Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 22(4): 1356-1369, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32079039

RESUMO

Pristine marine environments are highly oligotrophic ecosystems populated by well-established specialized microbial communities. Nevertheless, during oil spills, low-abundant hydrocarbonoclastic bacteria bloom and rapidly prevail over the marine microbiota. The genus Alcanivorax is one of the most abundant and well-studied organisms for oil degradation. While highly successful under polluted conditions due to its specialized oil-degrading metabolism, it is unknown how they persist in these environments during pristine conditions. Here, we show that part of the Alcanivorax genus, as well as oils, has an enormous potential for biodegrading aliphatic polyesters thanks to a unique and abundantly secreted alpha/beta hydrolase. The heterologous overexpression of this esterase proved a remarkable ability to hydrolyse both natural and synthetic polyesters. Our findings contribute to (i) better understand the ecology of Alcanivorax in its natural environment, where natural polyesters such as polyhydroxyalkanoates (PHA) are produced by a large fraction of the community and, hence, an accessible source of carbon and energy used by the organism in order to persist, (ii) highlight the potential of Alcanivorax to clear marine environments from polyester materials of anthropogenic origin as well as oils, and (iii) the discovery of a new versatile esterase with a high biotechnological potential.


Assuntos
Alcanivoraceae/enzimologia , Biodegradação Ambiental , Óleos/metabolismo , Alcanivoraceae/classificação , Alcanivoraceae/metabolismo , Biotecnologia , Ecossistema , Poluição por Petróleo , Poliésteres/metabolismo , Poli-Hidroxialcanoatos/metabolismo
2.
Sci Rep ; 7(1): 12446, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28963537

RESUMO

In this study, time-series samples were taken from a gravel beach to ascertain whether a periodic oil input induced by tidal action at the early stage of an oil spill can be a trigger to stimulate the development of hydrocarbon-degrading bacteria under natural in situ attenuation. High-throughput sequencing shows that the microbial community in beach sediments is characterized by the enrichment of hydrocarbon-degrading bacteria, including Alcanivorax, Dietzia, and Marinobacter. Accompanying the periodic floating-oil input, dynamic successions of microbial communities and corresponding fluctuations in functional genes (alkB and RDH) are clearly indicated in a time sequence, which keeps pace with the ongoing biodegradation of the spilled oil. The microbial succession that accompanies tidal action could benefit from the enhanced exchange of oxygen and nutrients; however, regular inputs of floating oil can be a trigger to stimulate an in situ "seed bank" of hydrocarbon-degrading bacteria. This leads to the continued blooming of hydrocarbon-degrading consortia in beach ecosystems. The results provide new insights into the beach microbial community structure and function in response to oil spills.


Assuntos
Enzimas AlkB/genética , Genes Bacterianos , Hidrocarbonetos Aromáticos/metabolismo , Consórcios Microbianos/fisiologia , Água do Mar/microbiologia , Microbiologia do Solo , Alcanivoraceae/classificação , Alcanivoraceae/enzimologia , Alcanivoraceae/genética , Alcanivoraceae/isolamento & purificação , Enzimas AlkB/metabolismo , Baías , Biodegradação Ambiental , China , DNA Bacteriano/genética , Ecossistema , Expressão Gênica , Hidrocarbonetos Aromáticos/química , Marinobacter/classificação , Marinobacter/enzimologia , Marinobacter/genética , Marinobacter/isolamento & purificação , Petróleo/microbiologia , Poluição por Petróleo/análise , Filogenia
3.
Mar Environ Res ; 95: 28-38, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24388285

RESUMO

Bioaugmentation (amendment with selected bacterial strains) and/or biostimulation (nutrients addition and/or air supply) are relatively new fields in environmental microbiology for preventing pollution and cleanup contamination. In this study, the efficiency of application of bioaugmentation/biostimulation treatments, for recovery of crude oil-polluted seawater, was evaluated. Three different series of experiments were performed in a "Mesocosm Facility" (10.000 L). Natural seawater was artificially polluted with crude oil (1000 ppm) and was amended with inorganic nutrients (Mesocosm 1, M1), inorganic nutrient and an inoculum of Alcanivorax borkumensis SK2(T) (Mesocosm 2, M2) and inorganic nutrient and an inoculum of A. borkumensis SK2(T) and Thalassolituus oleivorans MIL-1(T) (Mesocosm 3, M3), respectively. During the experimental period (20 days) bacterial abundance (DAPI count), culturable heterotrophic bacteria (CFU count), MPN, microbial metabolic activity [Biochemical Oxygen Demand and enzymatic activity (leucine aminopeptidase LAP, ß-glucosidase BG, alkaline phosphatase AP)] and quali-, quantitative analysis of the composition of total extracted and resolved hydrocarbons and their derivates (TERHCs) were carried out. The microbiological and physiological analysis of marine microbial community found during the three different biostimulation and bioaugmentation assays performed in mesocosms show that the load of crude oil increases total microbial abundance, inhibits the activity of some enzymes such as LAP while stimulates both AP and BG activities. The biodegradation results show that bioaugmentation with A. borkumensis SK2(T) alone is able to produce the highest percentage of degradation (95%) in comparison with the biostimulation treatment (80%) and bioaugmentation using an Alcanivorax-Thalassolituus bacterial consortium (70%). This result highlights the reduced biodegradation capability of the consortium used in this study, suggesting an unfavourable interaction between the two bacterial genera.


Assuntos
Alcanivoraceae/metabolismo , Oceanospirillaceae/metabolismo , Petróleo/metabolismo , Água do Mar/química , Água do Mar/microbiologia , Poluentes Químicos da Água/metabolismo , Alcanivoraceae/efeitos dos fármacos , Alcanivoraceae/enzimologia , Carga Bacteriana , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Ativação Enzimática/efeitos dos fármacos , Oceanospirillaceae/efeitos dos fármacos , Oceanospirillaceae/enzimologia , Poluentes Químicos da Água/farmacologia
4.
J Appl Microbiol ; 102(1): 184-94, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17184334

RESUMO

AIMS: Microcosm experiments simulating an oil spill event were performed to evaluate the response of the natural microbial community structure of Messina harbour seawater following the accidental load of petroleum. METHODS AND RESULTS: An experimental harbour seawater microcosm, supplemented with nutrients and crude oil, was monitored above 15 days in comparison with unpolluted ones (control microcosms). Bacterial cells were counted with a Live/Dead BacLight viability kit; leucine aminopeptidase, beta-glucosidase, alkaline phosphatase, lipase and esterase enzymes were measured using fluorogenic substrates. The microbial community dynamic was monitored by isolation of total RNA, RT-PCR amplification of 16S rRNA, cloning and sequencing. Oil addition stimulated an increase of the total bacterial abundance, leucine aminopeptidase and phosphatase activity rates, as well as a change in the community structure. This suggested a prompt response of micro-organisms to the load of petroleum hydrocarbons. CONCLUSIONS: The present study on the viability, specific composition and metabolic characteristics of the microbial community allows a more precise assessment of oil pollution. Both structural and functional parameters offer interesting perspectives as indicators to monitor changes caused by petroleum hydrocarbons. SIGNIFICANCE AND IMPACT OF THE STUDY: A better knowledge of microbial structural successions at oil-polluted sites is essential for environmental bioremediation. Data obtained in microcosm studies improve our understanding of natural processes occurring during oil spills.


Assuntos
Desastres , Petróleo/toxicidade , Água do Mar/microbiologia , Microbiologia da Água , Poluentes Químicos da Água/toxicidade , Alcanivoraceae/classificação , Alcanivoraceae/enzimologia , Alcanivoraceae/isolamento & purificação , Biodegradação Ambiental , Contagem de Colônia Microbiana/métodos , Processos Heterotróficos/fisiologia , Hidrocarbonetos/química , Hidrocarbonetos/toxicidade , Leucil Aminopeptidase/metabolismo , Oxigênio/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Filogenia , Proteobactérias/classificação , Proteobactérias/enzimologia , Proteobactérias/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA