Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167179, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653357

RESUMO

Muscle degeneration is a common feature in cancer cachexia that cannot be reversed. Recent advances show that the endocannabinoid system, and more particularly cannabinoid receptor 1 (CB1), regulates muscle processes, including metabolism, anabolism and regenerative capacity. However, it is unclear whether muscle endocannabinoids, their receptors and enzymes are responsive to cachexia and exercise. Therefore, this study investigated whether cachexia and exercise affected muscle endocannabinoid signaling, and whether CB1 expression correlated with markers of muscle anabolism, catabolism and metabolism. Male BALB/c mice were injected with PBS (CON) or C26 colon carcinoma cells (C26) and had access to wheel running (VWR) or remained sedentary (n = 5-6/group). Mice were sacrificed 18 days upon PBS/tumor cell injection. Cachexic mice exhibited a lower muscle CB1 expression (-43 %; p < 0.001) and lower levels of the endocannabinoid anandamide (AEA; -22 %; p = 0.044), as well as a lower expression of the AEA-synthesizing enzyme NAPE-PLD (-37 %; p < 0.001), whereas the expression of the AEA degrading enzyme FAAH was higher (+160 %; p < 0.001). The 2-AG-degrading enzyme MAGL, was lower in cachexic muscle (-34 %; p = 0.007), but 2-AG and its synthetizing enzyme DAGLß were not different between CON and C26. VWR increased muscle CB1 (+25 %; p = 0.005) and increased MAGL expression (+30 %; p = 0.035). CB1 expression correlated with muscle mass, markers of metabolism (e.g. p-AMPK, PGC1α) and of catabolism (e.g. p-FOXO, LC3b, Atg5). Our findings depict an emerging role of the endocannabinoid system in muscle physiology. Future studies should elaborate how this translates into potential therapies to combat cancer cachexia, and other degenerative conditions.


Assuntos
Caquexia , Endocanabinoides , Camundongos Endogâmicos BALB C , Músculo Esquelético , Receptor CB1 de Canabinoide , Animais , Endocanabinoides/metabolismo , Masculino , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Caquexia/metabolismo , Caquexia/patologia , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/genética , Linhagem Celular Tumoral , Alcamidas Poli-Insaturadas/metabolismo , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Condicionamento Físico Animal , Ácidos Araquidônicos/metabolismo
2.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139209

RESUMO

The endocannabinoid system regulates physiological processes, and the modulation of endogenous endocannabinoid (eCB) levels is an attractive tool to contrast the development of pathological skin conditions including cancers. Inhibiting FAAH (fatty acid amide hydrolase), the degradation enzyme of the endocannabinoid anandamide (AEA) leads to the increase in AEA levels, thus enhancing its biological effects. Here, we evaluated the anticancer property of the FAAH inhibitor URB597, investigating its potential to counteract epithelial-to-mesenchymal transition (EMT), a process crucially involved in tumor progression. The effects of the compound were determined in primary human keratinocytes, ex vivo skin explants, and the squamous carcinoma cell line A431. Our results demonstrate that URB597 is able to hinder the EMT process by downregulating mesenchymal markers and reducing migratory potential. These effects are associated with the dampening of the AKT/STAT3 signal pathways and reduced release of pro-inflammatory cytokines and tumorigenic lipid species. The ability of URB597 to contrast the EMT process provides insight into effective approaches that may also include the use of FAAH inhibitors for the treatment of skin cancers.


Assuntos
Endocanabinoides , Neoplasias , Humanos , Endocanabinoides/farmacologia , Endocanabinoides/metabolismo , Alcamidas Poli-Insaturadas/farmacologia , Alcamidas Poli-Insaturadas/metabolismo , Amidoidrolases/metabolismo , Queratinócitos/metabolismo
3.
Int J Mol Sci ; 23(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35887341

RESUMO

Herein, we elucidate the biophysical aspects of the interaction of an important protein, Interleukin-6 (IL6), which is involved in cytokine storm syndrome, with a natural product with anti-inflammatory activity, piperine. Despite the role of piperine in the inhibition of the transcriptional protein NF-κB pathway responsible for activation of IL6 gene expression, there are no studies to the best of our knowledge regarding the characterisation of the molecular interaction of the IL6-piperine complex. In this context, the characterisation was performed with spectroscopic experiments aided by molecular modelling. Fluorescence spectroscopy alongside van't Hoff analyses showed that the complexation event is a spontaneous process driven by non-specific interactions. Circular dichroism aided by molecular dynamics revealed that piperine caused local α-helix reduction. Molecular docking and molecular dynamics disclosed the microenvironment of interaction as non-polar amino acid residues. Although piperine has three available hydrogen bond acceptors, only one hydrogen-bond was formed during our simulation experiments, reinforcing the major role of non-specific interactions that we observed experimentally. Root mean square deviation (RMSD) and hydrodynamic radii revealed that the IL6-piperine complex was stable during 800 ns of simulation. Taken together, these results can support ongoing IL6 drug discovery efforts.


Assuntos
Interleucina-6 , Alcamidas Poli-Insaturadas , Alcaloides , Benzodioxóis/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Piperidinas , Alcamidas Poli-Insaturadas/metabolismo
4.
Neuropharmacology ; 207: 108935, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34968475

RESUMO

AIMS: Acetaminophen or paracetamol (PAR), the recommended antipyretic in COVID-19 and clinically used to alleviate stroke-associated hyperthermia interestingly activates cannabinoid receptor (CB1) through its AM404 metabolite, however, to date, no study reports the in vivo activation of PAR/AM404/CB1 axis in stroke. The current study deciphers the neuroprotective effect off PAR in cerebral ischemia/reperfusion (IR) rat model and unmasks its link with AM404/CB1/PI3K/Akt axis. MATERIALS AND METHODS: Animals were allocated into 5 groups: (I) sham-operated (SO), (II) IR, (III) IR + PAR (100 mg/kg), (IV) IR + PAR (100 mg/kg) + URB597; anandamide degradation inhibitor (0.3 mg/kg) and (V) IR + PAR (100 mg/kg) + AM4113; CB1 Blocker (5 mg/kg). All drugs were intraperitoneally administered at the inception of the reperfusion period. KEY FINDINGS: PAR administration alleviated the cognitive impairment in the Morris Water Maze as well as hippocampal histopathological and immunohistochemical examination of GFAP. The PAR signaling was associated with elevation of anandamide level, CB1 receptor expression and survival proteins as pS473-Akt. P(tyr202/thr204)-ERK1/2 and pS9-GSK3ß. Simultaneously, PAR increased hippocampal BDNF and ß-arrestin1 levels and decreased glutamate level. PAR restores the deranged redox milieu induced by IR Injury, by reducing lipid peroxides, myeloperoxidase activity and NF-κB and increasing NPSH, total antioxidant capacity, nitric oxide and Nrf2 levels. The pre-administration of AM4113 reversed PAR effects, while URB597 potentiated them. SIGNIFICANCE: PAR poses a significant neuroprotective effect which may be mediated, at least in part, via activation of anandamide/CB1/PI3K/Akt pathway in the IR rat model.


Assuntos
Acetaminofen/farmacologia , Antipiréticos/farmacologia , Benzamidas/farmacologia , Carbamatos/farmacologia , Inibidores Enzimáticos/farmacologia , Hipocampo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Traumatismo por Reperfusão/metabolismo , Amidoidrolases/antagonistas & inibidores , Animais , Ácidos Araquidônicos/metabolismo , Antagonistas de Receptores de Canabinoides/farmacologia , Endocanabinoides/metabolismo , Hipocampo/irrigação sanguínea , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Fosfatidilinositol 3-Quinases/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Traumatismo por Reperfusão/fisiopatologia
5.
Plant Foods Hum Nutr ; 76(4): 410-418, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34591253

RESUMO

Currently, the weight loss effects of piperine have gained considerable attention; however, the underlying mechanism needs to be comprehensively elucidated. In the present study, we aimed to investigate the relationship between the weight loss effects of piperine and intestinal function. Based on the obtained results, piperine inhibited intestinal fatty acid absorption in both cellular and animal models. The underlying mechanism may be related to the downregulation of fatty acid absorption-related genes, fatty acid-binding protein 2 and cluster of differentiation 36, but not fatty acid transport protein 4. In addition, piperine repaired the tight junction damage induced by obesity by downregulating jejunal tumor necrosis factor-α and reducing lipopolysaccharide-induced damage on intestinal cell proliferation, thus enhancing intestinal barrier function, which is beneficial in reducing chronic inflammation associated with obesity. In conclusion, the anti-obesity effect of piperine is related to the enhancement of intestinal barrier function and inhibition of intestinal fatty acid absorption.


Assuntos
Ácidos Graxos , Alcamidas Poli-Insaturadas , Alcaloides , Animais , Benzodioxóis/metabolismo , Benzodioxóis/farmacologia , Ácidos Graxos/metabolismo , Absorção Intestinal , Mucosa Intestinal/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Piperidinas , Alcamidas Poli-Insaturadas/metabolismo , Alcamidas Poli-Insaturadas/farmacologia
6.
Clin Transl Med ; 11(7): e471, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34323400

RESUMO

Hermansky-Pudlak syndrome (HPS) is a rare genetic disorder which, in its most common and severe form, HPS-1, leads to fatal adult-onset pulmonary fibrosis (PF) with no effective treatment. We evaluated the role of the endocannabinoid/CB1 R system and inducible nitric oxide synthase (iNOS) for dual-target therapeutic strategy using human bronchoalveolar lavage fluid (BALF), lung samples from patients with HPS and controls, HPS-PF patient-derived lung fibroblasts, and bleomycin-induced PF in pale ear mice (HPS1ep/ep ). We found overexpression of CB1 R and iNOS in fibrotic lungs of HPSPF patients and bleomycin-infused pale ear mice. The endocannabinoid anandamide was elevated in BALF and negatively correlated with pulmonary function parameters in HPSPF patients and pale ear mice with bleomycin-induced PF. Simultaneous targeting of CB1 R and iNOS by MRI-1867 yielded greater antifibrotic efficacy than inhibiting either target alone by attenuating critical pathologic pathways. Moreover, MRI-1867 treatment abrogated bleomycin-induced increases in lung levels of the profibrotic interleukin-11 via iNOS inhibition and reversed mitochondrial dysfunction via CB1 R inhibition. Dual inhibition of CB1 R and iNOS is an effective antifibrotic strategy for HPSPF.


Assuntos
Síndrome de Hermanski-Pudlak/patologia , Óxido Nítrico Sintase Tipo II/metabolismo , Fibrose Pulmonar/patologia , Receptor CB1 de Canabinoide/metabolismo , Adulto , Animais , Antifibróticos/farmacologia , Antifibróticos/uso terapêutico , Ácidos Araquidônicos/metabolismo , Bleomicina/efeitos adversos , Líquido da Lavagem Broncoalveolar/química , Modelos Animais de Doenças , Endocanabinoides/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Síndrome de Hermanski-Pudlak/complicações , Síndrome de Hermanski-Pudlak/metabolismo , Humanos , Interleucina-11/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/genética , Alcamidas Poli-Insaturadas/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/complicações , Fibrose Pulmonar/tratamento farmacológico , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/genética , Fator de Crescimento Transformador beta1/metabolismo
7.
Eur J Endocrinol ; 185(2): 231-239, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34061772

RESUMO

OBJECTIVE: Patients with craniopharyngioma (CP) frequently suffer from morbid obesity. Endocannabinoids (ECs) are involved in weight gain and rewarding behavior but have not been investigated in this context. DESIGN: Cross-sectional single-center study. METHODS: Eighteen patients with CP and 16 age- and sex-matched controls were included. Differences in endocannabinoids (2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (AEA)) and endocannabinoid-like molecules (oleoyl ethanolamide (OEA), palmitoylethanolamide (PEA), and arachidonic acid (AA) were measured at baseline and following endurance exercise. We further explored ECs-dynamics in relation to markers of HPA-axis activity (ACTH, cortisol, copeptin) and hypothalamic damage. RESULTS: Under resting conditions, independent of differences in BMI, 2-AG levels were more than twice as high in CP patients compared to controls. In contrast, 2-AG and OEA level increased in response to exercise in controls but not in CP patients, while AEA levels decreased in controls. As expected, exercise increased ACTH and copeptin levels in controls only. In a mixed model analysis across time and group, HPA measures did not provide additional information for explaining differences in 2-AG levels. However, AEA levels were negatively influenced by ACTH and copeptin levels, while OEA levels were negatively predicted by copeptin levels only. There were no significant differences in endocannabinoids depending on hypothalamic involvement. CONCLUSION: Patients with CP show signs of a dysregulated endocannabinoid system under resting conditions as well as following exercise in comparison to healthy controls. Increased 2-AG levels under resting conditions and the missing response to physical activity could contribute to the metabolic phenotype of CP patients.


Assuntos
Craniofaringioma , Endocanabinoides/metabolismo , Sistema Hipotálamo-Hipofisário/fisiopatologia , Neoplasias Hipofisárias , Hormônio Adrenocorticotrópico/metabolismo , Adulto , Ácido Araquidônico/metabolismo , Ácidos Araquidônicos/metabolismo , Estudos de Casos e Controles , Craniofaringioma/metabolismo , Craniofaringioma/fisiopatologia , Estudos Transversais , Treino Aeróbico , Exercício Físico/fisiologia , Feminino , Glicerídeos/metabolismo , Glicopeptídeos/metabolismo , Humanos , Hidrocortisona/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Hipotálamo/metabolismo , Hipotálamo/patologia , Hipotálamo/fisiopatologia , Masculino , Pessoa de Meia-Idade , Ácidos Oleicos/metabolismo , Neoplasias Hipofisárias/metabolismo , Neoplasias Hipofisárias/fisiopatologia , Alcamidas Poli-Insaturadas/metabolismo , Adulto Jovem
8.
Reprod Fertil Dev ; 33(4): 270-278, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33551019

RESUMO

Although N-arachidonoylethanolamine (AEA; also known as anandamide) is present in human follicular fluid (FF), its regulation remains unknown. Therefore, the aims of the present study were to: (1) investigate the relationships between FF AEA concentrations in women undergoing assisted reproductive technology and their age, body mass index, ART characteristics and fertility treatment outcomes; and (2) assess how different inflammatory patterns may trigger AEA production by human granulosa cells (hGCs). FF AEA concentrations were higher in women undergoing IVF than in those undergoing intracytoplasmic sperm injection group. FF AEA median concentrations were lower in women undergoing ART because of male factor infertility than in women with endometriosis (1.6 vs 2.5nM respectively), but not women with tubal, hormonal or unexplained infertility (1.6, 2.4 and 1.9nM respectively). To evaluate the effects of macrophages on AEA production by hGCs, hGCs were cocultured with monocyte-derived macrophages. The conditioned medium from M1 polarised macrophages increased AEA production by hGCs. This was accompanied by an increase in AEA-metabolising enzymes, particularly N-acyl phosphatidylethanolamine-specific phospholipase D. The results of the present study show that high FF AEA concentrations in patients with endometriosis may be associated with the recruitment of inflammatory chemokines within the ovary, which together may contribute to the decreased reproductive potential of women with endometriosis. Collectively, these findings add a new player to the hormone and cytokine networks that regulate fertility in women.


Assuntos
Ácidos Araquidônicos/metabolismo , Endocanabinoides/metabolismo , Endometriose/metabolismo , Líquido Folicular/metabolismo , Células da Granulosa/metabolismo , Infertilidade Feminina/metabolismo , Macrófagos/metabolismo , Comunicação Parácrina , Alcamidas Poli-Insaturadas/metabolismo , Adolescente , Adulto , Amidoidrolases/metabolismo , Estudos de Casos e Controles , Técnicas de Cocultura , Estudos Transversais , Endometriose/diagnóstico , Endometriose/imunologia , Feminino , Células da Granulosa/imunologia , Humanos , Infertilidade Feminina/diagnóstico , Infertilidade Feminina/imunologia , Infertilidade Feminina/terapia , Macrófagos/imunologia , Fenótipo , Fosfolipase D/metabolismo , Estudos Prospectivos , Técnicas de Reprodução Assistida , Células THP-1 , Adulto Jovem
9.
Chem Biol Drug Des ; 97(1): 51-66, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32633857

RESUMO

P-glycoprotein (P-gp)/MDR-1 plays a major role in the development of multidrug resistance (MDR) by pumping the chemotherapeutic drugs out of the cancer cells and reducing their efficacy. A number of P-gp inhibitors were reported to reverse the MDR when co-administered with chemotherapeutic drugs. Unfortunately, none has approved for clinical use due to toxicity issues. Some of the P-gp inhibitors tested in the clinics are reported to have cross-reactivity with CYP450 drug-metabolizing enzymes, resulting in unpredictable pharmacokinetics and toxicity of co-administered chemotherapeutic drugs. In this study, two piperine analogs (3 and 4) having lower cross-reactivity with CYP3A4 drug-metabolizing enzyme are identified as P-glycoprotein (P-gp) inhibitors through computational design, followed by synthesis and testing in MDR cancer cell lines over-expressing P-gp (KB ChR 8-5, SW480-VCR, and HCT-15). Both the analogs significantly increased the vincristine efficacy in MDR cancer cell lines at low micromole concentrations. Specifically, 3 caused complete reversal of vincristine resistance in KB ChR 8-5 cells and found to act as competitive inhibitor of P-gp as well as potentiated the vincristine-induced NF-KB-mediated apoptosis. Therefore, 3 ((2E,4E)-1-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)-5-(4-hydroxy-3-methoxyphenyl)penta-2,4-dien-1-one) can serve as a potential P-gp inhibitor for in vivo investigations, to reverse multidrug resistance in cancer.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Alcaloides/química , Antineoplásicos/farmacologia , Benzodioxóis/química , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Piperidinas/química , Alcamidas Poli-Insaturadas/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Alcaloides/metabolismo , Alcaloides/farmacologia , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Benzodioxóis/metabolismo , Benzodioxóis/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , NF-kappa B/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Piperidinas/metabolismo , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/metabolismo , Alcamidas Poli-Insaturadas/farmacologia , Vincristina/farmacologia , Vincristina/uso terapêutico
10.
Pharmacol Res Perspect ; 8(5): e00663, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32965798

RESUMO

The antiallodynic effect of PhAR-DBH-Me was evaluated on two models of neuropathic pain, and the potential roles of CB1, CB2, and TRPV1 receptors as molecular targets of PhAR-DBH-Me were studied. Female Wistar rats were submitted to L5/L6 spinal nerve ligation (SNL) or repeated doses of cisplatin (0.1 mg/kg, i.p.) to induce experimental neuropathy. Then, tactile allodynia was determined, and animals were treated with logarithmic doses of PhAR-DBH-Me (3.2-100 mg/kg, i.p.). To evaluate the mechanism of action of PhAR-DBH-Me, in silico studies using crystallized structures of CB1, CB2, and TRPV1 receptors were performed. To corroborate the computational insights, animals were intraperitoneally administrated with antagonists for CB1 (AM-251, 3 mg/kg), CB2 (AM-630, 1 mg/kg), and TRPV1 receptors (capsazepine, 3 mg/kg), 15 min before to PhAR-DBH-Me (100 mg/kg) administration. Vagal stimulation evoked on striated muscle contraction in esophagus, was used to elicited pharmacological response of PhAR-DBH-ME on nervous tissue. Systemic administration of PhAR-DBH-Me reduced the SNL- and cisplatin-induced allodynia. Docking studies suggested that PhAR-DBH-Me acts as an agonist for CB1, CB2, and TRPV1 receptors, with similar affinity to the endogenous ligand anandamide. Moreover antiallodynic effect of PhAR-DBH-Me was partially prevented by administration of AM-251 and AM-630, and completely prevented by capsazepine. Finally, PhAR-DBH-Me decreased the vagally evoked electrical response in esophagus rat. Taken together, results indicate that PhAR-DBH-Me induces an antiallodynic effect through partial activation of CB1 and CB2 receptors, as well as desensitization of TRPV1 receptors. Data also shed light on the novel vanilloid nature of the synthetic compound PhAR-DBH-Me.


Assuntos
Compostos Azabicíclicos/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Hiperalgesia/induzido quimicamente , Ácidos Oleicos/farmacologia , Canais de Cátion TRPV/efeitos dos fármacos , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Ácidos Araquidônicos/metabolismo , Compostos Azabicíclicos/administração & dosagem , Antagonistas de Receptores de Canabinoides/metabolismo , Capsaicina/administração & dosagem , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Cisplatino/administração & dosagem , Cisplatino/efeitos adversos , Endocanabinoides/metabolismo , Feminino , Hiperalgesia/tratamento farmacológico , Injeções Intraperitoneais , Ligadura/métodos , Modelos Animais , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Ácidos Oleicos/administração & dosagem , Alcamidas Poli-Insaturadas/metabolismo , Ratos , Ratos Wistar , Nervos Espinhais/efeitos dos fármacos , Nervos Espinhais/cirurgia , Canais de Cátion TRPV/antagonistas & inibidores , Estimulação do Nervo Vago/métodos
11.
Nutrients ; 12(6)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599787

RESUMO

Black pepper (Piper nigrum L.) has been employed in medicine (epilepsy, headaches, and diabetes), where its effects are mainly attributed to a nitrogen alkaloid called piperidine (1-(1-[1,3-benzodioxol-5-yl]-1-oxo-2,4 pentenyl) piperidine). Piperine co-administered with vitamins and minerals has improved its absorption. Therefore, this study aimed to describe the impact of the joint administration of iron (Fe) plus black pepper in physically active healthy individuals. Fe is a micronutrient that aids athletic performance by influencing the physiological functions involved in endurance sports by improving the transport, storage, and utilization of oxygen. Consequently, athletes have risk factors for Fe depletion, Fe deficiency, and eventually, anemia, mainly from mechanical hemolysis, gastrointestinal disturbances, and loss of Fe through excessive sweating. Declines in Fe stores have been reported to negatively alter physical capacities such as aerobic capacity, strength, and skeletal muscle recovery in elite athletes. Thus, there is a need to maintain Fe storage, even if Fe intake meets the recommended daily allowance (RDA), and Fe supplementation may be justified in physically active individuals, in states of Fe deficiency, with or without anemia. Females, in particular, should monitor their Fe hematological profile. The recommended oral Fe supplements are ferrous or ferric salts, sulfate, fumarate, and gluconate. These preparations constitute the first line of treatment; however, the high doses administered have gastrointestinal side effects that reduce tolerance and adherence to treatment. Thus, a strategy to counteract these adverse effects is to improve the bioavailability of Fe. Therefore, piperine may benefit the absorption of Fe through its bioavailability enhancement properties. Three research studies of Fe associated with black pepper have reported improvements in parameters related to the metabolism of Fe, without adverse effects. Although more research is needed, this could represent an advance in oral Fe supplementation for physically active individuals.


Assuntos
Alcaloides , Benzodioxóis , Ferro , Compostos Fitoquímicos , Piper nigrum , Piperidinas , Alcamidas Poli-Insaturadas , Alcaloides/efeitos adversos , Alcaloides/química , Alcaloides/metabolismo , Alcaloides/farmacocinética , Animais , Benzodioxóis/efeitos adversos , Benzodioxóis/química , Benzodioxóis/metabolismo , Benzodioxóis/farmacocinética , Disponibilidade Biológica , Suplementos Nutricionais , Exercício Físico , Humanos , Ferro/química , Ferro/metabolismo , Ferro/farmacocinética , Compostos Fitoquímicos/efeitos adversos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/metabolismo , Compostos Fitoquímicos/farmacocinética , Piperidinas/efeitos adversos , Piperidinas/química , Piperidinas/metabolismo , Piperidinas/farmacocinética , Alcamidas Poli-Insaturadas/efeitos adversos , Alcamidas Poli-Insaturadas/química , Alcamidas Poli-Insaturadas/metabolismo , Alcamidas Poli-Insaturadas/farmacocinética , Ratos
12.
Sci Rep ; 10(1): 11134, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636441

RESUMO

The use of cannabinoids to treat fibrotic skin diseases is an emergent issue. Therefore, we aimed to evaluate systemic and skin endocannabinoid responses in the wound-healing process in humans. A prospective study was performed in 50 patients who underwent body-contouring surgery. Anandamide (N-arachidonoylethanolamine, AEA), 2-arachidonoylglycerol (2-AG), palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) were quantified using LC-MS/MS. Ten (20%) patients developed hypertrophic (HT) scars. No significant changes were observed between the normal (N) scar and HT scar groups in terms of plasma and skin endocannabinoids. Nevertheless, a positive correlation between plasma and skin AEA concentrations was found in the N group (r = 0.38, p = 0.015), which was absent in the HT group. Moreover, the AEA concentration was significantly lower in HT scar tissue than in normal scar tissue (0.77 ± 0.12 ng/g vs 1.15 ± 0.15 ng/g, p < 0.001). Interestingly, in all patients, the surgical intervention produced a time-dependent effect with a U shape for AEA, PEA and OEA plasma concentrations. In contrast, 2-AG plasma concentrations increased 5 days after surgery and were reduced and stabilized 3 months later. These results suggest crosstalk between systemic and local skin endocannabinoid systems during human wound healing. AEA appears to be the most likely candidate for this link, which is deficient in patients with HT scars.


Assuntos
Ácidos Araquidônicos/metabolismo , Cicatriz Hipertrófica/metabolismo , Endocanabinoides/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Pele/metabolismo , Cicatrização , Adulto , Idoso , Contorno Corporal/efeitos adversos , Cicatriz/metabolismo , Etanolaminas/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Ferida Cirúrgica/metabolismo , Adulto Jovem
13.
Sci Rep ; 10(1): 6314, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286386

RESUMO

There is good evidence that the N-acylethanolamine (NAE)/monoacylglycerol (MAG) signalling systems are involved in the pathogenesis of cancer. However, it is not known how prostate tumours affect these systems in the surrounding non-malignant tissue and vice versa. In the present study we have investigated at the mRNA level 11 components of these systems (three coding for anabolic enzymes, two for NAE/MAG targets and six coding for catabolic enzymes) in rat prostate tissue following orthotopic injection of low metastatic AT1 cells and high metastatic MLL cells. The MLL tumours expressed higher levels of Napepld, coding for a key enzyme in NAE synthesis, and lower levels of Naaa, coding for the NAE hydrolytic enzyme N-acylethanolamine acid amide hydrolase than the AT1 tumours. mRNA levels of the components of the NAE/MAG signalling systems studied in the tissue surrounding the tumours were not overtly affected by the tumours. AT1 cells in culture expressed Faah, coding for the NAE hydrolytic enzyme fatty acid amide hydrolase, at much lower levels than Naaa. However, the ability of the intact cells to hydrolyse the NAE arachidonoylethanolamide (anandamide) was inhibited by an inhibitor of FAAH, but not of NAAA. Treatment of the AT1 cells with interleukin-6, a cytokine known to be involved in the pathogenesis of prostate cancer, did not affect the expression of the components of the NAE/MAG system studied. It is thus concluded that in the model system studied, the tumours show different expressions of mRNA coding for key the components of the NAE/MAG system compared to the host tissue, but that these changes are not accompanied by alterations in the non-malignant tissue.


Assuntos
Etanolaminas/metabolismo , Monoglicerídeos/metabolismo , Neoplasias da Próstata/patologia , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Endocanabinoides/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Redes e Vias Metabólicas/genética , Fosfolipase D/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , RNA Mensageiro/metabolismo , Ratos , Transdução de Sinais/genética
14.
Naunyn Schmiedebergs Arch Pharmacol ; 393(2): 263-272, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31522241

RESUMO

Fatty acid amide hydrolase inhibition may be used to control bladder function and pain by modulating endocannabinoid levels in cystitis. We studied the effect of the peripherally restricted fatty acid amide hydrolase inhibitor URB937 in bladder reflex activity and bladder pain using the lipopolysaccharide model of cystitis. We also correlated the URB937's effects with tissue levels of the endocannabinoids anandamide and palmitoylethanolamine. URB937 did not change the reflex activity of normal bladders. In inflamed bladders, URB937 had a U-shaped dose-response curve; following an initial cannabinoid receptor type 1-mediated reduction in pain responses and normalisation of bladder reflex activity, URB937 gradually increased both pain responses and bladder reflex activity through the transient receptor potential ion channel subfamily V member 1. Chronic cystitis increased the tissue levels of anandamide and decreased those of palmitoylethanolamine. At the dose that normalised bladder reflex activity and decreased pain responses, URB937 normalised the levels of anandamide and palmitoylethanolamine in the bladder. At high doses that induced excitatory effects, URB937 apparently did not change anandamide and palmitoylethanolamine levels, which therefore were in the range of the inflamed bladder. Fatty acid amide hydrolase inhibition results in complex changes in bladder endocannabinoid levels. The therapeutic effect of fatty acid amide hydrolase inhibitors is not related to increase in anandamide levels but rather a normalisation of the anandamide and palmitoylethanolamine level ratio.


Assuntos
Amidas/metabolismo , Amidoidrolases/antagonistas & inibidores , Ácidos Araquidônicos/metabolismo , Canabinoides/farmacologia , Endocanabinoides/metabolismo , Etanolaminas/metabolismo , Ácidos Palmíticos/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Bexiga Urinária/efeitos dos fármacos , Animais , Canabinoides/uso terapêutico , Cistite/tratamento farmacológico , Cistite/metabolismo , Feminino , Dor/tratamento farmacológico , Dor/metabolismo , Ratos Wistar , Bexiga Urinária/metabolismo
15.
Annu Rev Pharmacol Toxicol ; 60: 637-659, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31580774

RESUMO

Research in the cannabinoid field, namely on phytocannabinoids, the endogenous cannabinoids anandamide and 2-arachidonoyl glycerol and their metabolizing and synthetic enzymes, the cannabinoid receptors, and anandamide-like cannabinoid compounds, has expanded tremendously over the last few years. Numerous endocannabinoid-like compounds have been discovered. The Cannabis plant constituent cannabidiol (CBD) was found to exert beneficial effects in many preclinical disease models ranging from epilepsy, cardiovascular disease, inflammation, and autoimmunity to neurodegenerative and kidney diseases and cancer. CBD was recently approved in the United States for the treatment of rare forms of childhood epilepsy. This has triggered the development of many CBD-based products for human use, often with overstated claims regarding their therapeutic effects. In this article, the recently published research on the chemistry and biological effects of plant cannabinoids (specifically CBD), endocannabinoids, certain long-chain fatty acid amides, and the variety of relevant receptors is critically reviewed.


Assuntos
Canabinoides/farmacologia , Dronabinol/farmacologia , Endocanabinoides/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Agonistas de Receptores de Canabinoides/farmacologia , Glicerídeos/metabolismo , Humanos , Alcamidas Poli-Insaturadas/metabolismo
16.
Brain Behav Immun ; 82: 372-381, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31505257

RESUMO

Depression is a well-recognised effect of long-term treatment with interferon-alpha (IFN-α), a widely used treatment for chronic viral hepatitis and malignancy. In addition to the emotional disturbances, high incidences of painful symptoms such as headache and joint pain have also been reported following IFN-α treatment. The endocannabinoid system plays an important role in emotional and nociceptive processing, however it is unknown whether repeated IFN-α administration induces alterations in this system. The present study investigated nociceptive responding in the IFN-α-induced mouse model of depression and associated changes in the endocannabinoid system. Furthermore, the effects of modulating peripheral endocannabinoid tone on inflammatory pain-related behaviour in the IFN-α model was examined. Repeated IFN-α administration (8000 IU/g/day) to male C57/Bl6 mice increased immobility in the forced swim test and reduced sucrose preference, without altering body weight gain or locomotor activity, confirming development of the depressive-like phenotype. There was no effect of repeated IFN-α administration on latency to respond in the hot plate test on day 4 or 7 of treatment, however, formalin-evoked nociceptive behaviour was significantly increased in IFN-α treated mice following 8 days of IFN-α administration. 2-Arachidonoyl glycerol (2-AG) levels in the periaqueductal grey (PAG) and rostroventromedial medulla (RVM), and anandamide (AEA) levels in the RVM, were significantly increased in IFN-α-, but not saline-, treated mice following formalin administration. There was no change in endocannabinoid levels in the prefrontal cortex, spinal cord or paw tissue between saline- or IFNα-treated mice in the presence or absence of formalin. Furthermore, repeated IFN-α and/or formalin administration did not alter mRNA expression of genes encoding the endocannabinoid catabolic enzymes (fatty acid amide hydrolase or monoacylglycerol lipase) or endocannabinoid receptor targets (CB1, CB2 or PPARs) in the brain, spinal cord or paw tissue. Intra plantar administration of PF3845 (1 µg/10 µl) or MJN110 (1 µg/10 µl), inhibitors of AEA and 2-AG catabolism respectively, attenuated formalin-evoked hyperalgesia in IFN-α, but not saline-, treated mice. In summary, increasing peripheral endocannabinoid tone attenuates inflammatory hyperalgesia induced following repeated IFN-α administration. These data provide support for the endocannabinoid system in mediating and modulating heightened pain responding associated with IFNα-induced depression.


Assuntos
Depressão/metabolismo , Endocanabinoides/metabolismo , Interferon-alfa/metabolismo , Amidoidrolases/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Glicerídeos/metabolismo , Hiperalgesia/imunologia , Hiperalgesia/metabolismo , Interferon-alfa/farmacologia , Masculino , Camundongos , Monoacilglicerol Lipases/metabolismo , Nociceptores/efeitos dos fármacos , Nociceptores/metabolismo , Dor/metabolismo , Dor/fisiopatologia , Alcamidas Poli-Insaturadas/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-31481438

RESUMO

The activity of rifampin (RIF) and piperine was evaluated at the relative transcript levels of 12 efflux pumps (EPs), and an additional mechanism was proposed to be behind the synergic interactions of piperine plus RIF in Mycobacterium tuberculosis AutoDock v4.2.3 and Molegro v6 programs were used to evaluate PIP binding in M. tuberculosis RNA polymerase (RNAP). A hypothesis has been raised that piperine interferes in M. tuberculosis growth through RNAP inhibition, differently from what was previously endorsed for EP inhibition only.


Assuntos
Alcaloides/farmacologia , Antineoplásicos/farmacologia , Benzodioxóis/farmacologia , RNA Polimerases Dirigidas por DNA/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Rifampina/farmacologia , Alcaloides/administração & dosagem , Alcaloides/metabolismo , Antineoplásicos/administração & dosagem , Antineoplásicos/metabolismo , Benzodioxóis/administração & dosagem , Benzodioxóis/metabolismo , Sítios de Ligação , Sinergismo Farmacológico , Quimioterapia Combinada , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Piperidinas/administração & dosagem , Piperidinas/metabolismo , Alcamidas Poli-Insaturadas/administração & dosagem , Alcamidas Poli-Insaturadas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rifampina/administração & dosagem , Rifampina/metabolismo
18.
Acc Chem Res ; 52(11): 3087-3096, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31364837

RESUMO

The regulatory chemical mechanisms of lipid trafficking and degradation are involved in many pathophysiological processes, being implicated in severe pain, inflammation, and cancer. In addition, the processing of lipids is also relevant for industrial and environmental applications. However, there is poor understanding of the chemical features that control lipid membrane trafficking and allow lipid-degrading enzymes to efficiently select and hydrolyze specific fatty acids from a complex cellular milieu of bioactive lipids. This is particularly true for lipid acyl chains, which have diverse structures that can critically affect the many complex reactions needed to elongate, desaturate, or transport fatty acids. Building upon our own contributions in this field, we will discuss how molecular simulations, integrated with experimental evidence, have revealed that the structure and dynamics of the lipid tail are actively involved in modulating membrane trafficking at cellular organelles, and enzymatic reactions at cell membranes. Further evidence comes from recent crystal structures of lipid receptors and remodeling enzymes. Taken together, these recent works have identified those structural features of the lipid acyl chain that are crucial for the regioselectivity and stereospecificity of essential desaturation reactions. In this context, we will first illustrate how atomistic and coarse-grained simulations have elucidated the structure-function relationships between the chemical composition of the lipid's acyl chains and the molecular properties of lipid bilayers. Particular emphasis will be given to the prominent chemical role of the number of double carbon-carbon bonds along the lipid acyl chain, that is, discriminating between saturated, monounsaturated, and polyunsaturated lipids. Different levels of saturation in fatty acid molecules dramatically influence the biophysical properties of lipid assemblies and their interaction with proteins. We will then discuss the processing of lipids by membrane-bound enzymes. Our focus will be on lipids such as anandamide and 2-arachidonoylglycerol. These are the main molecules that act as neurotransmitters in the endocannabinoid system. Specifically, recent findings indicate a crucial interplay between the level of saturation of the lipid tail, its energetically and sterically favored conformations, and the hydrophobic accessory cavities in lipid-degrading enzymes, which help form catalytically active conformations of the selected substrate. This Account will emphasize how the specific chemical structure of acyl chains affects the molecular mechanisms for modulating membrane trafficking and selective hydrolysis. The results examined here show that, by using molecular simulations to investigate lipid plasticity and substrate flexibility, researchers can enrich their interpretation of experimental results about the structure-function relationships of lipids. This could positively impact chemical and biological studies in the field and ultimately support protein engineering studies and structure-based drug discovery to target lipid-processing enzymes.


Assuntos
Ácidos Araquidônicos/química , Endocanabinoides/química , Glicerídeos/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Alcamidas Poli-Insaturadas/química , Ácidos Araquidônicos/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Prostaglandina-Endoperóxido Sintases/química , Prostaglandina-Endoperóxido Sintases/metabolismo , Receptores de Esteroides/química , Receptores de Esteroides/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(12): 158512, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31454668

RESUMO

In each menstrual cycle endometrial stromal cells (hESC) proliferate and differentiate into specialized decidual cells, a process termed decidualization, which regulates endometrial receptivity. Decidualization is mainly controlled by sex ovarian hormones, estradiol (E2) and progesterone. E2 plays an important role in the expression of the progesterone receptor and promotes the endometrial stromal cells differentiation. Our group previously reported that anandamide (AEA) impairs decidualization through cannabinoid receptor 1 (CB1). In this study, we hypothesized whether AEA inhibitory effect on cell decidualization could be mediated through interaction with aromatase and consequent interference in estradiol production/signaling. We used an immortalized human endometrial stromal cell line (St-T1b) and human decidual fibroblasts (HdF) derived from human term placenta. In cells exposed to a differentiation stimulus, AEA-treatment prevents the increase of the expression of CYP19A1 gene encoding aromatase, E2 levels and of estradiol receptor expression, that are observed in differentiating cells. Regarding CYP19A1 mRNA levels, the effect was partially reverted by a CB1 receptor antagonist and by a COX2 inhibitor. In addition, we report that AEA presents anti-aromatase activity in placental microsomes, the nature of the inhibition being the uncommon mixed type as revealed by the kinetic studies. Structural analysis of the AEA-Aromatase complexes determined that AEA may bind to the active site pocket of the enzyme. In overall we report that AEA inhibits aromatase activity and may affect E2 signaling crucial for the decidualization process, indicating that a deregulation of the endocannabinoid system may be implicated in endometrial dysfunction and in fertility/infertility disorders.


Assuntos
Ácidos Araquidônicos/metabolismo , Aromatase/metabolismo , Decídua/citologia , Endocanabinoides/metabolismo , Endométrio/citologia , Alcamidas Poli-Insaturadas/metabolismo , Adulto , Aromatase/genética , Linhagem Celular , Células Cultivadas , Decídua/metabolismo , Regulação para Baixo , Endométrio/metabolismo , Feminino , Humanos , Simulação de Acoplamento Molecular , Gravidez , Células Estromais/citologia , Células Estromais/metabolismo , Adulto Jovem
20.
J Mass Spectrom ; 54(9): 738-749, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31368246

RESUMO

Black pepper, though commonly employed as a spice, has many medicinal properties. It consists of volatile oils, alkaloids, pungent resins, etc., of which piperine is a major constituent. Though safe at low doses, piperine causes alteration in the activity of drug metabolising enzymes and transporters at high dose and is known to precipitate liver toxicity. It has a potential to form reactive metabolite(s) (RM) owing to the presence of structural alerts, such as methylenedioxyphenyl (MDP), α, ß-unsaturated carbonyl group (Michael acceptor), and piperidine. The present study was designed to detect and characterize stable and RM(s) of piperine formed on in vitro incubation with human liver microsomes. The investigation of RMs was done with the aid of trapping agents, viz, glutathione (GSH) and N-acetylcysteine (NAC). The samples were analysed by ultra-high performance liquid chromatography coupled with high resolution mass spectrometry (UHPLC-HRMS) using Thermo Scientific Q Exactive Plus Orbitrap. Full scan MS followed by data-dependent MS2 (Full MS-ddMS2 ) mode was used to establish mass spectrometric fragmentation pathways of protonated piperine and its metabolites. In total, four stable metabolites and their isomers (M1a-c, M2a-b, M3a-c, and M4a-b) were detected. Their formation involved removal of carbon (3, M1a-c), hydroxylation (2, M2a-b), hydroxylation with hydrogenation (3, M3a-c), and dehydrogenation (2, M4a-b). Out of these metabolites, M1, M2, and M3 are reported earlier in the literature, but their isomers and two M4 variants are novel. In addition, six novel conjugates of RMs, including three GSH conjugates of m/z 579 and three NAC conjugates of m/z 435, were also observed.


Assuntos
Alcaloides/análise , Alcaloides/metabolismo , Benzodioxóis/análise , Benzodioxóis/metabolismo , Microssomos Hepáticos/metabolismo , Piperidinas/análise , Piperidinas/metabolismo , Alcamidas Poli-Insaturadas/análise , Alcamidas Poli-Insaturadas/metabolismo , Acetilcisteína/química , Cromatografia Líquida de Alta Pressão , Glutationa/química , Humanos , Isomerismo , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA