl)-propan-2-one (8) and 1-(6-methoxy-5-prenyl-1H-indol3-yl)-propan-2-one currently available. In addition, compounds 6 and 7 are new framework indole alkaloid derivatives bearing a 6-methyl-1,7-dihydro-2H-azepin-2-one ring. The purified compounds were evaluated for their activity against G. cichoracearum, and the results revealed that compounds 7 and 9 demonstrated obvious anti-G. cichoracearum activities with an inhibition rate of 82.6% and 85.2%, respectively, at a concentration of 250 µg/mL, these rates were better than that of the positive control agent, carbendazim (78.6%). The protective and curative effects of compounds 7 and 9 were also better than that of positive control, at the same concentration. Moreover, the mechanistic study showed that treatment with compound 9 significantly increased the structural tightness of tobacco leaves and directly affect the conidiospores of G. cichoracearum, thereby enhancing resistance. Compounds 7 and 9 could also induce systemic acquired resistance (SAR), directly regulating the expression of defense enzymes, defense genes, and plant semaphorins, which may further contribute to increased plant resistance. Based on the activity experiments and molecular dockings, the indole core structure may be the foundation of these compounds' anti-G. cichoracearum activity. Among them, the indole derivative parent structures of compounds 6, 7, and 9 exhibit strong effects. Moreover, the methoxy substitution in compound 7 can enhance their activity. By isolating and structurally identifying the above indole alkaloids, new candidates for anti-powdery mildew chemical screening were discovered, which could enhance the utilization of N. tabacum-derived fungi in pesticide development.


Assuntos
Alcaloides , Aspergillus fumigatus , Neopreno , Nicotiana , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química , Alcaloides/farmacologia
4.
Front Endocrinol (Lausanne) ; 15: 1360054, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638133

RESUMO

Introduction: Osteoporosis is a systemic age-related disease characterized by reduced bone mass and microstructure deterioration, leading to increased risk of bone fragility fractures. Osteoporosis is a worldwide major health care problem and there is a need for preventive approaches. Methods and results: Apigenin and Rutaecarpine are plant-derived antioxidants identified through functional screen of a natural product library (143 compounds) as enhancers of osteoblastic differentiation of human bone marrow stromal stem cells (hBMSCs). Global gene expression profiling and Western blot analysis revealed activation of several intra-cellular signaling pathways including focal adhesion kinase (FAK) and TGFß. Pharmacological inhibition of FAK using PF-573228 (5 µM) and TGFß using SB505124 (1µM), diminished Apigenin- and Rutaecarpine-induced osteoblast differentiation. In vitro treatment with Apigenin and Rutaecarpine, of primary hBMSCs obtained from elderly female patients enhanced osteoblast differentiation compared with primary hBMSCs obtained from young female donors. Ex-vivo treatment with Apigenin and Rutaecarpine of organotypic embryonic chick-femur culture significantly increased bone volume and cortical thickness compared to control as estimated by µCT-scanning. Discussion: Our data revealed that Apigenin and Rutaecarpine enhance osteoblastic differentiation, bone formation, and reduce the age-related effects of hBMSCs. Therefore, Apigenin and Rutaecarpine cellular treatment represent a potential strategy for maintaining hBMSCs health during aging and osteoporosis.


Assuntos
Alcaloides Indólicos , Células-Tronco Mesenquimais , Osteoporose , Quinazolinonas , Humanos , Idoso , Apigenina/farmacologia , Apigenina/metabolismo , Osteoblastos/metabolismo , Senescência Celular , Fator de Crescimento Transformador beta/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo
5.
ACS Synth Biol ; 13(5): 1498-1512, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38635307

RESUMO

Monoterpene indole alkaloids (MIAs) make up a highly bioactive class of metabolites produced by a range of tropical and subtropical plants. The corynanthe-type MIAs are a stereochemically complex subclass with therapeutic potential against a large number of indications including cancer, psychotic disorders, and erectile dysfunction. Here, we report yeast-based cell factories capable of de novo production of corynanthe-type MIAs rauwolscine, yohimbine, tetrahydroalstonine, and corynanthine. From this, we demonstrate regioselective biosynthesis of 4 fluorinated derivatives of these compounds and de novo biosynthesis of 7-chlororauwolscine by coexpression of a halogenase with the biosynthetic pathway. Finally, we capitalize on the ability of these cell factories to produce derivatives of these bioactive scaffolds to establish a proof-of-principle drug discovery pipeline in which the corynanthe-type MIAs are screened for bioactivity on human drug targets, expressed in yeast. In doing so, we identify antagonistic and agonistic behavior against the human adrenergic G protein-coupled receptors ADRA2A and ADRA2B, and the serotonergic receptor 5HT4b, respectively. This study thus demonstrates a proto-drug discovery pipeline for bioactive plant-inspired small molecules based on one-pot biocatalysis of natural and new-to-nature corynanthe-type MIAs in yeast.


Assuntos
Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Humanos , Vias Biossintéticas , Ioimbina/metabolismo , Ioimbina/farmacologia , Alcaloides de Triptamina e Secologanina/metabolismo , Alcaloides Indólicos/metabolismo , Descoberta de Drogas/métodos
6.
Phytomedicine ; 126: 155421, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430819

RESUMO

BACKGROUND: The presence of plasmid-mediated resistance-nodulation-division (RND) efflux pump gene cluster tmexCD1-toprJ1 and its related variants has been associated with heightened resistance to tigecycline, thus diminishing its effectiveness. In this study, we explored the potential of gramine, a naturally occurring indole alkaloid, as an innovative adjuvant to enhance the treatment of infections caused by K. pneumoniae carrying tmexCD-toprJ-like gene clusters. METHODS: The synergistic potential of gramine in combination with antibiotics against both planktonic and drug-tolerant multidrug-resistant Enterobacterales was evaluated using the checkerboard microbroth dilution technique and time-killing curve analyses. Afterwards, the proton motive force (PMF) of cell membrane, the function of efflux pump and the activity of antioxidant system were determined by fluorescence assay and RT-PCR. The intracellular accumulation of tigecycline was evaluated by HPLC-MS/MS. The respiration rate, bacterial ATP level and the NAD+/NADH ratio were investigated to reveal the metabolism state. Finally, the safety of gramine was assessed through hemolytic activity and cytotoxicity assays. Two animal infection models were used to evaluate the in vivo synergistic effect. RESULTS: Gramine significantly potentiated tigecycline and ciprofloxacin activity against tmexCD1-toprJ1 and its variants-positive pathogens. Importantly, the synergistic activity was also observed against bacteria in special physiological states such as biofilms and persister cells. The mechanism study showed that gramine possesses the capability to augment tigecycline accumulation within cells by disrupting the proton motive force (PMF) and inhibiting the efflux pump functionality. In addition, the bacterial respiration rate, intracellular ATP level and tricarboxylic acid cycle (TCA) were promoted under the treatment of gramine. Notably, gramine effectively restored tigecycline activity in multiple animal infection models infected by tmexCD1-toprJ1 positive K. pneumoniae (RGF105-1). CONCLUSION: This study provides the first evidence of gramine's therapeutic potential as a novel tigecycline adjuvant for treating infections caused by K. pneumoniae carrying tmexCD-toprJ-like gene clusters.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Animais , Tigeciclina/metabolismo , Tigeciclina/farmacologia , Tigeciclina/uso terapêutico , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Minociclina/farmacologia , Minociclina/metabolismo , Minociclina/uso terapêutico , Espectrometria de Massas em Tandem , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Alcaloides Indólicos/farmacologia , Trifosfato de Adenosina/metabolismo , Testes de Sensibilidade Microbiana
7.
Molecules ; 29(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474571

RESUMO

The Euodia genus comprises numerous untapped medicinal plants that warrant thorough evaluation for their potential as valuable natural sources of herbal medicine or food flavorings. In this study, untargeted metabolomics and in vitro functional methods were employed to analyze fruit extracts from 11 significant species of the Euodia genus. An investigation of the distribution of metabolites (quinolone and indole quinazoline alkaloids) in these species indicated that E. rutaecarpa (Euodia rutaecarpa) was the most widely distributed species, followed by E. compacta (Euodia compacta), E. glabrifolia (Euodia glabrifolia), E. austrosinensis (Euodia austrosinensis), and E. fargesii (Euodia fargesii). There have been reports on the close correlation between indole quinazoline alkaloids and their anti-tumor activity, especially in E. rutaecarpa fruits which exhibit effectiveness against various types of cancer, such as SGC-7901, Hela, A549, and other cancer cell lines. Additionally, the E. rutaecarpa plant contains indole quinazoline alkaloids, which possess remarkable antibacterial properties. Our results offer novel insights into the utilization of Euodia resources in the pharmaceutical industry.


Assuntos
Alcaloides , Evodia , Plantas Medicinais , Quinolonas , Rutaceae , Humanos , Extratos Vegetais , Alcaloides Indólicos , Células HeLa , Quinazolinas
8.
J Agric Food Chem ; 72(13): 6988-6997, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38506764

RESUMO

Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv oryzae (Xoo) is extremely harmful to rice production. The traditional control approach is to use bactericides that target key bacterial growth factors, but the selection pressure on the pathogen makes resistant strains the dominant bacterial strains, leading to a decline in bactericidal efficacy. Type III secretion system (T3SS) is a conserved and critical virulence factor in most Gram-negative bacteria, and its expression or absence does not affect bacterial growth, rendering it an ideal target for creating drugs against Gram-negative pathogens. In this work, we synthesized a range of derivatives from cryptolepine and neocryptolepine. We found that compound Z-8 could inhibit the expression of Xoo T3SS-related genes without affecting the growth of bacteria. an in vivo bioassay showed that compound Z-8 could effectively reduce the hypersensitive response (HR) induced by Xoo in tobacco and reduce the pathogenicity of Xoo in rice. Furthermore, it exhibited synergy in control of bacterial leaf blight when combined with the quorum quenching bacterial F20.


Assuntos
Alcaloides , Alcaloides Indólicos , Oryza , Quinolinas , Xanthomonas , Oryza/genética , Sistemas de Secreção Tipo III/genética , Bactérias/metabolismo , Xanthomonas/genética , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
9.
Science ; 383(6690): 1448-1454, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38547266

RESUMO

The defensive alkaloid gramine not only protects barley and other grasses from insects but also negatively affects their palatability to ruminants. The key gene for gramine formation has remained elusive, hampering breeding initiatives. In this work, we report that a gene encoding cytochrome P450 monooxygenase CYP76M57, which we name AMI synthase (AMIS), enables the production of gramine in Nicotiana benthamiana, Arabidopsis thaliana, and Saccharomyces cerevisiae. We reconstituted gramine production in the gramine-free barley (Hordeum vulgare) variety Golden Promise and eliminated it from cultivar Tafeno by Cas-mediated gene editing. In vitro experiments unraveled that an unexpected cryptic oxidative rearrangement underlies this noncanonical conversion of an amino acid to a chain-shortened biogenic amine. The discovery of the genetic basis of gramine formation now permits tailor-made optimization of gramine-linked traits in barley by plant breeding.


Assuntos
Sistema Enzimático do Citocromo P-450 , Hordeum , Alcaloides Indólicos , Família Multigênica , Hordeum/genética , Hordeum/metabolismo , Alcaloides Indólicos/metabolismo , Melhoramento Vegetal , Oxirredução , Triptofano/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Edição de Genes , Genes de Plantas
10.
Org Biomol Chem ; 22(13): 2620-2629, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38451121

RESUMO

Mechanochemical reactions achieved by processes such as milling and grinding are promising alternatives to traditional solution-based chemistry. This approach not only eliminates the need for large amounts of solvents, thereby reducing waste generation, but also finds applications in chemical and materials synthesis. The focus of this study is on the synthesis of quinazolinone derivatives by ball milling, in particular evodiamine and rutaecarpine analogues. These compounds are of interest due to their diverse bioactivities, including potential anticancer properties. The study examines the reactions carried out under ball milling conditions, emphasizing their efficiency in terms of shorter reaction times and reduced environmental impact compared to conventional methods. The ball milling reaction of evodiamine and rutaecarpine analogues resulted in yields of 63-78% and 22-61%, respectively. In addition, these compounds were tested for their cytotoxic activity, and evodiamine exhibited an IC50 of 0.75 ± 0.04 µg mL-1 against the Ca9-22 cell line. At its core, this research represents a new means to synthesise these compounds, providing a more environmentally friendly and sustainable alternative to traditional approaches.


Assuntos
Alcaloides Indólicos , Quinazolinonas , Quinazolinas/química
11.
J Nat Med ; 78(2): 382-392, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38347371

RESUMO

A new dimeric indole alkaloid, vincazalidine A consisting of an aspidosperma type and a modified iboga type with 1-azatricyclo ring system consisting of one azepane and two piperidine rings coupled with an oxazolidine ring was isolated from Catharanthus roseus, and the structure including absolute stereochemistry was elucidated on the basis of spectroscopic data as well as DP4 statistical analysis. Vincazalidine A induced G2 arrest and subsequent apoptosis in human lung carcinoma cell line, A549 cells.


Assuntos
Alcaloides , Antineoplásicos , Aspidosperma , Catharanthus , Humanos , Catharanthus/química , Catharanthus/metabolismo , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química , Aspidosperma/química , Aspidosperma/metabolismo
12.
J Ethnopharmacol ; 328: 117921, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38369065

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Tabernaemontana genus belongs to the Apocynaceae family of which 30 species are found in Brazil. Some Tabernaemontana species are used by Brazilian indigenous people and other communities, or are listed in the Yanomami Pharmacopeia. Ethnopharmacological data include use(s) for muscle problems, depressed sternum, back pain, abscess, indigestion, eye irritation, earache, itching, vaginal discharge, as an aid for older people who are slow and forgetful, mosquito and snake bites, infection by the human botfly larvae, calmative, and fever. Obviously, many of these uses are attributed to the alkaloids found in Tabernaemontana species. AIM OF THE REVIEW: The aim is to gather information on Tabernaemontana species occurring in Brazil, as sources of monoterpene indole alkaloids (MIAs). In addition, we aim to collect reported experimental demonstrations of their biological activity, which may provide the foundation for further studies, including phytochemistry, the development of medicinal agents, and validation of phytopreparations. MATERIAL AND METHODS: The Brazilian Flora 2020 database was used as source for Tabernamontana species occurring in Brazil. The literature review on these species was collected from Web of Science, Scopus, PubMed, and Scifinder. The keywords included names and synonyms of Tabernaemontana species found in Brazil, which were validated by the Word Flora Online Plant List. RESULTS: A literature survey covering the time frame from 1960 until June 2023 resulted in 121 MIAs, including 48 not yet reported in the last review published in 2016. Some alkaloid extracts, fractions, and isolated alkaloids present evidenced biological activity, such as anticancer, anti-inflammatory, antinociceptive, antimicrobial, antiparasitic, antiviral, and against snake venoms, among others. Notably, ethnopharmacological based information has been the basis of some reports on Tabernaemontana species. CONCLUSIONS: Our literature survey shows that Tabernaemontana species present bioactive MIAs, such as voacamine and affinisine, demonstrating significant cytotoxicity activity against several tumoral cell lines. Those compounds can be considered promising candidates in the search for new anticancer drugs. However, the Amazonian plant biome is increasingly damaged, which may lead to the extinction of biological diversity. This threat may also affect Tabernaemontana species, which have scarcely been investigated regarding the potential of their phytochemicals for the development of new drugs.


Assuntos
Antineoplásicos , Alcaloides de Triptamina e Secologanina , Tabernaemontana , Idoso , Animais , Antineoplásicos/farmacologia , Brasil , Alcaloides Indólicos/farmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Tabernaemontana/química
13.
Org Biomol Chem ; 22(11): 2271-2278, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38391281

RESUMO

Two previously unreported lignans (1-2) and four undescribed [11]-chaetoglobosins (3-6) were obtained from the culture extract of an endophytic fungus Pseudeurotium bakeri P1-1-1. Their structures with absolute configurations were determined by spectroscopic data analysis, single-crystal X-ray diffraction, electronic circular dichroism (ECD) calculations, the modified Mosher's method, and Mo2(OAc)4-induced electronic circular dichroism (ICD) experiments. Compounds 5 and 6 showed moderate cytotoxic effects against seven human cancer cell lines. Compounds 2-4 exhibited immunosuppressive activities on concanavalin A-induced T cell proliferation with IC50 values of 3.7, 3.4, and 14.5 µM, and on lipopolysaccharide-induced B cell proliferation with IC50 values of 4.1, 3.9, and 14.2 µM, respectively. Further investigation revealed that 2 and 3 induced apoptosis in activated T cells in a dose-dependent manner.


Assuntos
Ascomicetos , Lignanas , Humanos , Lignanas/química , Linhagem Celular , Alcaloides Indólicos , Imunossupressores , Estrutura Molecular
14.
J Nat Prod ; 87(4): 837-848, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38417401

RESUMO

Ovarian cancer (OVC) is one of the most aggressive gynecological malignancies worldwide. Although olaparib treatment has shown favorable outcomes against the treatment of OVC, its effectiveness remains limited in some OVC patients. Investigating new strategies to improve the therapeutic efficacy of olaparib against OVC is imperative. Our study identified tabersonine, a natural indole alkaloid, for its potential to increase the chemosensitivity of olaparib in OVC. The combined treatment of olaparib and tabersonine synergistically inhibited cell proliferation in OVC cells and suppressed tumor growth in A2780 xenografts. The combined treatment effectively suppressed epithelial-mesenchymal transition (EMT) by altering the expression of E-cadherin, N-cadherin, and vimentin and induced DNA damage responses. Integrating quantitative proteomics, FHL1 was identified as a potential regulator to modulate EMT after tabersonine treatment. Increased expression of FHL1 was induced by tabersonine treatment, while downregulation of FHL1 reversed the inhibitory effects of tabersonine on OVC cells by mediating EMT. In vivo findings further reflected that the combined treatment of tabersonine and olaparib significantly inhibited tumor growth and OVC metastasis through upregulation of FHL1. Our findings reveal the role of tabersonine in improving the sensitivity of olaparib in OVC through FHL1-mediated EMT, suggesting that tabersonine holds promise for future application in OVC treatment.


Assuntos
Transição Epitelial-Mesenquimal , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas com Domínio LIM , Proteínas Musculares , Neoplasias Ovarianas , Ftalazinas , Piperazinas , Animais , Feminino , Humanos , Camundongos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Alcaloides Indólicos/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/efeitos dos fármacos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Quinolinas/farmacologia
15.
Bioorg Med Chem Lett ; 101: 129650, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38341161

RESUMO

Two leuconoxine-type diazaspiroindole alkaloids, the known compound, (+)-melodinine E (1), and its new analogue, (+)-11-chloromelodinine E (2), were isolated from the stems of Cryptolepis dubia (Burm.f.) M.R. Almeida (Apocynaceae), collected in Laos. The chemical structures of these compounds were determined by analysis of their spectroscopic data and by comparison of these data with literature values, of which the molecular structure of 1 has been determined previously by analysis of its single-crystal X-ray diffraction data. The absolute configurations of 1 and 2 have been defined by their experimental and simulated electronic circular dichroism (ECD) spectroscopic data and supported by 1H and 13C NMR-based DP4+ probability analysis and specific rotation calculations. When tested against a small panel of human cancer cell lines, these two compounds exhibited selective cytotoxicity toward OVCAR3 human ovarian cancer cells.


Assuntos
Antineoplásicos , Alcaloides Indólicos , Neoplasias Ovarianas , Feminino , Humanos , Cryptolepis , Apoptose , Linhagem Celular Tumoral , Estrutura Molecular
16.
Anticancer Drugs ; 35(4): 325-332, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38277337

RESUMO

Apoptosis and epithelial-to-mesenchymal transition (EMT) are closely associated with tumor survival and metastasis. These are the basic events in tumor occurrence and progression. STK214947 is an indole alkaloid with a skeleton that is similar to that of indirubin. Indole alkaloids have attracted considerable attention because of their antitumor activity. However, the relationship between STK214947 and these basic events remains unknown. In this study, the effects of STK214947 on inducing apoptosis and reversing the EMT process in tumor cells were confirmed. Mild concentrations of STK214947 inhibited tumor cell migration by reversing EMT and significantly regulated the expression of EMT-related proteins, including Notch3, E-cadherin, N-cadherin and vimentin. In addition, STK214947 in high concentration could induce apoptosis by down-regulating Notch3, p-Akt/Akt, and NF-κB, and upregulating Caspase 3. These findings support the further development of STK214947 as a potential antitumor small molecule that targets Notch3 and Akt signal transduction in cancer.


Assuntos
NF-kappa B , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , NF-kappa B/metabolismo , Transdução de Sinais , Caderinas/metabolismo , Alcaloides Indólicos/farmacologia , Transição Epitelial-Mesenquimal , Movimento Celular , Proliferação de Células
17.
J Nat Prod ; 87(2): 286-296, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38284153

RESUMO

Nine new alkaloids, eugeniinalines A-H (1-8) and (+)-eburnamenine N-oxide (9), comprising one quinoline, six indole, and two isogranatanine alkaloids, were isolated from the stem-bark extract of the Malayan Leuconotis eugeniifolia. The structures and absolute configurations of these alkaloids were established based on the analysis of the spectroscopic data, GIAO NMR calculations, DP4+ probability analysis, TDDFT-ECD method, and X-ray diffraction analysis. Eugeniinaline A (1) represents a new pentacyclic quinoline alkaloid with a 6/6/5/6/7 ring system. Eugeniinaline G (7) and its seco-derivative, eugeniinaline H (8), were the first isogranatanine alkaloids isolated as natural products. The known alkaloids leucolusine (10) and melokhanine A (11) were found to be the same compound, based on comparison of the spectroscopic data of both compounds, with the absolute configuration of (7R, 20R, 21S). Eugeniinalines A and G (1 and 7) showed cytotoxic activity against the HT-29 cancer cell line with IC50 values of 7.1 and 7.2 µM, respectively.


Assuntos
Alcaloides , Antineoplásicos , Apocynaceae , Quinolinas , Humanos , Alcaloides/farmacologia , Apocynaceae/química , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Quinolinas/farmacologia , Alcaloides de Triptamina e Secologanina/química , Alcaloides de Triptamina e Secologanina/farmacologia
18.
Biomed Pharmacother ; 171: 116179, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38278023

RESUMO

BACKGROUND: Acute erythroleukemia (AEL) is acute myeloid leukemia characterized by malignant erythroid proliferation. AEL has a low survival rate, which has seriously threatened the health of older adults. Calothrixin B is a carbazole alkaloid isolated from the cyanobacteria Calothrix and exhibits anti-cancer activity. To discover more potential anti-erythroleukemia compounds, we used calothrixin B as the structural skeleton to synthesize a series of new compounds. METHODS: In the cell culture model, we evaluated apoptosis and cell cycle arrest using MTT assay, flow cytometry analysis, JC-1 staining, Hoechst 33258 staining, and Western blot. Additionally, assessing the curative effect in the animal model included observation of the spleen, HE staining, flow cytometry analysis, and detection of serum biochemical indexes. RESULTS: Among the Calothrixin B derivatives, H-107 had the best activity against leukemic cell lines. H-107 significantly inhibited the proliferation of HEL cells with an IC50 value of 3.63 ± 0.33 µM. H-107 induced apoptosis of HEL cells by damaging mitochondria and activating the caspase cascade and arrested HEL cells in the G0/G1 phase. Furthermore, H-107 downregulated the protein levels Ras, p-Raf, p-MEK, p-ERK and c-Myc. Pretreatment with ERK inhibitor (U0126) increased H-107-induced apoptosis. Thus, H-107 inhibited the proliferation of HEL cells by the ERK /Ras/Raf/MEK signal pathways. Interestingly, H-107 promoted erythroid differentiation into the maturation of erythrocytes and effectively activated the immune cells in erythroleukemia mice. CONCLUSION: Overall, our findings suggest that H-107 can potentially be a novel chemotherapy for erythroleukemia.


Assuntos
Alcaloides Indólicos , Leucemia Eritroblástica Aguda , Animais , Camundongos , Sistema de Sinalização das MAP Quinases , Pontos de Checagem do Ciclo Celular , Apoptose , Quinases de Proteína Quinase Ativadas por Mitógeno , Proliferação de Células , Ciclo Celular , Linhagem Celular Tumoral
19.
Nat Prod Rep ; 41(5): 784-812, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38275179

RESUMO

Covering 1963 to 2023Monoterpene indole alkaloids are the main sub-family of indole alkaloids with fascinating structures, stereochemistry, and diverse bioactivities (e.g., anticancer, anti-malarial and anti-arrhythmic etc.). Vallesamidine alkaloids and structurally more complex schizozygane alkaloids are small groups of rearranged monoterpene indole alkaloids with a unique 2,2,3-trialkylated indoline scaffold, while schizozygane alkaloids can generate a further rearranged skeleton, isoschizozygane, possessing a tetra-substituted, bridged tetrahydroquinoline core. In this review, the origin and structural features of vallesamidine and schizozygane alkaloids are introduced, and a discussion on the relationship of these alkaloids with aspidosperma alkaloids and a structural rearrangement hypothesis based on published studies is followed. Moreover, uncommon skeletons and potential bioactivities, such as anti-malarial and anti-tumour activities, make such alkaloids important synthetic targets, attracting research groups globally to accomplish total synthesis, resulting in impressive works on novel total synthesis, formal synthesis, and construction of key intermediates. These synthetic endeavours are systematically reviewed and highlighted with key strategies and efficiencies, providing different viewpoints on molecular structures and promoting the extension of chemical space and mining of new active scaffolds.


Assuntos
Alcaloides Indólicos , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/síntese química , Estrutura Molecular , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/síntese química , Monoterpenos/química , Monoterpenos/farmacologia , Monoterpenos/síntese química
20.
Nat Prod Res ; 38(4): 607-613, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36938846

RESUMO

Two new indole alkaloids, naucleamide H (1) and (±)-19-O-butylangustoline (8), along with seven known alkaloids, 3,14-dihydroangustine (2), (-)-naucleofficine D (3a), (+)-naucleofficine D (3b), nauclefine (4), angustidine (5),19-O-ethylangustoline (6) and angustine (7) were isolated from the water extract of Nauclea officinalis. The structures of these compounds were established by spectroscopic analysis. Among them, the cytotoxicity of 1, 2, 6 and 8 were evaluated against six human cancer cell lines (HepG-2, SKOV3, HeLa, SGC 7901, MCF-7 and KB) in vitro for the first time with 5-fluorouracil as a positive control drug. The new compound 1 had a strong inhibitory effect on the proliferation of HepG-2 with an IC50 value of 19.59 µg/mL. The new compound 8 had a strong inhibitory effect on HepG-2, SKOV3, HeLa, MCF-7 and KB, IC50 value was 5.530, 23.11, 31.30, 32.42 and 37.26 µg/mL, respectively.


Assuntos
Antineoplásicos , Rubiaceae , Humanos , Estrutura Molecular , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química , Linhagem Celular , Rubiaceae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA