Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.959
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Microbiome ; 12(1): 123, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971798

RESUMO

BACKGROUND: The Atribacterota are widely distributed in the subsurface biosphere. Recently, the first Atribacterota isolate was described and the number of Atribacterota genome sequences retrieved from environmental samples has increased significantly; however, their diversity, physiology, ecology, and evolution remain poorly understood. RESULTS: We report the isolation of the second member of Atribacterota, Thermatribacter velox gen. nov., sp. nov., within a new family Thermatribacteraceae fam. nov., and the short-term laboratory cultivation of a member of the JS1 lineage, Phoenicimicrobium oleiphilum HX-OS.bin.34TS, both from a terrestrial oil reservoir. Physiological and metatranscriptomics analyses showed that Thermatribacter velox B11T and Phoenicimicrobium oleiphilum HX-OS.bin.34TS ferment sugars and n-alkanes, respectively, producing H2, CO2, and acetate as common products. Comparative genomics showed that all members of the Atribacterota lack a complete Wood-Ljungdahl Pathway (WLP), but that the Reductive Glycine Pathway (RGP) is widespread, indicating that the RGP, rather than WLP, is a central hub in Atribacterota metabolism. Ancestral character state reconstructions and phylogenetic analyses showed that key genes encoding the RGP (fdhA, fhs, folD, glyA, gcvT, gcvPAB, pdhD) and other central functions were gained independently in the two classes, Atribacteria (OP9) and Phoenicimicrobiia (JS1), after which they were inherited vertically; these genes included fumarate-adding enzymes (faeA; Phoenicimicrobiia only), the CODH/ACS complex (acsABCDE), and diverse hydrogenases (NiFe group 3b, 4b and FeFe group A3, C). Finally, we present genome-resolved community metabolic models showing the central roles of Atribacteria (OP9) and Phoenicimicrobiia (JS1) in acetate- and hydrocarbon-rich environments. CONCLUSION: Our findings expand the knowledge of the diversity, physiology, ecology, and evolution of the phylum Atribacterota. This study is a starting point for promoting more incisive studies of their syntrophic biology and may guide the rational design of strategies to cultivate them in the laboratory. Video Abstract.


Assuntos
Carbono , Campos de Petróleo e Gás , Filogenia , Carbono/metabolismo , Campos de Petróleo e Gás/microbiologia , RNA Ribossômico 16S/genética , Genoma Bacteriano , Alcanos/metabolismo
2.
Sci Adv ; 10(28): eadl3591, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38985863

RESUMO

The hydrogen isotopic composition (δ2H) of plant compounds is increasingly used as a hydroclimatic proxy; however, the interpretation of δ2H values is hampered by potential coeffecting biochemical and biophysical processes. Here, we studied δ2H values of water and carbohydrates in leaves and roots, and of leaf n-alkanes, in two distinct tobacco (Nicotiana sylvestris) experiments. Large differences in plant performance and biochemistry resulted from (a) soil fertilization with varying nitrogen (N) species ratios and (b) knockout-induced starch deficiency. We observed a strong 2H-enrichment in sugars and starch with a decreasing performance induced by increasing NO3-/NH4+ ratios and starch deficiency, as well as from leaves to roots. However, δ2H values of cellulose and n-alkanes were less affected. We show that relative concentrations of sugars and starch, interlinked with leaf gas exchange, shape δ2H values of carbohydrates. We thus provide insights into drivers of hydrogen isotopic composition of plant compounds and into the mechanistic modeling of plant cellulose δ2H values.


Assuntos
Carboidratos , Hidrogênio , Folhas de Planta , Folhas de Planta/química , Folhas de Planta/metabolismo , Hidrogênio/análise , Carboidratos/química , Carboidratos/análise , Amido/química , Nicotiana/química , Lipídeos/análise , Lipídeos/química , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Metabolismo dos Carboidratos , Deutério/química , Alcanos/análise , Alcanos/química , Água/química
3.
J Ethnopharmacol ; 333: 118414, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38830451

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Hepatocellular Carcinoma (HCC) is an aggressive killer worldwide with high incidence and mortality. The herb Chloranthus fortunei (A. Gray) Solms-Laub is known as "Si Ji Feng" and is classified as a Feng-type medicine in classic Yao medicines. According to Yao's medical beliefs, Chloranthus fortunei has the functions of dispelling Feng, regulating qi, detoxifying, promoting blood circulation, etc. Folk uses its decoctions to treat stagnant liver conditions, such as liver abscesses, cirrhosis, hepatitis, and liver cancer. However, the bioactivity and mechanisms of Chloranthus fortunei extract against HCC have not been reported. AIM OF THE STUDY: To investigate the anti-HCC bioactivity and potential mechanism of the extract of Chloranthus fortunei (CFS). MATERIALS AND METHODS: Using 70% ethanol for reflux extraction of CFS resulted in the CFS ethanol extract, followed by sequential extractions with petroleum ether, chloroform, ethyl acetate, and n-butanol, yielding four fractions. The CCK-8 assay was utilized to examine the cytotoxic effects of 4 fractions on MHCC97-H and HepG2 cells, exploring the most effective component, namely petroleum ether extracts of CFS (PECFS). The major active ingredients of PECFS were identified using LC/MS technology, and the impact on cell proliferation and apoptosis in HCC cells was studied. The key genes and proteins in the pathway were validated using RT-PCR and Western blotting. BALB/c nude mice were chosen for tumor xenotransplantation and PECFS therapy. hinders the proliferation of HCC cells and promotes apoptosis. RESULTS: Among the four fractions, it was found that PECFS have the highest antiproliferative activity against MHCC97-H and HepG2 cells (IC50 = 13.86, 10.55 µg/mL), with sesquiterpene compounds being the primary active constituents. The antiproliferative activity of PECFS on HCC cells was linked to the inhibition of cell cloning, invasion, and metastasis abilities, as well as the arrest of the cell cycle at the G2/M phase. Additionally, exerts pro-apoptotic effects on HCC cells by upregulating the pro-apoptotic protein Bax, downregulating the anti-apoptotic protein Bcl-2, and activating the expression of the Caspase family. Moreover, protein and m-RNA expression data showed that PECFS inhibits HCC cell proliferation and promotes apoptosis by regulating the PI3K/AKT/mTOR pathway. Besides, after PECFS treatment, tumor growth in nude mice was suppressed. CONCLUSION: PECFS can inhibit the viability of HCC cells by acting on the PI3K/AKT/mTOR pathway, demonstrating anti-tumor potential. This study's findings suggest that PECFS may represent a promising source of novel agents for liver cancer treatment, providing scientific evidence for the traditional application of CFS in treating HCC.


Assuntos
Antineoplásicos Fitogênicos , Apoptose , Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos Endogâmicos BALB C , Camundongos Nus , Extratos Vegetais , Animais , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Camundongos , Células Hep G2 , Alcanos/química , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células/efeitos dos fármacos , Masculino
4.
J Ethnopharmacol ; 333: 118405, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38844249

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ecliptea herba, a traditional Chinese herbal medicine for hair loss, was first recorded in the Tang Dynasty's 'Qian Jin Yue Ling', of which the active ingredients and mechanisms of action in the treatment of chemotherapy-induced hair loss remain poorly investigated. AIM OF THE STUDY: To investigate the effects of the petroleum ether extract of Eclipta (PEE) on alopecia and follicle damage and elucidate its potential therapeutic mechanisms using the integration of network pharmacology, bioinformatics, and experimental validation. MATERIALS AND METHODS: UPLC-MS was used to analyse the chemical composition of PEE. A network pharmacology approach was employed to establish the 'components-targets-pathways' network of PEE to explore potential therapeutic pathways and targets. Molecular docking was used for validation, and the mechanism of PEE in treating chemotherapy-induced alopecia (CIA) was elucidated using in vitro and in vivo on CIA models. RESULTS: UPLC-MS analysis of PEE revealed 185 components, while network pharmacology and molecular docking analyses revealed potential active compounds and their target molecules, suggesting the involvement of core genes, such as TP53, ESR1, AKT1, IL6, TNF, and EGFR. The key components included wedelolactone, dimethyl-wedelolactone, luteoloside, linarin, and hispidulin. In vivo, PEE promoted hair growth, restored the number of hair follicles, and reduced follicle apoptosis. Conversely, in vitro, PEE enhanced cell viability, reduced apoptosis, and protected HaCaT cells from damage induced by 4-hydroperoxycyclophosphamide (4-HC). CONCLUSIONS: PEE alleviated hair follicle damage in CIA mice by inhibiting the P53/Fas pathway, which may be associated with inhibiting hair follicle cell apoptosis. This study provides a novel therapeutic strategy for treating cyclophosphamide-induced hair loss.


Assuntos
Alopecia , Eclipta , Simulação de Acoplamento Molecular , Farmacologia em Rede , Proteína Supressora de Tumor p53 , Alopecia/induzido quimicamente , Alopecia/tratamento farmacológico , Animais , Humanos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Eclipta/química , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/metabolismo , Masculino , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Células HaCaT , Ciclofosfamida/toxicidade , Alcanos
5.
J Chromatogr A ; 1729: 465036, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38843573

RESUMO

In this work, a microchip gas chromatography (GC) column assembly utilizing a three-dimensional (3D) printed micro oven and a flexible stainless steel capillary column was developed. The assembly's performance and separation capabilities were characterized. The key components include a 3D printed aluminum plate (7.50 × 7.50 × 0.16 cm) with a 3-meter-long circular spiral channel, serving as the oven, and the column coiled on the channel with an inner diameter of 320 µm and a stationary phase of OV-1. A heating ceramic plate was affixed on the opposite side of the plate. The assembly weighed 40.3 g. The design allows for easy disassembly, or stacking of heating devices and columns, enabling flexibility in adjusting column length. When using n-C13 as the test analyte at 140 °C, a retention factor (k) was 8.5, and 7797 plates (2599 plates/m) were obtained. The assembly, employing resistance heating, demonstrated effective separation performance for samples containing alkanes, aromatics, alcohols and ketones, with good reproducibility. The reduction in theoretical plates compared to oven heating was only 2.95 %. In the boiling point range of C6 to C18, rapid temperature programming (120 °C/min) was achieved with a power consumption of 119.512 W. The assembly was successfully employed to separate benzene series compounds, gasoline and volatile organic compounds (VOCs), demonstrating excellent separation performance. This innovative design addresses the challenges of the complexity and low repeatability of the fabrication process and the high cost associated with microchip columns. Furthermore, its versatility makes it suitable for outdoor analysis applications.


Assuntos
Impressão Tridimensional , Aço Inoxidável , Cromatografia Gasosa/métodos , Cromatografia Gasosa/instrumentação , Aço Inoxidável/química , Desenho de Equipamento , Reprodutibilidade dos Testes , Alcanos/análise , Alcanos/isolamento & purificação , Alcanos/química , Álcoois/análise , Álcoois/química , Álcoois/isolamento & purificação
6.
J Chromatogr A ; 1729: 465052, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38852268

RESUMO

Retention in gas chromatographic systems has a central role in the identification of compounds even if detectors providing spectral information are used. But linear retention indices (LRI) of a single compound originating from multiple sources tend to vary greatly, probably due to differences in the experimental settings of the determinations. The effect of gas chromatographic parameters on LRI has been investigated using 41 compounds - previously identified from food contact plastics - and n-alkanes (n-C7-n-C40) used as reference series. As the reproducibility of LRIs under the same conditions is generally very good, the smallest changes in the settings often caused statistically significant, though irrelevant changes in the LRI values. Therefore, a multicriterial scoring-ranking system has been worked out to highlight the LRI value differences. Our results highlight that column length, heating rate, and film thickness can all be the reasons of the varying published LRI values. We also demonstrated that for the reproduction of LRI data, the chemistry (and not simply the polarity) of the stationary phase is crucial.


Assuntos
Alcanos , Cromatografia Gasosa/métodos , Alcanos/química , Alcanos/análise , Reprodutibilidade dos Testes , Plásticos/química
7.
Nat Commun ; 15(1): 4525, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806518

RESUMO

Medicinal compounds from plants include bicyclo[3.3.1]nonane derivatives, the majority of which are polycyclic polyprenylated acylphloroglucinols (PPAPs). Prototype molecules are hyperforin, the antidepressant constituent of St. John's wort, and garcinol, a potential anticancer compound. Their complex structures have inspired innovative chemical syntheses, however, their biosynthesis in plants is still enigmatic. PPAPs are divided into two subclasses, named type A and B. Here we identify both types in Hypericum sampsonii plants and isolate two enzymes that regiodivergently convert a common precursor to pivotal type A and B products. Molecular modelling and substrate docking studies reveal inverted substrate binding modes in the two active site cavities. We identify amino acids that stabilize these alternative binding scenarios and use reciprocal mutagenesis to interconvert the enzymatic activities. Our studies elucidate the unique biochemistry that yields type A and B bicyclo[3.3.1]nonane cores in plants, thereby providing key building blocks for biotechnological efforts to sustainably produce these complex compounds for preclinical development.


Assuntos
Hypericum , Hypericum/metabolismo , Hypericum/genética , Hypericum/química , Compostos Bicíclicos com Pontes/metabolismo , Compostos Bicíclicos com Pontes/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Simulação de Acoplamento Molecular , Floroglucinol/metabolismo , Floroglucinol/análogos & derivados , Floroglucinol/química , Alcanos/metabolismo , Alcanos/química , Domínio Catalítico , Terpenos/metabolismo , Terpenos/química , Modelos Moleculares
8.
Curr Opin Microbiol ; 79: 102486, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38733792

RESUMO

This review synthesizes recent discoveries of novel archaea clades capable of oxidizing higher alkanes, from volatile ones like ethane to longer-chain alkanes like hexadecane. These archaea, termed anaerobic multicarbon alkane-oxidizing archaea (ANKA), initiate alkane oxidation using alkyl-coenzyme M reductases, enzymes similar to the methyl-coenzyme M reductases of methanogenic and anaerobic methanotrophic archaea (ANME). The polyphyletic alkane-oxidizing archaea group (ALOX), encompassing ANME and ANKA, harbors increasingly complex alkane degradation pathways, correlated with the alkane chain length. We discuss the evolutionary trajectory of these pathways emphasizing metabolic innovations and the acquisition of metabolic modules via lateral gene transfer. Additionally, we explore the mechanisms by which archaea couple alkane oxidation with the reduction of electron acceptors, including electron transfer to partner sulfate-reducing bacteria (SRB). The phylogenetic and functional constraints that shape ALOX-SRB associations are also discussed. We conclude by highlighting the research needs in this emerging research field and its potential applications in biotechnology.


Assuntos
Alcanos , Archaea , Oxirredução , Oxirredutases , Filogenia , Alcanos/metabolismo , Archaea/enzimologia , Archaea/genética , Archaea/metabolismo , Oxirredutases/metabolismo , Oxirredutases/genética , Transporte de Elétrons , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/química , Transferência Genética Horizontal , Bactérias/enzimologia , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação
9.
J Hazard Mater ; 471: 134437, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38691934

RESUMO

Crude oil is a hazardous pollutant that poses significant and lasting harm to human health and ecosystems. In this study, Moesziomyces aphidis XM01, a biosurfactant mannosylerythritol lipids (MELs)-producing yeast, was utilized for crude oil degradation. Unlike most microorganisms relying on cytochrome P450, XM01 employed two extracellular unspecific peroxygenases, MaUPO.1 and MaUPO.2, with preference for polycyclic aromatic hydrocarbons (PAHs) and n-alkanes respectively, thus facilitating efficient crude oil degradation. The MELs produced by XM01 exhibited a significant emulsification activity of 65.9% for crude oil and were consequently supplemented in an "exogenous MELs addition" strategy to boost crude oil degradation, resulting in an optimal degradation ratio of 72.3%. Furthermore, a new and simple "pre-MELs production" strategy was implemented, achieving a maximum degradation ratio of 95.9%. During this process, the synergistic up-regulation of MaUPO.1, MaUPO.1 and the key MELs synthesis genes contributed to the efficient degradation of crude oil. Additionally, the phylogenetic and geographic distribution analysis of MaUPO.1 and MaUPO.1 revealed their wide occurrence among fungi in Basidiomycota and Ascomycota, with high transcription levels across global ocean, highlighting their important role in biodegradation of crude oil. In conclusion, M. aphidis XM01 emerges as a novel yeast for efficient and eco-friendly crude oil degradation.


Assuntos
Biodegradação Ambiental , Glicolipídeos , Oxigenases de Função Mista , Petróleo , Tensoativos , Petróleo/metabolismo , Tensoativos/metabolismo , Tensoativos/química , Glicolipídeos/metabolismo , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/genética , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/química , Alcanos/metabolismo
10.
J Ethnopharmacol ; 331: 118300, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718889

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Schisandra sphenanthera (Schisandra sphenanthera Rehd. et Wils.) is the dried mature fruit of Schisandra sphenanthera, a plant in the Magnoliaceae family. It was used in the treatment of diabetes mellitus in the Jade Fluid Decoction and the Xiaoke pills, which were recorded in ancient books. However, its mechanism of action in the treatment of type 2 diabetes mellitus (T2DM) was unclear and needs further study. AIM OF THE STUDY: This research aimed to investigate the chemical composition and lignan content of Schisandra sphenanthera petroleum ether parts (SPEP) and to evaluate the effects of SPEP on sweet taste receptors (STRs) and intestinal flora in rats on a high-fat diet (HFD). Additionally, the relationships between SPEP and hyperglycemia and insulin resistance were examined. MATERIALS AND METHODS: GC-MS was used to determine the chemical composition of SPEP, and HPLC was used to determine the lignin content. A combination of the HFD and the administration of streptozotocin (STZ) was employed to generate a rat model of T2DM. Petroleum ether extracts from Schisandra sphenanthera were used as the focus of the research to evaluate the effects of these extracts on the glucolipid metabolism of T2DM rats, as well as the underlying mechanisms. RESULTS: Analysis of the GC-MS spectrum of SESP revealed a total of 58 compounds. HPLC analysis revealed that SPEP had the highest concentration of Schisandrin A and the lowest concentration of Schisandrol A. The drug administration intervention resulted in a significant decrease in body weight and pancreatic weight of diabetic rats compared to the Normal group. When compared to the Model group, the body weight of rats in the drug administration group and the Metformin group had a more moderate decrease, while the pancreatic weight and pancreatic-to-body ratio increased. The Model group shown significant increases in FBG, OGTT, GHb, TC, TG, LDL-C, ALT, AST, MDA, FINS, and NEFA, as well as significant decreases in HDL-C and SOD, when compared to the Normal group (P < 0.05). The administration of each group was found to be significantly effective in decreasing FBG, OGTT, GHb, TC, TG, LDL-C, ALT, AST, MDA, FINS, NEFA, while increasing HDL-C and SOD when compared to the Model group. The application of SPEP had a positive impact on hepatocyte swelling, hepatocyte degeneration, and necrosis, as well as the morphological structure of pancreatic islet cells. Furthermore, the protein expression levels of T1R2, TRPM5 and GLP-1 in the small intestine of the Model group were reduced. After a period of six weeks, the protein expression levels began to align more closely with those of the Normal group of rats. Analysis of 16S rRNA sequencing revealed that the intestinal microbiota of diabetic rats was significantly disrupted, with a decrease in the abundance of the Firmicutes phylum and an increase in the abundance of the Bacteroidetes phylum. Furthermore, the composition of the dominant genus was distinct from that of the control group. After the drug intervention, the microbiota of diabetic rats was significantly altered, exhibiting a higher abundance and diversity, as well as a significant enrichment of the community. The SPEP treatment resulted in a significant increase in acetic acid, propionic acid, and butyric acid. CONCLUSIONS: The findings of this research indicated that SPEP could be effective in treating T2DM through the regulation of STRs, the adjustment of disturbed metabolite levels, and the alteration of intestinal flora.


Assuntos
Alcanos , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hiperglicemia , Resistência à Insulina , Extratos Vegetais , Ratos Sprague-Dawley , Schisandra , Animais , Schisandra/química , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Diabetes Mellitus Experimental/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/administração & dosagem , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hiperglicemia/tratamento farmacológico , Ratos , Alcanos/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/isolamento & purificação , Dieta Hiperlipídica/efeitos adversos , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Estreptozocina , Receptores Acoplados a Proteínas G/metabolismo , Lignanas/farmacologia , Lignanas/isolamento & purificação
11.
Microb Biotechnol ; 17(5): e14453, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38683670

RESUMO

Soluble di-iron monooxygenases (SDIMOs) are multi-component enzymes catalysing the oxidation of various substrates. These enzymes are characterized by high sequence and functional diversity that is still not well understood despite their key role in biotechnological processes including contaminant biodegradation. In this study, we analysed a mutant of Rhodoccocus aetherivorans BCP1 (BCP1-2.10) characterized by a transposon insertion in the gene smoA encoding the alpha subunit of the plasmid-located SDIMO SmoABCD. The mutant BCP1-2.10 showed a reduced capacity to grow on propane, lost the ability to grow on butane, pentane and n-hexane and was heavily impaired in the capacity to degrade chloroform and trichloroethane. The expression of the additional SDIMO prmABCD in BCP1-2.10 probably allowed the mutant to partially grow on propane and to degrade it, to some extent, together with the other short-chain n-alkanes. The complementation of the mutant, conducted by introducing smoABCD in the genome as a single copy under a constitutive promoter or within a plasmid under a thiostreptone-inducible promoter, allowed the recovery of the alkanotrophic phenotype as well as the capacity to degrade chlorinated n-alkanes. The heterologous expression of smoABCD allowed a non-alkanotrophic Rhodococcus strain to grow on pentane and n-hexane when the gene cluster was introduced together with the downstream genes encoding alcohol and aldehyde dehydrogenases and a GroEL chaperon. BCP1 smoA gene was shown to belong to the group 6 SDIMOs, which is a rare group of monooxygenases mostly present in Mycobacterium genus and in a few Rhodococcus strains. SmoABCD originally evolved in Mycobacterium and was then acquired by Rhodococcus through horizontal gene transfer events. This work extends the knowledge of the biotechnologically relevant SDIMOs by providing functional and evolutionary insights into a group 6 SDIMO in Rhodococcus and demonstrating its key role in the metabolism of short-chain alkanes and degradation of chlorinated n-alkanes.


Assuntos
Alcanos , Oxigenases de Função Mista , Alcanos/metabolismo , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/genética , Teste de Complementação Genética , Mutagênese Insercional , Biotransformação , Elementos de DNA Transponíveis , Hidrocarbonetos Clorados/metabolismo
12.
Lett Appl Microbiol ; 77(5)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38650069

RESUMO

Environmental pollution with aromatic and aliphatic hydrocarbons caused by oil and petrochemical industries has very toxic and carcinogenic effects on living organisms and should be removed from the environment. In this research, after analyzing the oil sludge of the Bahregan area, it was found that most aliphatic paraffin compounds are related to octadecane, most liquid aliphatic compounds are related to hexadecane, and most aromatic compounds are related to naphthalene, phenanthrene, fluoranthene, and anthracene. Then, we investigated the ability of native bacteria from this area, such as Thalassospira, Chromohalobacter, and a bacterial consortium, to biodegrade the dominant aromatic and aliphatic hydrocarbons found in oil sludge. The results of Gas Chromatography-Mass Spectrometry analysis showed that among the tested hydrocarbon sources, Thalassospira can completely remove octadecane and hexadecane, and Chromohalobacter can reduce hexadecane from 15.9 to 9.9%. The bacterial consortium can completely remove octadecane and reduce hexadecane from 15.9 to 5.1%, toluene from 25.6 to 0.6%, and phenanthrene from 12.93 to 6%. According to the obtained results, the bacterial consortium effectively plays a role in the biodegradation of aromatic and aliphatic hydrocarbons, making it a viable solution for treating hydrocarbon pollutants in various environments.


Assuntos
Bactérias , Biodegradação Ambiental , Hidrocarbonetos Aromáticos , Bactérias/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Hidrocarbonetos Aromáticos/metabolismo , Alcanos/metabolismo , Esgotos/microbiologia , Fenantrenos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Petróleo/metabolismo , Petróleo/microbiologia , Consórcios Microbianos
13.
J Mol Graph Model ; 129: 108752, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38479237

RESUMO

On the basis of the atomic graph-theoretical index - aEAID (atomic Extended Adjacency matrix IDentification) and molecular adjacent topological index - ATID (Adjacent Topological IDentification) suggested by one of the authors (Zhang Q), a highly selective atomic topological index - aATID (atomic Adjacent Topological IDentification) index was suggested to identify the equivalent atoms in this study. The aATID index of an atom was derived from the number of the attached hydrogen atoms of the atom but omitting bond types. In this case, the suggested index can be used to identify equivalent atoms in chemistry but perhaps not equivalent in the molecular graph. To test the uniqueness of aATID indices, the virtual atomic data sets were derived from alkanes containing 15-20 carbon atoms and the isomers of Octogen, as well as a real data set was derived from the NCI database. Only four pairs of atoms from alkanes containing 20 carbons can't be discriminated by aATID, that is, four pairs of degenerates were found for this data set. To solve this problem, the aATID index was modified by introducing distance factors between atoms, and the 2-aATID index was suggested. Its uniqueness was examined by 5,939,902 atoms derived from alkanes containing 20 carbons and further 16,166,984 atoms from alkanes of 21 carbons, and no degenerates were found. In addition, another large real data set of 16,650,688 atoms derived from the PubChem database was also used to test the uniqueness of both aATID and 2-aATID. As a result, each atom was successfully discriminated by any of the two indices. Finally, the suggested aATID index was applied to the identification of duplicate atoms as data pretreatment for QSPR (Quantitative Structure-Property Relationships) studies.


Assuntos
Alcanos , Relação Quantitativa Estrutura-Atividade , Isomerismo , Alcanos/química , Carbono/química
14.
J Oleo Sci ; 73(4): 625-636, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556296

RESUMO

The direct incorporation of low viscosity organic liquids (OL) such as dodecane and tributylphosphate (TBP) into fresh geopolymers (GP) is difficult and generally leads to variable amounts of un-incorporated OL remaining outside the hardened geopolymer. Experimentally, it is observed that a regular torque increase during OL incorporation corresponds to a suitable dispersion of the OL in the form of fine micrometric droplets. This can be obtained for TBP and dodecane by adding a small quantity of quaternary ammoniums salts (QAs) such as cetyltrimethylammonium bromide (CTAB). Shorter alkyl chains QAs, such as hexamethyltrimethylammonium (HMTA) can also be used but with a reduced efficiency. The positive impact of CTAB is then confirmed by the Washburn capillary rise method, showing that the interactions between TBP and CTAB-modified metakaolin are weaker compared to untreated powder. Finally, it is observed that the incorporation of TBP into geopolymer slurries is much easier than the incorporation of dodecane. The low interfacial tension measured between TBP and the activating solution (around 8 mN·m -1 ), contrasting with dodecane (29 mN·m -1 ), explains that the dispersion of TBP droplets in fresh metakaolin suspensions is more efficient.


Assuntos
Alcanos , Compostos de Amônio Quaternário , Cetrimônio , Tensão Superficial
15.
Environ Sci Pollut Res Int ; 31(17): 26170-26181, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38498134

RESUMO

The wet flue gas desulfurization (WFGD) system of coal-fired power plants shows a good removal effect on condensable particulate matter (CPM), reducing the dust removal pressure for the downstream flue gas purification devices. In this work, the removal effect of a WFGD system on CPM and its organic pollutants from a coal-fired power plant was studied. By analyzing the organic components of the by-products emitted from the desulfurization tower, the migration characteristics of organic pollutants in gas, liquid, and solid phases, as well as the impact of desulfurization towers on organic pollutants in CPM, were discussed. Results show that more CPM in the flue gas was generated by coal-fired units at ultra-low load, and the WFGD system had a removal efficiency nearly 8% higher than that at full load. The WFGD system had significant removal effect on two typical esters, especially phthalate esters (PAEs), with the highest removal efficiency of 49.56%. In addition, the WFGD system was better at removing these two esters when the unit was operating at full load. However, it had a negative effect on n-alkanes, which increased the concentration of n-alkanes by 8.91 to 19.72%. Furthermore, it is concluded that the concentration distribution of the same type of organic pollutants in desulfurization wastewater was similar to that in desulfurization slurry, but quite different from that in coal-fired flue gas. The exchange of three organic pollutants between flue gas and desulfurization slurry was not significant, while the concentration distribution of organic matters in gypsum was affected by coal-fired flue gas.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Material Particulado/análise , Poluentes Atmosféricos/análise , Gases , Centrais Elétricas , Carvão Mineral , Alcanos
16.
J Ethnopharmacol ; 328: 117957, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38493904

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: As reported in the Ancient Chinese Medicinal Books, Ginkgo biloba L. fruit has been used as a traditional Chinese medicine for the treatment asthma and cough or as a disinfectant. Our previous study demonstrated that G. biloba exocarp extract (GBEE), an extract of a traditional Chinese herb, inhibits the formation of methicillin-resistant Staphylococcus aureus (MRSA) biofilms. However, GBEE is a crude extract that contains many components, and the underlying mechanisms of purified GBEE fractions extracted with solvents of different polarities are unknown. AIM OF THE STUDY: This study aimed to investigate the different components in GBEE fractions extracted with solvents of different polarities and their antibacterial effects and mechanisms against MRSA and Staphylococcus haemolyticus biofilms both in vitro and in vivo. METHODS: The components in different fractions were detected by high-performance liquid chromatography-high resolution mass spectrometry (HPLC-HRMS). Microbroth dilution assays and time growth curves were used to determine the antibacterial effects of the fractions on 15 clinical bacterial isolates. Crystal violet staining, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were utilized to identify the fractions that affected bacterial biofilm formation. The potential MRSA targets of the GBEE fraction obtained with petroleum ether (PE), denoted GBEE-PE, were screened by transcriptome sequencing, and the gene expression profile was verified by quantitative polymerase chain reaction (qPCR). RESULTS: HPLC-HRMS analysis revealed that the four GBEE fractions (extracted with petroleum ether, ethyl acetate, n-butanol, and water) contained different ginkgo components, and the antibacterial effects decreased as the polarity of the extraction solvent increased. The antibacterial activity of GBEE-PE was greater than that of the GBEE fraction extracted with ethyl acetate (EA). GBEE-PE improved H. illucens survival and reduced MRSA colonization in model mouse organs. Crystal violet staining and SEM and TEM analyses revealed that GBEE-PE inhibited MRSA and S. haemolyticus biofilm formation. Transcriptional analysis revealed that GBEE-PE inhibits MRSA biofilms by altering ion transport, cell wall metabolism and virulence-related gene expression. In addition, the LO2 cell viability and H. illucens toxicity assay data showed that GBEE-PE at 20 mg/kg was nontoxic. CONCLUSION: The GBEE fractions contained different components, and their antibacterial effects decreased with increases in the polarity of the extraction solvent. GBEE-PE limited MRSA growth and biofilm formation by affecting ion transport, cell wall synthesis, and virulence-related pathways. This research provides a more detailed overview of the mechanism by which GBEE-PE inhibits MRSA both in vitro and in vivo and suggests that GBEE-PE is a new prospective antimicrobial with the potential to be used in MRSA therapeutics in the future.


Assuntos
Acetatos , Alcanos , Staphylococcus aureus Resistente à Meticilina , Animais , Camundongos , Ginkgo biloba/química , Virulência , Violeta Genciana/farmacologia , Estudos Prospectivos , Extratos Vegetais/farmacologia , Solventes/química , Antibacterianos/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana
17.
Med Mycol ; 62(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38389246

RESUMO

Candida albicans is a dimorphic opportunistic pathogen in immunocompromised individuals. We have previously demonstrated that sodium houttuyfonate (SH), a derivative of medicinal herb Houttuynia cordata Thunb, was effective for antifungal purposes. However, the physical impediment of SH by C. albicans ß-glucan may weaken the antifungal activity of SH. In this study, the interactions of SH with cell wall (CW), extracellular matrix (EM), CW ß-glucan, and a commercial ß-glucan zymosan A (ZY) were inspected by XTT assay and total plate count in a standard reference C. albicans SC5314 as well as two clinical fluconazole-resistant strains Z4935 and Z5172. After treatment with SH, the content and exposure of CW ß-glucan, chitin, and mannan were detected, the fungal clearance by phagocytosis of RAW264.7 and THP-1 was examined, and the gene expressions and levels of cytokines TNF-ɑ and IL-10 were also monitored. The results showed that SH could be physically impeded by ß-glucan in CW, EM, and ZY. This impediment subsequently triggered the exposure of CW ß-glucan and chitin with mannan masked in a time-dependent manner. SH-induced ß-glucan exposure could significantly enhance the phagocytosis and inhibit the growth of C. albicans. Meanwhile, the SH-pretreated fungal cells could greatly stimulate the cytokine gene expressions and levels of TNF-ɑ and IL-10 in the macrophages. In sum, the strategy that the instant physical impediment of C. albicans CW to SH, which can induce the exposure of CW ß-glucan may be universal for C. albicans in response to physical deterrent by antifungal drugs.


Assuntos
Alcanos , Candida albicans , Sulfitos , beta-Glucanas , Humanos , Antifúngicos/uso terapêutico , beta-Glucanas/farmacologia , Interleucina-10/metabolismo , Interleucina-10/farmacologia , Fator de Necrose Tumoral alfa , Mananas , Fagocitose , Quitina/metabolismo , Parede Celular/metabolismo
18.
Chemosphere ; 352: 141400, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340993

RESUMO

The analysis of chlorinated paraffins (CPs) has become a major analytical challenge. GC-ECNI-HRMS coupling is often used to analyse and quantify them. However, the influence of certain GC and ECNI parameters on the responses of polychlorinated n-alkanes (PCAs), the dominant components of CPs, has hardly been studied. In this paper, we investigated not only the influence of GC column characteristics, but also oven, GC inlet and source temperatures for simultaneous analysis of PCAs with chain-length ranging from 10 up to 20 carbon atoms (PCAs-C10-20). Particular attention was paid to the absolute response and PCA homologue group pattern obtained for a CP technical mixture. The optimum conditions for a wide homologue group determination were GC inlet, final gradient and ion source temperatures set at 220-240 °C, 340 °C and 200 °C. At the same time, a higher response was obtained with the Optima 5HT column compared to Optima 1 column, and with a length and film thickness of 12.5 m and 0.25 µm, respectively. The homologue group pattern of the technical mixture studied was significantly modified as a function of the source and GC inlet temperatures, film thickness and composition of the stationary phase. Here we recommend conditions that will improve the overall PCA pattern, in order to better characterise their occurrence in future environmental monitoring and exposure assessment.


Assuntos
Hidrocarbonetos Clorados , Parafina , Cromatografia Gasosa-Espectrometria de Massas/métodos , Parafina/análise , Hidrocarbonetos Clorados/análise , Espectrometria de Massas , Monitoramento Ambiental/métodos , Alcanos/análise
19.
Se Pu ; 42(1): 75-83, 2024 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-38197208

RESUMO

Most preservatives are irritating and can easily induce skin sensitivities. Therefore, both domestic and international regulations impose clear restrictions on the use of preservatives in cosmetics. Herein, gas chromatography-tandem mass spectrometry (GC-MS/MS) was employed to simultaneously analyze the levels of 15 preservative allergens in cosmetics. Further, a precise identification approach based on a two-column retention index and mass spectrometry matching degree was developed. Cosmetic samples were extracted via acetonitrile vortex ultrasound extraction and then dehydrated with anhydrous MgSO4. The preservative allergens were separated on two columns, namely, DB-5MS and DB-WAX. Targets were identified using electron impact ionization (EI) source and the multiple reaction monitoring (MRM) mode and characterized using a retention index calibrated by a series of n-alkane standards. Following two tests, the LODs for the 15 preservative allergens on the DB-5MS column were in the range of 0.02-0.2 mg/kg, while those for 12 preservative allergens on the DB-WAX column were in the range of 0.01-20 mg/kg. The preservative allergens on the DB-5MS and DB-WAX columns demonstrated strong correlations, with all correlation coefficients exceeding 0.99. The recoveries for the 15 preservative allergens were in the range of 70.1%-129.8% at low, medium, and high levels, and the relative standard deviations (RSDs) were all below 15% (n=6) when using water, lotion, facial mask, and cream as the representative matrix. Next, 80 batches of genuine samples were tested using the established method. Isopropyl 4-hydroxybenzoate, a prohibited preservative, was detected in two sample batches using the DB-5MS and DB-WAX columns. Additionally, 11 and 10 restricted preservative allergens were identified on the DB-5MS and DB-WAX columns, respectively. The test results indicate that the double-column system approach offers excellent accuracy, effectively preventing false-positive and false-negative results, and can detect the 15 preservative allergens in cosmetics. The use of the retention index for the qualitative detection of these preservative allergens offers valuable options for non-targeted screening and meeting regulatory criteria.


Assuntos
Alérgenos , Cosméticos , Espectrometria de Massas em Tandem , Cromatografia Gasosa-Espectrometria de Massas , Alcanos , Conservantes Farmacêuticos
20.
Environ Sci Pollut Res Int ; 31(6): 9713-9731, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38194174

RESUMO

Indoor pollution and deposition dust (DD), in particular, are acquiring concern, due to long exposure time and importance of intake by humans through contact and ingestion. Hospitals look a special category of sites, owing to peculiar contaminants affecting them and to presence of people prone to adverse effects induced by toxicants. Four in-field campaigns aimed at understanding the chemical composition of DD were performed in five Italian hospitals. Measurements were performed before (autumn 2019), during (spring 2021), and after (winter 2022) the peak of SARS-CoV2 and when restrictions caused by pandemic were revoked (winter 2023). Parallel measurements were made outdoors (2022), as well as in a university and a dwelling. Targeted contaminants were n-alkanes and polycyclic aromatic hydrocarbons (PAHs), while iso- and anteiso-alkanes were analyzed to assess the impact of tobacco smoking. Total n-alkanes ranged from 3.9 ± 2.3 to 20.5 ± 4.2 mg/g, with higher percentages of short chain homologs in 2019. PAHs ranged from 0.24 ± 0.22 to 0.83 ± 0.50 mg/g, with light congeners (≤ 228 a.m.u.) always exceeding the heavy ones (≥ 252 a.m.u.). According to carbon preference indexes, alkanes originated overall from anthropogenic sources. Microorganisms resulted to affect a hospital, and tobacco smoke accounted for ~ 4-20‰ of DD mass. As for PAH sources, the diagnostic concentration ratios suggested the concourse of biological matter burning and vehicle emission. Benzo[a]pyrene equivalent carcinogenic and mutagenic potencies of depositions at hospitals ranged ~ 9-39 µg/g and ~ 15-76 µg/g, respectively, which seems of concern for health. DD composition in hospitals was different from that outside the premises, as well as that found at university and at dwelling.


Assuntos
COVID-19 , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Alcanos/análise , Monitoramento Ambiental/métodos , RNA Viral , Pandemias , SARS-CoV-2 , Substâncias Perigosas , Poeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA