Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Toxins (Basel) ; 16(2)2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38393157

RESUMO

Consumers are increasingly seeking natural alternatives to chemical compounds, including the use of dried aromatic plants as seasonings instead of salt. However, the presence of pyrrolizidine alkaloids (PAs) in food supplements and dried plants has become a concern because of their link to liver diseases and their classification as carcinogenic by the International Agency for Research on Cancer (IARC). Despite European Union (EU) Regulation (EU) 2023/915, non-compliance issues persist, as indicated by alerts on the Rapid Alert System for Food and Feed (RASFF) portal. Analyzing PAs poses a challenge because of their diverse chemical structures and low concentrations in these products, necessitating highly sensitive analytical methods. Despite these challenges, ongoing advancements in analytical techniques coupled with effective sampling and extraction strategies offer the potential to enhance safety measures. These developments aim to minimize consumer exposure to PAs and safeguard their health while addressing the growing demand for natural alternatives in the marketplace.


Assuntos
Alcaloides de Pirrolizidina , Alcaloides de Pirrolizidina/toxicidade , Alcaloides de Pirrolizidina/química , Plantas/química , Suplementos Nutricionais/toxicidade , Suplementos Nutricionais/análise , Carcinógenos
2.
Environ Mol Mutagen ; 63(8-9): 400-407, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36258291

RESUMO

Plant-based 1,2-unsaturated Pyrrolizidine Alkaloids (PAs) are responsible for liver genotoxicity/carcinogenicity following metabolic activation, making them a relevant concern for safety assessment. Due to 21st century toxicology approaches, risk of PAs can be better discerned though an understanding of differing toxic potencies, but it is often mixtures of PAs that are found as contaminants in foods, for example, herbal teas and honey, food supplements and herbal medicines. Our study investigated whether genotoxicity potency of PAs dosed individually or in mixtures differed when measured using micronuclei formation in vitro in HepaRG human liver cells, which we and others have shown to be suitable for observing genotoxic potency differences across different PA structural classes. When equipotent concentrations of up to six different PAs representing a wide range of potencies in vitro were tested as mixtures, the observed genotoxic potency aligned favorably with results for single PAs. Similarly, when the BMD confidence intervals of these equipotent mixtures were compared with the confidence intervals of the individual PAs, only minimal variation was observed. These data support a conclusion that for this class of plant impurities, all acting via the same DNA-reactive mode of action, genotoxic potency can be regarded as additive when assessing the risk of mixtures of PAs.


Assuntos
Alcaloides de Pirrolizidina , Humanos , Alcaloides de Pirrolizidina/toxicidade , Alcaloides de Pirrolizidina/química , Alcaloides de Pirrolizidina/metabolismo , Dano ao DNA , Suplementos Nutricionais , Fígado/metabolismo , Hepatócitos/metabolismo , Carcinogênese
3.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36012484

RESUMO

Phytochemicals like pyrrolizidine alkaloids (PAs) can affect the health of humans and animals. PAs can occur for example in tea, honey or herbs. Some PAs are known to be cytotoxic, genotoxic, and carcinogenic. Upon intake of high amounts, hepatotoxic and pneumotoxic effects were observed in humans. This study aims to elucidate different toxicokinetic parameters like the uptake of PAs and their metabolism with in vitro models. We examined the transport rates of differently structured PAs (monoester, open-chained diester, cyclic diester) over a model of the intestinal barrier. After passing the intestinal barrier, PAs reach the liver, where they are metabolized into partially instable electrophilic metabolites interacting with nucleophilic centers. We investigated this process by the usage of human liver, intestinal, and lung microsomal preparations for incubation with different PAs. These results are completed with the detection of apoptosis as indicator for bioactivation of the PAs. Our results show a structure-dependent passage of PAs over the intestinal barrier. PAs are structure-dependently metabolized by liver microsomes and, to a smaller extent, by lung microsomes. The detection of apoptosis of A549 cells treated with lasiocarpine and monocrotaline following bioactivation by human liver or lung microsomes underlines this result. Conclusively, our results help to shape the picture of PA toxicokinetics which could further improve the knowledge of molecular processes leading to observed effects of PAs in vivo.


Assuntos
Alcaloides de Pirrolizidina , Animais , Carcinógenos/farmacologia , Humanos , Fígado/metabolismo , Microssomos Hepáticos/metabolismo , Alcaloides de Pirrolizidina/química , Toxicocinética
4.
Food Chem Toxicol ; 164: 113049, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35500694

RESUMO

1,2-unsaturated pyrrolizidine alkaloids (PAs) represent a large group of secondary plant metabolites exhibiting hepatotoxic, genotoxic, and carcinogenic properties upon bioactivation. To examine how the degree of esterification affects the genotoxic profile of PA we investigated cytotoxicity, histone H2AX phosphorylation, DNA strand break induction, cell cycle perturbation, micronuclei formation, and aneugenic effects in different cell models. Analysis of cytotoxicity and phosphorylation of histone H2AX was structure- and concentration-dependent: diester-type PAs (except monocrotaline) showed more pronounced effects than monoester-type PAs. Cell cycle analysis identified that diester-type PAs induced a S-phase arrest and a decrease in the occurrence of cells in the G1-phase. The same structure-dependency was observed by flow-cytometric analysis of PA-induced micronuclei in CYP3A4-overexpressing V79 cells. Analysis of centromeres induced by lasiocarpine in the micronuclei by fluorescence in situ hybridization indicated an aneugenic effect in V79h3A4 cells. Comet assays revealed no significant induction of DNA strand breaks for all investigated PAs. Overall, diester-type PAs induced more pronounced effects than monoester-type PAs. Furthermore, our results indicate aneugenic effects upon exposure towards lasiocarpine in vitro. These data improve our understanding how structural features of PA influence the genotoxic profile. Especially, the monoester-type PAs seem to induce less severe effects than other PAs.


Assuntos
Histonas , Alcaloides de Pirrolizidina , DNA , Dano ao DNA , Hibridização in Situ Fluorescente , Alcaloides de Pirrolizidina/química , Alcaloides de Pirrolizidina/toxicidade
5.
Fitoterapia ; 157: 105130, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35051554

RESUMO

Petasites japonicus is one of the most popular edible wild plants in Japan. Many biological effects of P. japonicus have been reported, including anti-allergy, anti-inflammation, and anticancer effects. Although its anti-obesity effect has been reported in several studies, the most important component responsible for this activity has not been fully elucidated. On screening the components that suppress adipocyte differentiation in 3T3-F442A cells, we found that the extract of the flower buds of P. japonicus has anti-adipogenic effect. Among the known major components of P. japonicus, petasin exhibited a potent anti-adipogenic effect at an IC50 value of 0.95 µM. Quantitative analysis revealed that the active component responsible for most of the anti-adipogenic effects of P. japonicus extract is petasin. Petasin suppressed the expression of markers of mature adipocytes (PPARγ, C/EBPα, and aP2). However, as isopetasin and petasol, analogs of petasin, did not exhibit these effects, it indicates that a double bond at the C11-C12 position and an angeloyl ester moiety were essential for the activity. Petasin affected the late stage of adipocyte differentiation and inhibited the expression of lipid synthesis factors (ACC1, FAS, and SCD1). Additionally, it was revealed that petasin could be efficiently extracted using hexane with minimal amount of pyrrolizidine alkaloids, the toxic components. These findings indicate that P. japonicus extract containing petasin could be a promising food material for the prevention of obesity.


Assuntos
Adiposidade/efeitos dos fármacos , Obesidade/prevenção & controle , Petasites/química , Sesquiterpenos/farmacologia , Células 3T3/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Animais , Compostos Azo , Western Blotting , Corantes , Flores/química , Concentração Inibidora 50 , Japão , Camundongos , Polifenóis/análise , Alcaloides de Pirrolizidina/química , Reação em Cadeia da Polimerase em Tempo Real , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Relação Estrutura-Atividade
6.
Biomed Chromatogr ; 36(2): e5270, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34727371

RESUMO

Retrorsine (RTS) is a toxic retronecine-type pyrrolizidine alkaloid, which is widely distributed. The purpose of this study was to develop a high-performance liquid chromatography-tandem mass spectrometric (LC-MS/MS) method for serum RTS determination in mice. Serum samples were deproteinated by acetonitrile, separated on a C18 -PFP column and delivered at 0.8 ml/min with an eluting system composed of water containing 0.1% (v/v) formic acid and acetonitrile containing 0.1% (v/v) formic acid as mobile phases. RTS and the internal standard S-hexylglutathione (H-GSH) were quantitatively monitored with precursor-to-product transitions of m/z 352.1 → 120.1 and m/z 392.2 → 246.3, respectively. The method showed excellent linearity over the concentration range 0.05-50 µg/ml, with correlation coefficient r2 = 0.9992. The extraction recovery was >86.34%, and the matrix effect was not significant. Inter- and intra-day precisions (RSD) were <4.99%. The validated LC-MS/MS method was successfully applied to study the toxicokinetic profiles of serum RTS in mice after intravenous, oral administration and co-treated with ketoconazole, which showed that RTS displayed a long half-life (~11.05 h) and good bioavailability (81.80%). Co-administration of ketoconazole (KTZ) increased the peak serum concentration and area under the concentration-time curve and decreased the clearance and mean residence time. Summing up, a new standardized method was established for quantitative determination of RTS in sera.


Assuntos
Cetoconazol , Alcaloides de Pirrolizidina , Animais , Disponibilidade Biológica , Cromatografia Líquida de Alta Pressão/métodos , Cetoconazol/sangue , Cetoconazol/química , Cetoconazol/farmacocinética , Modelos Lineares , Camundongos , Alcaloides de Pirrolizidina/sangue , Alcaloides de Pirrolizidina/química , Alcaloides de Pirrolizidina/farmacocinética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem/métodos , Toxicocinética
7.
Toxins (Basel) ; 13(12)2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34941681

RESUMO

Pyrrolizidine alkaloids (PAs) are a large group of botanical toxins of concern, as they are considered genotoxic carcinogens, with long-term dietary exposure presenting an elevated risk of liver cancer. PAs can contaminate honey through honeybees visiting the flowers of PA-containing plant species. A program of monitoring New Zealand honey has been undertaken over several years to build a comprehensive dataset on the concentration, regional and seasonal distribution, and botanical origin of 18 PAs and PA N-oxides. A bespoke probabilistic exposure model has then been used to assess the averaged lifetime dietary risk to honey consumers, with exposures at each percentile of the model characterized for risk using a margin of exposure from the Joint World Health Organization and United Nations Food and Agriculture Organization Expert Committee on Food Additives (JECFA) Benchmark Dose. Survey findings identify the typical PA types for New Zealand honey as lycopsamine, echimidine, retrorsine and senecionine. Regional and seasonal variation is evident in the types and levels of total PAs, linked to the ranges and flowering times of certain plants. Over a lifetime basis, the average exposure an individual will receive through honey consumption is considered within tolerable levels, although there are uncertainties over high and brand-loyal consumers, and other dietary contributors. An average lifetime risk to the general population from PAs in honey is not expected. However, given the uncertainties in the assessment, risk management approaches to limit or reduce exposures through honey are still of value.


Assuntos
Exposição Dietética/análise , Mel/análise , Alcaloides de Pirrolizidina/química , Alcaloides de Pirrolizidina/toxicidade , Análise de Alimentos , Humanos , Estrutura Molecular , Nova Zelândia , Alcaloides de Pirrolizidina/administração & dosagem , Medição de Risco
8.
Chem Biodivers ; 18(12): e2100631, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34586715

RESUMO

The genus Doronicum, belonging to tribe Senecioneae (Fam. Asteraceae), is found mainly in the Asia, Europe and North Africa. This genus of plant has always been used in traditional medicinal treatments due to the many biological properties shown such as killing parasitic worms and for relieving constipation, as well as to improve heart health, to alleviate pain and inflammation, to treat insect bites, etc. According to the World Flora the genus Doronicum contains 39 subordinate taxa.[1-3] The purpose of this article, which covers data published from 1970 to 2021 with more than 110 articles, aims to carry out a complete and critical review of the Doronicum genus, examining traditional uses and reporting the antioxidant, antimicrobial, anti-inflammatory and antitumor activity shown from crude extracts or essential oils, and from single isolated compounds. Furthermore, critical considerations of the published data have been highlighted by comparing them with the results obtained from species of other genus belonging to the Asteraceae family.


Assuntos
Antibacterianos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Asteraceae/química , Alcaloides de Pirrolizidina/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Humanos , Estrutura Molecular , Alcaloides de Pirrolizidina/química , Alcaloides de Pirrolizidina/isolamento & purificação
9.
Arch Toxicol ; 95(8): 2785-2796, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34185104

RESUMO

Pyrrolizidine alkaloids (PAs) are secondary plant metabolites synthesized by a wide range of plants as protection against herbivores. These toxins are found worldwide and pose a threat to human health. PAs induce acute effects like hepatic sinusoidal obstruction syndrome and pulmonary arterial hypertension. Moreover, chronic exposure to low doses can induce cancer and liver cirrhosis in laboratory animals. The mechanisms causing hepatotoxicity have been investigated previously. However, toxic effects in the lung are less well understood, and especially data on the correlation effects with individual chemical structures of different PAs are lacking. The present study focuses on the identification of gene expression changes in vivo in rat lungs after exposure to six structurally different PAs (echimidine, heliotrine, lasiocarpine, senecionine, senkirkine, and platyphylline). Rats were treated by gavage with daily doses of 3.3 mg PA/kg bodyweight for 28 days and transcriptional changes in the lung and kidney were investigated by whole-genome microarray analysis. The results were compared with recently published data on gene regulation in the liver. Using bioinformatics data mining, we identified inflammatory responses as a predominant feature in rat lungs. By comparison, in liver, early molecular consequences to PAs were characterized by alterations in cell-cycle regulation and DNA damage response. Our results provide, for the first time, information about early molecular effects in lung tissue after subacute exposure to PAs, and demonstrates tissue-specificity of PA-induced molecular effects.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Inflamação/induzido quimicamente , Pulmão/efeitos dos fármacos , Alcaloides de Pirrolizidina/toxicidade , Animais , Ciclo Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/patologia , Dano ao DNA/efeitos dos fármacos , Mineração de Dados , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/genética , Inflamação/patologia , Pulmão/patologia , Masculino , Análise em Microsséries , Alcaloides de Pirrolizidina/administração & dosagem , Alcaloides de Pirrolizidina/química , Ratos , Ratos Endogâmicos F344 , Transcriptoma
10.
Int J Mol Sci ; 22(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917053

RESUMO

1,2-unsaturated pyrrolizidine alkaloids (PAs) are secondary plant metabolites occurring as food contaminants that can cause severe liver damage upon metabolic activation in hepatocytes. However, it is yet unknown how these contaminants enter the cells. The role of hepatic transporters is only at the beginning of being recognized as a key determinant of PA toxicity. Therefore, this study concentrated on assessing the general mode of action of PA transport in the human hepatoma cell line HepaRG using seven structurally different PAs. Furthermore, several hepatic uptake and efflux transporters were targeted with pharmacological inhibitors to identify their role in the uptake of the PAs retrorsine and senecionine and in the disposition of their N-oxides (PANO). For this purpose, PA and PANO content was measured in the supernatant using LC-MS/MS. Also, PA-mediated cytotoxicity was analyzed after transport inhibition. It was found that PAs are taken up into HepaRG cells in a predominantly active and structure-dependent manner. This pattern correlates with other experimental endpoints such as cytotoxicity. Pharmacological inhibition of the influx transporters Na+/taurocholate co-transporting polypeptide (SLC10A1) and organic cation transporter 1 (SLC22A1) led to a reduced uptake of retrorsine and senecionine into HepaRG cells, emphasizing the relevance of these transporters for PA toxicokinetics.


Assuntos
Hepatócitos/metabolismo , Alcaloides de Pirrolizidina/metabolismo , Ativação Metabólica , Transporte Biológico Ativo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Hepatócitos/efeitos dos fármacos , Humanos , Estrutura Molecular , Alcaloides de Pirrolizidina/química , Alcaloides de Pirrolizidina/farmacologia , Alcaloides de Pirrolizidina/toxicidade
11.
Molecules ; 26(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809536

RESUMO

Pyrrolizidine alkaloids (PAs) are a class of natural toxins with hepatotoxicity, genotoxicity and carcinogenicity. They are endogenous and adulterated toxic components widely found in food and herbal products. In this study, a sensitive and efficient ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was used to detect the PAs in 386 kinds of Chinese herbal medicines recorded in the Chinese Pharmacopoeia (2020). The estimated daily intake (EDI) of 0.007 µg/kg body weight (bw)/day was adopted as the safety baseline. The margin of exposure (MOE) approach was applied to evaluate the chronic exposure risk for the genotoxic and carcinogenic potential of PAs. Results showed that PAs was detected in 271 out of 386 samples with a content of 0.1-25,567.4 µg/kg, and there were 20 samples with EDI values above the baseline, 0.007 µg/kg bw/day. Beyond that, the MOE values for 10 out of 271 positive samples were below 10,000. Considering the actual situation, Haber's rule was used to assume two weeks exposure every year during lifetime, and still the MOE values for four out of 271 positive samples were under 10,000, indicating these products may have potential health risk. The developed method was successfully applied to detect the PAs-containing Chinese herbal medicines. This study provides convincing data that can support risk management actions in China and a meaningful reference for the rational and safe use of Chinese herbal medicines.


Assuntos
Medicamentos de Ervas Chinesas/química , Alcaloides de Pirrolizidina/química , Carcinógenos/química , China , Cromatografia Líquida de Alta Pressão/métodos , Medicina Herbária/métodos , Humanos , Medição de Risco , Espectrometria de Massas em Tandem/métodos
12.
Org Lett ; 23(7): 2807-2810, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33755492

RESUMO

Fortuneicyclidins A (1) and B (2), a pair of epimeric pyrrolizidine alkaloids containing an unprecedented 7-azatetracyclo[5.4.3.0.02,8]tridecane core, were isolated from the seeds of Cephalotaxus fortunei, along with two biogenetically relative known analogues, 3 and 4. The structures were determined by multiple spectral techniques and chemical derivatization methods. Compound 1 showed inhibitory activity against α-glucosidase.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Cephalotaxus/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Folhas de Planta/química , Alcaloides de Pirrolizidina/farmacologia , Alcanos/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Estrutura Molecular , Alcaloides de Pirrolizidina/química , Alcaloides de Pirrolizidina/isolamento & purificação
13.
Molecules ; 26(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525719

RESUMO

Pyrrolizidine alkaloids (PAs) are genotoxic carcinogenic phytotoxins mostly prevalent in the Boraginaceae, Asteraceae and Fabaceae families. Heliotropium species (Boraginaceae) are PA-producing weeds, widely distributed in the Mediterranean region, that have been implicated with lethal intoxications in livestock and humans. In Israel, H. europaeum, H. rotundifolium and H. suaveolens are the most prevalent species. The toxicity of PA-producing plants depends on the PA concentration and composition. PAs occur in plants as mixtures of dozens of various PA congeners. Hence, the risk arising from simultaneous exposure to different congeners has to be evaluated. The comparative risk evaluation of the three Heliotropium species was based on recently proposed interim relative potency (iREP) factors, which take into account certain structural features as well as in vitro and in vivo toxicity data obtained for several PAs of different classes. The aim of the present study was to determine the PA profile of the major organ parts of H. europaeum, H. rotundifolium and H. suaveolens in order to assess the plants' relative toxic potential by utilizing the iREP concept. In total, 31 different PAs were found, among which 20 PAs were described for the first time for H. rotundifolium and H. suaveolens. The most prominent PAs were heliotrine-N-oxide, europine-N-oxide and lasiocarpine-N-oxide. Europine-N-oxide displayed significant differences among the three species. The PA levels ranged between 0.5 and 5% of the dry weight. The flowers of the three species were rich in PAs, while the PA content in the root and flowers of H. europaeum was higher than that of the other species. H. europaeum was found to pose a higher risk to mammals than H. rotundifolium, whereas no differences were found between H. europaeum and H. suaveolens as well as H. suaveolens and H. rotundifolium.


Assuntos
Heliotropium/efeitos adversos , Flores/efeitos adversos , Flores/química , Heliotropium/química , Israel , Alcaloides de Pirrolizidina/efeitos adversos , Alcaloides de Pirrolizidina/química , Medição de Risco
14.
Oxid Med Cell Longev ; 2021: 8822304, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33488944

RESUMO

Pyrrolizidine alkaloids (PAs) are common phytotoxins and could cause liver genotoxicity/carcinogenicity following metabolic activation. However, the toxicity of different structures remains unclear due to the wide variety of PAs. In this study, the absorption, distribution, metabolism, excretion, and toxicity (ADMET) of 40 PAs were analyzed, and their toxicity was predicted by Komputer Assisted Technology (TOPKAT) using Discovery Studio software. The in silico results showed that all PAs except retronecine had good intestinal absorption, and all PAs were predicted to have different toxicity ranges. To verify the predictive results, 4 PAs were selected to investigate cell injury and possible mechanisms of the differentiation in HepaRG cells, including retronecine type of twelve-membered cyclic diester (retrorsine), eleven-membered cyclic diester (monocrotaline), noncyclic diester (retronecine), and platynecine type (platyphylline). After 24 h exposure, retronecine-type PAs exhibited concentration-dependent cytotoxicity. The high-content screening assay showed that cell oxidative stress, mitochondrial damage, endoplasmic reticulum stress, and the concentration of calcium ions increased, and neutral lipid metabolism was changed notably in HepaRG cells. Induced apoptosis by PAs was indicated by cell cycle arrest in the G2/M phase, disrupting the mitochondrial membrane potential. Overall, our study revealed structure-dependent cytotoxicity and apoptosis after PA exposure, suggesting that the prediction results of in silico have certain reference values for compound toxicity. A 1,2-membered cyclic diester seems to be a more potent apoptosis inducer than other PAs.


Assuntos
Apoptose , Cálcio/metabolismo , Estresse do Retículo Endoplasmático , Hepatócitos/patologia , Estresse Oxidativo , Alcaloides de Pirrolizidina/efeitos adversos , Alcaloides de Pirrolizidina/química , Ciclo Celular , Células Cultivadas , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia
15.
Int J Mol Sci ; 22(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379168

RESUMO

Pyrrolizidine alkaloids (PAs) are a group of secondary metabolites produced in various plant species as a defense mechanism against herbivores. PAs consist of a necine base, which is esterified with one or two necine acids. Humans are exposed to PAs by consumption of contaminated food. PA intoxication in humans causes acute and chronic hepatotoxicity. It is considered that enzymatic PA toxification in hepatocytes is structure-dependent. In this study, we aimed to elucidate the induction of PA-induced cell death associated with apoptosis activation. Therefore, 22 structurally different PAs were analyzed concerning the disturbance of cell viability in the metabolically competent human hepatoma cell line HepaRG. The chosen PAs represent the main necine base structures and the different esterification types. Open-chained and cyclic heliotridine- and retronecine-type diesters induced strong cytotoxic effects, while treatment of HepaRG with monoesters did not affect cell viability. For more detailed investigation of apoptosis induction, comprising caspase activation and gene expression analysis, 14 PA representatives were selected. The proapoptotic effects were in line with the potency observed in cell viability studies. In vitro data point towards a strong structure-activity relationship whose effectiveness needs to be investigated in vivo and can then be the basis for a structure-associated risk assessment.


Assuntos
Alcaloides de Pirrolizidina/toxicidade , Caspases/metabolismo , Morte Celular , Linhagem Celular Tumoral , Humanos , Estrutura Molecular , Alcaloides de Pirrolizidina/química
16.
Appl Radiat Isot ; 166: 109369, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32828009

RESUMO

Recently, pyrrolizine derivatives have been reported to possess numerous anticancer activities. In a previous study, (EZ)-6-((4-chlorobenzylidene)-amino)-7-cyano-N-(p-tolyl)-2,3-dihydro-1H-pyrrolizine carboxamide (EZPCA) compound was synthesized and the cytotoxic activity of EZPCA toward COX-2 enzyme (overexpressed in cancer cells) was reported. In order to assess the suitability of this compound as a promising pilot structure for in vivo applications, EZPCA was radiolabeled with radioiodine-131 (131I) and various factors affecting radiolabeling process were studied. Quality control studies of [131I]iodo-EZPCA were performed using paper chromatography and HPLC was used as a co-chromatographic technique for confirming the radiochemical yield. Biodistribution studies of [131I]iodo-EZPCA were undertaken in normal and tumor bearing mice. The radiochemical yield percentage of [131I]iodo-EZPCA was 94.20 ± 0.12%. The biodistribution results showed evident tumor uptake of [131I]iodo-EZPCA with promising target/non-target (T/NT) ratios. As a conclusion, these data suggest that [131I]iodo-EZPCA had high binding efficiency, high tumor uptake and sufficient stability to be used be used in diagnostic studies.


Assuntos
Carcinoma de Ehrlich/radioterapia , Radioisótopos do Iodo/uso terapêutico , Compostos Radiofarmacêuticos/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Carcinoma de Ehrlich/metabolismo , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/metabolismo , Feminino , Células HCT116 , Células Hep G2 , Compostos Heterocíclicos com 2 Anéis/química , Compostos Heterocíclicos com 2 Anéis/farmacocinética , Compostos Heterocíclicos com 2 Anéis/uso terapêutico , Humanos , Radioisótopos do Iodo/química , Radioisótopos do Iodo/farmacocinética , Marcação por Isótopo , Células MCF-7 , Camundongos , Simulação de Acoplamento Molecular , Alcaloides de Pirrolizidina/química , Alcaloides de Pirrolizidina/farmacocinética , Alcaloides de Pirrolizidina/uso terapêutico , Radioquímica , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética
17.
Chem Res Toxicol ; 33(8): 2139-2146, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32588618

RESUMO

1-Formyl-7-hydroxy-6,7-dihydro-5H-pyrrolizine (1-CHO-DHP) is a potential proximate carcinogenic metabolite of pyrrolizidine alkaloids. In the present study, we determined that the reaction of 1-CHO-DHP with cysteine generated four identified products. By mass and 1H NMR spectral analyses, these products are cysteinyl-[2'-S-7]-1-CHO-DHP (P2), cysteinyl-[3'-N-7]-1-CHO-DHP (P3), 7-keto-DHP (P4), and 1-cysteinylimino-DHP (P5). These four compounds were also formed from the incubation of 1-CHO-DHP in HepG2 cells. Compounds P3 and P5 were interconvertible in acetonitrile and water. Incubation of P2 in HepG2 cells generated the four DHP-dG and -dA adducts that we propose to be potential common biomarkers of pyrrolizidine alkaloids exposure and pyrrolizidine alkaloids-induced liver tumor initiation. These four DHP-DNA adducts were also formed from the incubation of a mixture of P3 and P5 in HepG2 cells but not from the incubation with 7-keto-DHP. From the reaction of 1-CHO-DHP with glutathione, only trace amounts of the glutathione-1-CHO-DHP adduct were detected, with the structure unable to be characterized.


Assuntos
Cisteína/metabolismo , DNA/metabolismo , Hepatócitos/metabolismo , Alcaloides de Pirrolizidina/metabolismo , Animais , Sítios de Ligação , Cisteína/química , DNA/química , Células Hep G2 , Hepatócitos/química , Humanos , Masculino , Estrutura Molecular , Alcaloides de Pirrolizidina/química , Ratos
19.
Food Chem Toxicol ; 135: 110868, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31586656

RESUMO

Pyrrolizidine alkaloid (PA) forming plants are found worldwide and may contaminate food products at levels being of concern for human health. Due to the high biodiversity of PA producing plants many different types of PA structures are formed. PAs themselves are not toxic but require metabolic activation to exert toxicity. To investigate if the structure of the PAs affects their in vitro metabolism, we incubated a set of 22 PAs and compared the degradation rates and the amount of formed glutathione (GSH) conjugates. With human liver microsomes, no metabolic degradation of monoesters was found. Degradation rates of diester PAs tended to correlate with their hydrophilicity, whereby the more polar and branched-chained PAs exhibited lower degradation. There was a trend towards higher degradation rates in the presence of rat liver microsomes, but the GSH conjugate levels were similar. Although an effective degradation seems to be related with high GSH conjugate levels, no clear correlation between both parameters could be deduced. For both species no GSH conjugates, or only trace amounts, were formed from monoesters. However, for both open-chained as well as cyclic diesters GSH conjugates were detected and determined levels were comparable for both ester types without major structure-dependent differences.


Assuntos
Glutationa/metabolismo , Alcaloides de Pirrolizidina/metabolismo , Animais , Humanos , Hidrólise , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Alcaloides de Pirrolizidina/química , Ratos
20.
Food Chem Toxicol ; 135: 110923, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31672516

RESUMO

Contamination of food, feed and herbal medicines with plants containing pyrrolizidine alkaloids (PA) leads to measurable amounts of PA in many products. Since a number of PA are hepatotoxic in humans and animals and hepato-carcinogenic in animal experiments, the assessment of the relative toxic potencies of widely occurring PA contaminants warrants detailed investigation. Here, we studied the hepato-cytotoxic potencies of a number of relevant PA congeners in rat hepatocytes in primary culture. It was found that cyclic and open di-esters were much more toxic than mono-esters. Furthermore, the hepatocellular levels of cytochrome P450-catalyzed 7-benzoxyresorufin O-dealkylase (BROD) activity decreasing over time in culture, played an important role for activation of PA into cytotoxic metabolites. With a highly toxic PA (lasiocarpine), inhibition of BROD activity with ketoconazole markedly reduced toxicity while this was not obvious with the less toxic congener lycopsamine. Depletion of cellular glutathione with buthionine sulfoximine had no significant influence on the effects of highly toxic PA whereas it slightly increased toxicity of less potent congeners. Overall, our data partially confirm previously published structure-dependent interim Relative Potency (iREP) factors although for echimidine and monocrotaline in particular, substantial deviations were found, possibly due to specific toxicokinetic properties of these congeners.


Assuntos
Hepatócitos/efeitos dos fármacos , Alcaloides de Pirrolizidina/toxicidade , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Glutationa/metabolismo , Hepatócitos/metabolismo , Masculino , Estrutura Molecular , Cultura Primária de Células , Alcaloides de Pirrolizidina/química , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA