Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 306
Filtrar
1.
Ecotoxicol Environ Saf ; 277: 116399, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677070

RESUMO

Perfluoroalkyl and polyfluoroalkyl substances (PFASs), as pollutants, can cause palpable environmental and health impacts around the world, as endocrine disruptors, can disrupt endocrine homeostasis and increase the risk of diseases. Chlorinated polyfluoroalkyl ether sulfonate (F-53B), as a substitute for PFAS, was determined to have potential toxicity. Puberty is the stage when sexual organs develop and hormones change dramatically, and abnormal uterine development can increase the risk of uterine lesions and lead to infertility. This study was designed to explore the impact of F-53B on uterine development during puberty. Four-week-old female SD rats were exposed to 0.125 and 6.25 mg/L F-53B during puberty. The results showed that F-53B interfered with growth and sex hormone levels and bound to oestrogen-related receptors, which affected their function, contributed to the accumulation of reactive oxygen species, promoted cell apoptosis and inhibited cell proliferation, ultimately causing uterine dysplasia.


Assuntos
Alcanossulfonatos , Apoptose , Disruptores Endócrinos , Espécies Reativas de Oxigênio , Maturidade Sexual , Útero , Animais , Feminino , Ratos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Fluorocarbonos/toxicidade , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptores de Estrogênio/metabolismo , Maturidade Sexual/efeitos dos fármacos , Útero/efeitos dos fármacos , Alcanossulfonatos/toxicidade
2.
Environ Sci Technol ; 58(14): 6415-6424, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38528735

RESUMO

The total oxidizable precursor (TOP) assay has been extensively used for detecting PFAS pollutants that do not have analytical standards. It uses hydroxyl radicals (HO•) from the heat activation of persulfate under alkaline pH to convert H-containing precursors to perfluoroalkyl carboxylates (PFCAs) for target analysis. However, the current TOP assay oxidation method does not apply to emerging PFAS because (i) many structures do not contain C-H bonds for HO• attack and (ii) the transformation products are not necessarily PFCAs. In this study, we explored the use of classic acidic persulfate digestion, which generates sulfate radicals (SO4-•), to extend the capability of the TOP assay. We examined the oxidation of Nafion-related ether sulfonates that contain C-H or -COO-, characterized the oxidation products, and quantified the F atom balance. The SO4-• oxidation greatly expanded the scope of oxidizable precursors. The transformation was initiated by decarboxylation, followed by various spontaneous steps, such as HF elimination and ester hydrolysis. We further compared the oxidation of legacy fluorotelomers using SO4-• versus HO•. The results suggest novel product distribution patterns, depending on the functional group and oxidant dose. The general trends and strategies were also validated by analyzing a mixture of 100000- or 10000-fold diluted aqueous film-forming foam (containing various fluorotelomer surfactants and organics) and a spiked Nafion precursor. Therefore, (1) the combined use of SO4-• and HO• oxidation, (2) the expanded list of standard chemicals, and (3) further elucidation of SO4-• oxidation mechanisms will provide more critical information to probe emerging PFAS pollutants.


Assuntos
Poluentes Ambientais , Polímeros de Fluorcarboneto , Fluorocarbonos , Poluentes Químicos da Água , Éter , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Ácidos Carboxílicos , Éteres , Alcanossulfonatos , Etil-Éteres , Digestão , Estresse Oxidativo
3.
J Hazard Mater ; 469: 133919, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38432093

RESUMO

Chlorinated polyfluorinated ether sulfonate (Cl-PFESA), a substitute for perfluorooctane sulfonate (PFOS), has been widely used in the Chinese electroplating industry under the trade name F-53B. The production and use of F-53B is keep increasing in recent years, consequently causing more emissions into the environment. Thus, there is a growing concern about the adverse effects of F-53B on human health. However, related research is very limited, particularly in terms of its toxicity to the vascular system. In this study, C57BL/6 J mice were exposed to 0.04, 0.2, and 1 mg/kg F-53B for 12 weeks to assess its impact on the vascular system. We found that F-53B exposure caused aortic wall thickening, collagen deposition, and reduced elasticity in mice. In addition, F-53B exposure led to a loss of vascular endothelial integrity and a vascular inflammatory response. Intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were found to be indispensable for this process. Furthermore, RNA sequencing analysis revealed that F-53B can decrease the repair capacity of endothelial cells by inhibiting their proliferation and migration. Collectively, our findings demonstrate that F-53B exposure induces vascular inflammation and loss of endothelial integrity as well as suppresses the repair capacity of endothelial cells, which ultimately results in vascular injury, highlighting the need for a more thorough risk assessment of F-53B to human health.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Humanos , Animais , Camundongos , Éter/metabolismo , Células Endoteliais , Peixe-Zebra/metabolismo , Camundongos Endogâmicos C57BL , Poluentes Químicos da Água/análise , Alcanossulfonatos/toxicidade , Ácidos Alcanossulfônicos/toxicidade , Ácidos Alcanossulfônicos/metabolismo , Fluorocarbonos/análise
4.
Environ Sci Technol ; 58(10): 4737-4750, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38408453

RESUMO

Landfills are the final stage of urban wastes containing perfluoroalkyl and polyfluoroalkyl substances (PFASs). PFASs in the landfill leachate may contaminate the surrounding groundwater. As major environmental pollutants, emerging PFASs have raised global concern. Besides the widely reported legacy PFASs, the distribution and potential toxic effects of numerous emerging PFASs remain unclear, and unknown PFASs still need discovery and characterization. This study proposed a comprehensive method for PFAS screening in leachate samples using suspect and nontarget analysis. A total of 48 PFASs from 10 classes were identified; nine novel PFASs including eight chloroperfluoropolyether carboxylates (Cl-PFPECAs) and bistriflimide (HNTf2) were reported for the first time in the leachate, where Cl-PFPECA-3,1 and Cl-PFPECA-2,2 were first reported in environmental media. Optimized molecular docking models were established for prioritizing the PFASs with potential activity against peroxisome proliferator-activated receptor α and estrogen receptor α. Our results indicated that several emerging PFASs of N-methyl perfluoroalkyl sulfonamido acetic acids (N-MeFASAAs), n:3 fluorotelomer carboxylic acid (n:3 FTCA), and n:2 fluorotelomer sulfonate (n:2 FTSA) have potential health risks that cannot be ignored.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Simulação de Acoplamento Molecular , Fluorocarbonos/toxicidade , Fluorocarbonos/análise , Instalações de Eliminação de Resíduos , Alcanossulfonatos , Ácidos Carboxílicos/análise
5.
Bioresour Technol ; 397: 130500, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423487

RESUMO

This study investigates the behaviors and effects of F-53B, an alternative to perfluorooctane sulfonate on anaerobic ammonium oxidation (anammox) processes. Results showed that the nitrogen removal efficiency (NRE) reached 83.8 % at a F-53B concentration of 0.5 mg·L-1, while NRE decreased to 66.9 % with 5 mg·L-1 of F-53B. The defluorination rates of 17.8 % (0.5 mg·L-1) and 9.3 % (5 mg·L-1) were observed, respectively, suggesting the occurrence of F-53B degradation. The relative abundance of Ca. Kuenenia decreased from 26.1 % to 16.2 % with the F-53B concentration increasing from 0.5 mg·L-1 to 5 mg·L-1. Meanwhile, Denitratisoma was selectively enriched with a relative abundance of 40.7 % at an F-53B concentration of 0.5 mg·L-1. Ca. Kuenenia could reduce reactive oxygen species induced by F-53B to maintain the balance of oxidative stress. This study gains insight into the behaviors and metabolic mechanisms of F-53B in anammox consortia, suggesting the feasibility of anammox processes for industrial wastewater.


Assuntos
Oxidação Anaeróbia da Amônia , Éter , Animais , Éter/metabolismo , Desnitrificação , Peixe-Zebra/metabolismo , Alcanossulfonatos/metabolismo , Nitrogênio/metabolismo , Oxirredução , Reatores Biológicos
6.
Sci Total Environ ; 913: 169702, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38163615

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a class of highly stable chemicals, widely used in everyday products, and widespread in the environment, even in pregnant women. While epidemiological studies have linked prenatal exposure to PFAS with atopic dermatitis in children, little is known about their toxic effects on skin development, especially during the embryonic stage. In this study, we utilized human embryonic stem cells to generate non-neural ectoderm (NNE) cells and exposed them to six PFAS (perfluorooctanoic acid (PFOA), undecafluorohexanoic acid (PFHxA), heptafluorobutyric acid (PFBA), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS) and perfluorobutyric acid (PFBS)) during the differentiation process to assess their toxicity to early skin development. Our results showed that PFOS altered the spindle-like morphology of NNE cells to a pebble-like morphology, and disrupted several NNE markers, including KRT16, SMYD1, and WISP1. The six PFAS had a high potential to cause hypohidrotic ectodermal dysplasia (HED) by disrupting the expression levels of HED-relevant genes. Transcriptomic analysis revealed that PFOS treatment produced the highest number (1156) of differentially expressed genes (DEGs) among the six PFAS, including the keratinocyte-related genes KRT6A, KRT17, KRT18, KRT24, KRT40, and KRT81. Additionally, we found that PFOS treatment disturbed several signaling pathways that are involved in regulating skin cell fate decisions and differentiation, including TGF-ß, NOTCH, Hedgehog, and Hippo signaling pathways. Interestingly, we discovered that PFOS inhibited, by partially interfering with the expression of cytoskeleton-related genes, the ciliogenesis of NNE cells, which is crucial for the intercellular transduction of the above-mentioned signaling pathways. Overall, our study suggests that PFAS can inhibit ciliogenesis and hamper the transduction of important signaling pathways, leading potential congenital skin diseases. It sheds light on the underlying mechanisms of early embryonic skin developmental toxicity and provides an explanation for the epidemiological data on PFAS. ENVIRONMENTAL IMPLICATION: We employed a model based on human embryonic stem cells to demonstrate that PFOS has the potential to elevate the risk of hypohidrotic ectodermal dysplasia. This is achieved by targeting cilia, inhibiting ciliogenesis, and subsequently disrupting crucial signaling pathways like TGF-ß, NOTCH, Hedgehog, and Hippo, during the early phases of embryonic skin development. Our study highlights the dangers and potential impacts of six PFAS pollutants on human skin development. Additionally, we emphasize the importance of closely considering PFHxA, PFBA, PFHxS, and PFBS, as they have shown the capacity to modify gene expression levels, albeit to a lesser degree.


Assuntos
Ácidos Alcanossulfônicos , Displasia Ectodérmica Anidrótica Tipo 1 , Poluentes Ambientais , Fluorocarbonos , Criança , Humanos , Feminino , Gravidez , Animais , Ouriços , Ácidos Alcanossulfônicos/toxicidade , Alcanossulfonatos , Poluentes Ambientais/toxicidade , Fluorocarbonos/toxicidade , Fator de Crescimento Transformador beta , Microtúbulos
7.
Cancer Med ; 13(3): e6812, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38239047

RESUMO

BACKGROUND: It has been shown that tumor microenvironment (TME) hydroxyapatite (HAP) is typically associated with many malignancies and plays a role in tumor progression and growth. Additionally, acidosis in the TME has been reported to play a key role in selecting for a more aggressive tumor phenotype, drug resistance and desensitization to immunotherapy for many types of cancers. TME-HAP is an attractive target for tumor detection and treatment development since HAP is generally absent from normal soft tissue. We provide strong evidence that dissolution of hydroxyapatite (HAP) within the tumor microenvironment (TME-HAP) using a novel therapeutic can be used to kill cancer cells both in vitro and in vivo with minimal adverse effects. METHODS: We developed an injectable cation exchange nano particulate sulfonated polystyrene solution (NSPS) that we engineered to dissolve TME-HAP, inducing localized acute alkalosis and inhibition of tumor growth and glucose metabolism. This was evaluated in cell culture using 4T1, MDA-MB-231 triple negative breast cancer cells, MCF10 normal breast cells, and H292 lung cancer cells, and in vivo using orthotopic mouse models of cancer that contained detectable microenvironment HAP including breast (MMTV-Neu, 4T1, and MDA-MB-231), prostate (PC3) and colon (HCA7) cancer using 18 F-NaF for HAP and 18 F-FDG for glucose metabolism with PET imaging. On the other hand, H292 lung tumor cells that lacked detectable microenvironment HAP and MCF10a normal breast cells that do not produce HAP served as negative controls. Tumor microenvironment pH levels following injection of NSPS were evaluated via Chemical Exchange Saturation (CEST) MRI and via ex vivo methods. RESULTS: Within 24 h of adding the small concentration of 1X of NSPS (~7 µM), we observed significant tumor cell death (~ 10%, p < 0.05) in 4T1 and MDA-MB-231 cell cultures that contain HAP but ⟨2% in H292 and MCF10a cells that lack detectable HAP and in controls. Using CEST MRI, we found extracellular pH (pHe) in the 4T1 breast tumors, located in the mammary fat pad, to increase by nearly 10% from baseline before gradually receding back to baseline during the first hour post NSPS administration. in the tumors that contained TME-HAP in mouse models, MMTV-Neu, 4T1, and MDA-MB-231, PC3, and HCA7, there was a significant reduction (p<0.05) in 18 F-Na Fuptake post NSPS treatment as expected; 18 F- uptake in the tumor = 3.8 ± 0.5 %ID/g (percent of the injected dose per gram) at baseline compared to 1.8 ±0.5 %ID/g following one-time treatment with 100 mg/kg NSPS. Of similar importance, is that 18 F-FDG uptake in the tumors was reduced by more than 75% compared to baseline within 24 h of treatment with one-time NSPS which persisted for at least one week. Additionally, tumor growth was significantly slower (p < 0.05) in the mice treated with one-time NSPS. Toxicity showed no evidence of any adverse effects, a finding attributed to the absence of HAP in normal soft tissue and to our therapeutic NSPS having limited penetration to access HAP within skeletal bone. CONCLUSION: Dissolution of TME-HAP using our novel NSPS has the potential to provide a new treatment paradigm to enhance the management of cancer patients with poor prognosis.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neoplasias Pulmonares , Humanos , Masculino , Animais , Camundongos , Preparações Farmacêuticas , Fluordesoxiglucose F18 , Imunoterapia , Alcanossulfonatos , Glucose , Hidroxiapatitas , Microambiente Tumoral
8.
Environ Toxicol Chem ; 43(1): 170-181, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37861387

RESUMO

High levels of 6:2 chlorinated polyfluorinated ether sulfonate (F-53B), which is a substitute for perfluorooctane sulfonate (PFOS), are detected in various environmental matrices, wildlife, and humans. Chlorinated polyfluorinated ether sulfonate has received increased attention due to its potential risk to ecosystems. However, its toxicity in the soil organisms remains unclear. In the present study, a comparative investigation was conducted on the toxicities of 6:2 Chlorinated polyfluorinated ether sulfonate (F-53B) and PFOS to the earthworm Eisenia. fetida. F-53B was significantly more acutely toxic to earthworms than PFOS, with median lethal concentrations of 1.43 and 1.83 mmol/kg dry soil (~816 and 984 mg/kg dry soil), respectively. Although both F-53B and PFOS, at 0.4 mmol/kg dry soil (=228 and 215 mg/kg dry soil) caused oxidative stress in earthworms, as evidenced by increased superoxide dismutase, peroxidase, and catalase activities as well as malondialdehyde level, the stress caused by F-53B was higher than that caused by PFOS. In transcriptomic and metabolomic studies, negative effects of PFOS and F-53B were observed on several metabolic processes in earthworms, including protein digestion and amino acid absorption, lipid metabolism, and the immune response. Compared with PFOS, F-53B exhibited a weaker disruption of lipid metabolism, comparable potency for toxicity to the immune response, and a stronger potency in extracellular matrix destruction along with apoptosis and ferroptosis induction. Hence, our data suggest that F-53B is more toxic than PFOS to earthworms. The findings provide some new insights into the potential toxicity of F-53B to soil organisms. Environ Toxicol Chem 2024;43:170-181. © 2023 SETAC.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Oligoquetos , Humanos , Animais , Éter/metabolismo , Ecossistema , Peixe-Zebra/metabolismo , Ácidos Alcanossulfônicos/toxicidade , Ácidos Alcanossulfônicos/metabolismo , Alcanossulfonatos/metabolismo , Alcanossulfonatos/toxicidade , Fluorocarbonos/metabolismo , Solo
9.
Bioresour Technol ; 393: 130138, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38040307

RESUMO

The efficient conversion of cellulose to high value-added products is important for the utilization of cellulose biomass. Achieving efficient cellulose hydrolysis and timely products separation is the essential target. Herein, a modified sulfonated graphene oxide/polydopamine deposited polyethersulfone (mGO(SO3H)-PDA/PES) membrane reactor, combining in the same unit a conversion effect and a separation effect, was prepared by suction filtration and subsequent polymerization and adhesion. The structure of PES membrane and deposition of PDA was regulated to sure that small molecules can pass through the membrane, while cellulose could not. As a result, the mGO(SO3H)-PDA/PES membrane realized the efficient cellulose hydrolysis and timely products separation under cross-flow circulation mode at 0.1 MPa, avoiding the further degradation of reducing sugar products. The yields of total reducing sugar (TRS) and glucose in separated hydrolysate reached 93.2 % and 85.5 %, respectively. This strategy provides potential guidance for efficient conversion of cellulose.


Assuntos
Celulose , Éter , Grafite , Celulose/metabolismo , Hidrólise , Óxido de Magnésio , Sulfonas , Açúcares , Alcanossulfonatos , Etil-Éteres , Éteres
10.
Environ Health Perspect ; 131(11): 117011, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37995155

RESUMO

BACKGROUND: Perfluorohexane sulfonate (PFHxS) is a frequently detected per- and polyfluoroalkyl substance in most populations, including in individuals who are pregnant, a period critical for early life development. Despite epidemiological evidence of exposure, developmental toxicity, particularly at realistic human exposures, remains understudied. OBJECTIVES: We evaluated the effect of gestational exposure to human-relevant body burden of PFHxS on fetal and placental development and explored mechanisms of action combining alternative splicing (AS) and gene expression (GE) analyses. METHODS: Pregnant ICR mice were exposed to 0, 0.03, and 0.3µg/kg/day from gestational day 7 to day 17 via oral gavage. Upon euthanasia, PFHxS distribution was measured using liquid chromatography-tandem mass spectrometry. Maternal and fetal phenotypes were recorded, and histopathology was examined for placenta impairment. Multiomics was adopted by combining AS and GE analyses to unveil disruptions in mRNA quality and quantity. The key metabolite transporters were validated by quantitative real-time PCR (qRT-PCR) for quantification and three-dimensional (3D) structural simulation by AlphaFold2. Targeted metabolomics based on liquid chromatography-tandem mass spectrometry was used to detect amino acid and amides levels in the placenta. RESULTS: Pups developmentally exposed to PFHxS exhibited signs of intrauterine growth restriction (IUGR), characterized by smaller fetal weight and body length (p<0.01) compared to control mice. PFHxS concentration in maternal plasma was 5.01±0.54 ng/mL. PFHxS trans-placenta distribution suggested dose-dependent transfer through placental barrier. Histopathology of placenta of exposed dams showed placental dysplasia, manifested with an attenuated labyrinthine layer area and deescalated blood sinus counts and placental vascular development index marker CD34. Combined GE and AS analyses pinpointed differences in genes associated with key biological processes of placental development, proliferation, metabolism, and transport in placenta of exposed dams compared to that of control dams. Further detection of placental key transporter gene expression, protein structure simulation, and amino acid and amide metabolites levels suggested that PFHxS exposure during pregnancy led to impairment of placental amino acid transportation. DISCUSSION: The findings from this study suggest that exposure to human-relevant very-low-dose PFHxS during pregnancy in mice caused IUGR, likely via downregulating of placental amino acid transporters, thereby impairing placental amino acid transportation, resulting in impairment of placental development. Our findings confirm epidemiological findings and call for future attention on the health risk of this persistent yet ubiquitous chemical in the early developmental stage and provide a new approach for understanding gene expression from both quantitative and qualitative omics approaches in toxicological studies. https://doi.org/10.1289/EHP13217.


Assuntos
Fluorocarbonos , Placentação , Humanos , Gravidez , Camundongos , Animais , Feminino , Placenta , Processamento Alternativo , Camundongos Endogâmicos ICR , Fluorocarbonos/toxicidade , Fluorocarbonos/metabolismo , Alcanossulfonatos/metabolismo , Alcanossulfonatos/farmacologia , Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/patologia , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Perfilação da Expressão Gênica
11.
Artigo em Inglês | MEDLINE | ID: mdl-37835138

RESUMO

Perfluorohexane sulfonate (PFHxS) is a widely detected replacement for legacy long-chain perfluoroalkyl substances (PFAS) in the environment and human blood samples. Its potential toxicity led to its recent classification as a globally regulated persistent organic pollutant. Although animal studies have shown a positive association between PFHxS levels and hepatic steatosis and hepatocellular hypertrophy, the link with liver toxicity, including end-stage liver cancer, remains inconclusive. In this study, we examined the effects of PFHxS on the proliferation of Hep3B (human hepatocellular carcinoma) and SK-Hep1 (human liver sinusoidal endothelial cells). Cells were exposed to different PFHxS concentrations for 24-48 h to assess viability and 12-14 days to measure colony formation. The viability of both cell lines increased at PFHxS concentrations <200 µM, decreased at >400 µM, and was highest at 50 µM. Colony formation increased at <300 µM and decreased at 500 µM PFHxS. Consistent with the effect on cell proliferation, PFHxS increased the expression of proliferating cell nuclear antigen (PCNA) and cell-cycle molecules (CDK2, CDK4, cyclin E, and cyclin D1). In summary, PFHxS exhibited a biphasic effect on liver cell proliferation, promoting survival and proliferation at lower concentrations and being cytotoxic at higher concentrations. This suggests that PFHxS, especially at lower concentrations, might be associated with HCC development and progression.


Assuntos
Ácidos Alcanossulfônicos , Carcinoma Hepatocelular , Poluentes Ambientais , Fluorocarbonos , Neoplasias Hepáticas , Animais , Humanos , Ácidos Sulfônicos , Células Endoteliais , Neoplasias Hepáticas/induzido quimicamente , Alcanossulfonatos , Fluorocarbonos/toxicidade , Proliferação de Células , Ácidos Alcanossulfônicos/toxicidade
12.
Nat Commun ; 14(1): 5634, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704601

RESUMO

The prognosis with pancreatic cancer is among the poorest of any human cancer. One of the important factors is the tumor hypoxia. Targeting tumor hypoxia is considered a desirable therapeutic option. However, it has not been translated into clinical success in the treatment of pancreatic cancer. With enhanced cytotoxicities against hypoxic pancreatic cancer cells, BE-43547A2 (BE) may serve as a promising template for hypoxia target strategy. Here, based on rational modification, a BE prodrug (NMP-BE) is encapsulated into sulfonated azocalix[5]arene (SAC5A) to generate a supramolecular dual hypoxia-responsive complex NMP-BE@SAC5A. Benefited from the selective load release within cancer cells, NMP-BE@SAC5A markedly suppresses tumor growth at low dose in pancreatic cancer cells xenograft murine model without developing systemic toxicity. This research presents a strategy for the modification of covalent compounds to achieve efficient delivery within tumors, a horizon for the realization of safe and reinforced hypoxia target therapy using a simple approach.


Assuntos
Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Pâncreas , Alcanossulfonatos , Modelos Animais de Doenças , Hipóxia , Neoplasias Pancreáticas
13.
Mol Biochem Parasitol ; 256: 111582, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37562558

RESUMO

Acanthamoeba are known to cause a vision threatening eye infection typically due to contact lens wear, and an infection of the central nervous system. The ability of these amoebae to switch phenotypes, from an active trophozoite to a resistant cyst form is not well understood; the cyst stage is often resistant to chemotherapy, which is of concern given the rise of contact lens use and the ineffective disinfectants available, versus the cyst stage. Herein, for the first time, a range of raloxifene sulfonate/sulfamate derivatives which target nucleotide pyrophosphatase/phosphodiesterase enzymes, were assessed using amoebicidal and excystation tests versus the trophozoite and cyst stage of Acanthamoeba. Moreover, the potential for cytopathogenicity inhibition in amoebae was assessed. Each of the derivatives showed considerable anti-amoebic activity as well as the ability to suppress phenotypic switching (except for compound 1a). Selected raloxifene derivatives reduced Acanthamoeba-mediated host cell damage using lactate dehydrogenase assay. These findings suggest that pyrophosphatase/phosphodiesterase enzymes may be valuable targets against Acanthamoeba infections.


Assuntos
Acanthamoeba castellanii , Animais , Cloridrato de Raloxifeno/farmacologia , Ácidos Sulfônicos/farmacologia , Trofozoítos , Alcanossulfonatos/farmacologia , Diester Fosfórico Hidrolases/farmacologia
14.
Int J Biol Macromol ; 248: 125844, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37455000

RESUMO

Sulfonated cellulose (SC) was successfully prepared through a two-step process of gamma radiation and subsequently sulfonation with potassium metabisulfite of microcrystalline cellulose extracted from sugarcane bagasse. The effect of gamma radiation dose on cellulose showed an increment of oxidation degree, which was evidenced by the intensity ratio of I1718 (carbonyl)/ I2892 (aliphatic) from FTIR analysis. The obtained SC was introduced into polyether block amide/polyethylene glycol diacrylate (PEBAX/PEGDA) polymer matrix as a reinforcement and hydrophilic filler for improving electrolyte affinity and thermal stability of its composite membrane. The increase of SC in PEBAX/PEGDA composite membranes resulted in enhancement of hydrophilicity, electrolyte uptake, and thermal stability compared to pristine composite membranes. However, the excess SC content in the composite membrane exhibited the low physical properties, caused by negligible dispersion on the surface membrane. With the optimum 2.0 wt% SC in PEBAX/PEGDA, the porosity, contact angle and electrolyte uptake capacity was found to be 64.0 %, 12.8° and 37.5 %, respectively. 2.0 wt% SC/PEBAX/PEGDA showed the outstanding thermal stability with negligible shrinkage <10 % at 150 °C whereas pristine PEBAX/PEGDA showed the shrinkage of 29 %. The obtained SC/PEBAX/PEGDA composite membrane is considered as a potential candidate to replace the commercial polyolefin-based separator in lithium-ion batteries.


Assuntos
Celulose , Saccharum , Celulose/química , Raios gama , Polietilenoglicóis/química , Alcanossulfonatos
15.
Environ Sci Technol ; 57(31): 11489-11498, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37490343

RESUMO

Growing toxicologic evidence suggests that emerging perfluoroalkyl substances (PFASs), like chlorinated polyfluoroalkyl ether sulfonate (Cl-PFESA), may be as toxic or more toxic than perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA). However, further investigations are needed in terms of the human health risk assessment. This study examined the effects of emerging and legacy PFAS exposure on newborn thyroid homeostasis and compared the thyroid disruption caused by 6:2 Cl-PFESA and PFOS using a benchmark dose approach. The health effects of mixture and individual exposure were estimated using the partial least-squares (PLS) model and linear regression, respectively. A Bayesian benchmark dose (BMD) analysis determined the BMD value for adverse effect comparison between 6:2 Cl-PFESA and PFOS. The median (interquartile range) concentrations of 6:2 Cl-PFESA (0.573 [0.351-0.872] ng/mL), PFOS (0.674 [0.462-1.007] ng/mL), and PFOA (1.457 [1.034, 2.405] ng/mL) were found to be similar. The PLS model ranked the PFAS variables' importance in projection (VIP) scores as follows: 6:2 Cl-PFESA > PFOS > PFOA. Linear regression showed that 6:2 Cl-PFESA had a positive association with free triiodothyronine (FT3, P = 0.006) and triiodothyronine (T3, P = 0.014), while PFOS had a marginally significant positive association with FT3 alone (P = 0.042). The BMD analysis indicated that the estimated BMD10 for 6:2 Cl-PFESA (1.01 ng/mL) was lower than that for PFOS (1.66 ng/mL) in relation to a 10% increase in FT3. These findings suggest that 6:2 Cl-PFESA, an alternative to PFOS, has a more pronounced impact on newborns' thyroid homeostasis compared to PFOS and other legacy PFASs.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Recém-Nascido , Humanos , Éter , Benchmarking , Teorema de Bayes , Glândula Tireoide/química , Tri-Iodotironina , Ácidos Alcanossulfônicos/toxicidade , Ácidos Alcanossulfônicos/análise , Alcanossulfonatos/análise , Éteres , Fluorocarbonos/toxicidade , Fluorocarbonos/análise , China
16.
Appl Environ Microbiol ; 89(7): e0061723, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37404184

RESUMO

Sulfoquinovose (SQ, 6-deoxy-6-sulfo-glucose) constitutes the polar head group of plant sulfolipids and is one of the most abundantly produced organosulfur compounds in nature. Degradation of SQ by bacterial communities contributes to sulfur recycling in many environments. Bacteria have evolved at least four mechanisms for glycolytic degradation of SQ, termed sulfoglycolysis, producing C3 sulfonate (dihydroxypropanesulfonate and sulfolactate) and C2 sulfonate (isethionate) by-products. These sulfonates are further degraded by other bacteria, leading to the mineralization of the sulfonate sulfur. The C2 sulfonate sulfoacetate is widespread in the environment and is also thought to be a product of sulfoglycolysis, although the mechanistic details are yet unknown. Here, we describe a gene cluster in an Acholeplasma sp., from a metagenome derived from deeply circulating subsurface aquifer fluids (GenBank accession no. QZKD01000037), encoding a variant of the recently discovered sulfoglycolytic transketolase (sulfo-TK) pathway that produces sulfoacetate instead of isethionate as a by-product. We report the biochemical characterization of a coenzyme A (CoA)-acylating sulfoacetaldehyde dehydrogenase (SqwD) and an ADP-forming sulfoacetate-CoA ligase (SqwKL), which collectively catalyze the oxidation of the transketolase product sulfoacetaldehyde into sulfoacetate, coupled with ATP formation. A bioinformatics study revealed the presence of this sulfo-TK variant in phylogenetically diverse bacteria, adding to the variety of mechanisms by which bacteria metabolize this ubiquitous sulfo-sugar. IMPORTANCE Many bacteria utilize environmentally widespread C2 sulfonate sulfoacetate as a sulfur source, and the disease-linked human gut sulfate- and sulfite-reducing bacteria can use it as a terminal electron receptor for anaerobic respiration generating toxic H2S. However, the mechanism of sulfoacetate formation is unknown, although it has been proposed that sulfoacetate originates from bacterial degradation of sulfoquinovose (SQ), the polar head group of sulfolipids present in all green plants. Here, we describe a variant of the recently discovered sulfoglycolytic transketolase (sulfo-TK) pathway. Unlike the regular sulfo-TK pathway that produces isethionate, our biochemical assays with recombinant proteins demonstrated that a CoA-acylating sulfoacetaldehyde dehydrogenase (SqwD) and an ADP-forming sulfoacetate-CoA ligase (SqwKL) in this variant pathway collectively catalyze the oxidation of the transketolase product sulfoacetaldehyde into sulfoacetate, coupled with ATP formation. A bioinformatics study revealed the presence of this sulfo-TK variant in phylogenetically diverse bacteria and interpreted the widespread existence of sulfoacetate.


Assuntos
Bactérias , Transcetolase , Humanos , Bactérias/genética , Bactérias/metabolismo , Alcanossulfonatos/metabolismo , Oxirredutases , Trifosfato de Adenosina , Enxofre/metabolismo , Ligases
17.
J Biol Chem ; 299(8): 105010, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414148

RESUMO

The obligately anaerobic sulfite-reducing bacterium Bilophila wadsworthia is a common human pathobiont inhabiting the distal intestinal tract. It has a unique ability to utilize a diverse range of food- and host-derived sulfonates to generate sulfite as a terminal electron acceptor (TEA) for anaerobic respiration, converting the sulfonate sulfur to H2S, implicated in inflammatory conditions and colon cancer. The biochemical pathways involved in the metabolism of the C2 sulfonates isethionate and taurine by B. wadsworthia were recently reported. However, its mechanism for metabolizing sulfoacetate, another prevalent C2 sulfonate, remained unknown. Here, we report bioinformatics investigations and in vitro biochemical assays that uncover the molecular basis for the utilization of sulfoacetate as a source of TEA (STEA) for B. wadsworthia, involving conversion to sulfoacetyl-CoA by an ADP-forming sulfoacetate-CoA ligase (SauCD), and stepwise reduction to isethionate by NAD(P)H-dependent enzymes sulfoacetaldehyde dehydrogenase (SauS) and sulfoacetaldehyde reductase (TauF). Isethionate is then cleaved by the O2-sensitive isethionate sulfolyase (IseG), releasing sulfite for dissimilatory reduction to H2S. Sulfoacetate in different environments originates from anthropogenic sources such as detergents, and natural sources such as bacterial metabolism of the highly abundant organosulfonates sulfoquinovose and taurine. Identification of enzymes for anaerobic degradation of this relatively inert and electron-deficient C2 sulfonate provides further insights into sulfur recycling in the anaerobic biosphere, including the human gut microbiome.


Assuntos
Bilophila , Humanos , Alcanossulfonatos/metabolismo , Bilophila/metabolismo , Sulfitos/metabolismo , Enxofre/metabolismo , Taurina/metabolismo , Microbioma Gastrointestinal
18.
Sensors (Basel) ; 23(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37420717

RESUMO

Previous studies have shown that the incorporation of sulfonated metallophthalocyanines into sensitive sensor materials can improve electron transfer and thus species detection. Herein, we propose a simple and easy alternative to the use of generally expensive sulfonated phthalocyanines by electropolymerizing polypyrrole together with nickel phthalocyanine in the presence of an anionic surfactant. The addition of the surfactant not only helps the incorporation of the water-insoluble pigment into the polypyrrole film, but the obtained structure has increased hydrophobicity, which is a key property for developing efficient gas sensors with low sensitivity to water. The obtained results show the effectiveness of the materials tested for the detection of ammonia in the range of 100 to 400 ppm. It is shown by comparing the microwave sensor responses that the film without nickel phthalocyanine (hydrophilic) produces greater variations than the film with nickel phthalocyanine (hydrophobic). These results are consistent with the expected results since the hydrophobic film is not very sensitive to residual ambient water and therefore does not interfere with the microwave response. However, although this excess response is usually a handicap, as it is a source of drift, in these experiments the microwave response shows great stability in both cases.


Assuntos
Polímeros , Pirróis , Polímeros/química , Pirróis/química , Níquel , Micro-Ondas , Tensoativos , Alcanossulfonatos
19.
Environ Int ; 177: 108014, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37315490

RESUMO

Perfluorohexyl sulfonate (PFHxS) is the third most abundant per- and polyfluoroalkyl substances and its developmental toxicity remains very poorly understood. Here, pregnant mice exposed to PFHxS at human relevant dose showed increased fetal death incidence in the high-dose PFHxS-H group (P < 0.01). Body distribution analyses suggested that PFHxS crossed the placental barrier reaching the fetus in a dose-dependent manner. Histopathological data demonstrated impairment in the placenta with reduced blood sinus volume, placental labyrinth area as well as thickness of labyrinthine layer. Further lipidomic and transcriptomic data together showed that PFHxS exposure caused significant disruption in placental lipid homeostasis, including total lipid accumulation in the placenta, and dysregulation in phospholipid and glycerol lipid metabolism. Gene expression analyses uncovered elevation in key placental fatty acid transporters including fabp2, whereas protein expression showed transporter specific disruptions following exposure. Together, gestational exposure to human relevant level of PFHxS may increase the incidence of fetal deaths and caused placental dysplasia via disruption in lipid metabolism homeostasis. These findings raise the concern regarding the highly prevalent and persistent chemical towards early sensitive developing stages and provide basis for further understanding of its effects on lipid metabolism and underlying mechanisms.


Assuntos
Fluorocarbonos , Placenta , Humanos , Gravidez , Feminino , Camundongos , Animais , Placenta/metabolismo , Alcanossulfonatos , Fluorocarbonos/toxicidade , Ácidos Graxos , Homeostase
20.
Sci Total Environ ; 890: 164353, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37225096

RESUMO

BACKGROUND: Prenatal and childhood exposure to per- and polyfluoroalkyl substances (PFAS) may be associated with lower reproductive hormones and later puberty, but epidemiological studies evaluating these associations are scarce. OBJECTIVES: We examined associations of PFAS concentrations assessed from pregnancy to adolescence with pubertal development and reproductive hormones at age 12 years. METHODS: We studied 200 mother-child pairs from the HOME Study in Cincinnati, OH (enrolled: 2003-2006). We quantified serum concentrations of perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoate (PFNA), and perfluorohexane sulfonate (PFHxS) in pregnant women and their children at age 3, 8 and 12 years. At age 12 years, children self-assessed pubertal development using Tanner staging of pubic hair growth (males and females) and breast growth (females), and age at menarche. We quantified serum concentrations of dehydroepiandrosterone sulfate, luteinizing hormone, and follicle-stimulating hormone in both sexes; estradiol in females; testosterone in males. We estimated associations of PFAS with pubertal outcomes and reproductive hormones using a combination of ordinal regression, Cox proportional-hazard regression, and linear regression. Quantile-based g-computation was used for PFAS mixture. RESULTS: In females, adolescent PFAS concentrations and their mixture were associated with later pubic hair growth, breast maturation, and age at menarche, but there was no pattern for prenatal or other postnatal concentrations. For instance, in females, each doubling in adolescent PFAS concentrations was associated with 79 % (PFOA), 63 % (PFOS), 56 % (PFNA), and 47 % (PFHxS) lower odds of attaining a higher stage for breast growth. In addition, adolescent PFAS concentrations were consistently associated with lower estradiol concentrations in females. No pattern was observed for associations of PFAS concentrations with pubic hair growth or reproductive hormones in males. CONCLUSIONS: We observed associations between PFAS concentrations in adolescence and later pubertal development in females, but this could be due to reverse causation induced by excretion of PFAS through menstrual fluid.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Masculino , Adolescente , Humanos , Feminino , Gravidez , Criança , Estradiol , Alcanossulfonatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA