Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 431
Filtrar
1.
PLoS One ; 17(10): e0271602, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36301939

RESUMO

The aberrant expression of aldo keto reductases (AKR1B1 & AKR1B10) has been extensively studied in different types of cancer especially the colon cancer but a very few studies have yet been reported regarding the discovery of inhibitors for the treatment of colon cancer by targeting these isozymes. Therefore, there is a need of selective inhibitors of both targets for the eradication of colon cancer. Currently, the study is focused on the exploration of two quinolone compounds i.e., (S)-(6-Methoxyquinolin-4-yl)[(1S,2R,4S,5R)-5-vinylquinuclidin-2-yl]methanol (Quinidine) and (R)-(6-Methoxyquinolin-4-yl)[(1S,2S,4S,5R)-5-vinylquinuclidin-2-yl]methanol (Quinine) as the potential inhibitors of AKR1B1 and AKR1B10 via detailed in-silico approach. The structural properties including vibrational frequencies, dipole moment, polarizability and the optimization energies were estimated using density functional theory (DFT) calculations; where both compounds were found chemically reactive. After that, the optimized structures were used for the molecular docking studies and here quinidine was found more selective towards AKR1B1 and quinine exhibited maximum inhibition of AKR1B10. The results of molecular docking studies were validated by molecular dynamics simulations which provided the deep insight of stability of protein ligand complex. At the end, the ADMET properties were determined to demonstrate the druglikeness properties of both selected compounds. These findings suggested further exploration of both compounds at molecular level using different in-vivo and in-vitro approaches that will lead to the designing of potential inhibitor of AKR1B1/AKR1B10 for curing colon cancer and related malignancies.


Assuntos
Aldeído Redutase , Aldo-Ceto Redutases , Neoplasias do Colo , Quinidina , Quinina , Humanos , Aldeído Redutase/antagonistas & inibidores , Aldo-Ceto Redutases/antagonistas & inibidores , Neoplasias do Colo/tratamento farmacológico , Simulação de Acoplamento Molecular , Quinidina/farmacologia , Quinina/farmacologia
2.
Hormones (Athens) ; 21(2): 229-240, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35212917

RESUMO

PURPOSE: This study aimed to evaluate the antioxidant and antidiabetic properties of clove essential oil (CEO) and to elucidate its mode of action, using selected biochemical targets, relevant to diabetes, and, specifically, its inhibitory effect on the polyol pathway. METHODS: In the current study, CEO was examined for its inhibitory effects on aldose reductase in silico, in vitro, and in vivo, as well as its antioxidative activity. RESULTS: In silico docking studies showed that all the selected major compounds of CEO have an energy change ranging between - 5.5 and - 8.8 kcal/mol and an inhibition constant ranging between 357.08 nM and 93.12 µM. CEO significantly inhibits aldose reductase with an IC50 value of 58.55 ± 5.84 µg/mL in a noncompetitive manner. The supplementation of CEO at 20 mg/kg BW decreases retinal sorbitol dehydrogenase activity via decreased aldose reductase activity in streptozotocin (STZ)-induced diabetic Sprague Dawley rats. Moreover, diabetic rats injected with CEO have exhibited improved levels of glycemia. The IC50 values for ABTS, hydroxyl, and hydrogen peroxide scavenging activities of CEO were found to be 34.42, 277.4, and 39.99 µg/mL, respectively. Reducing power assay and phosphomolybdate assay exhibited a reduction force with the A0.5 values of 50.25 and 140.16 µg/mL, respectively. CONCLUSION: CEO potentially exerts a beneficial effect on diabetes-related complications due to its antioxidant and inhibitory effect on aldose reductase activity.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Diabetes Mellitus Experimental , Óleos Voláteis , Syzygium , Aldeído Redutase/metabolismo , Animais , Antioxidantes/farmacologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/química , Humanos , Óleos Voláteis/efeitos adversos , Ratos , Ratos Sprague-Dawley , Syzygium/metabolismo
3.
J Oleo Sci ; 71(2): 267-276, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35110468

RESUMO

In this study, it is recorded the inhibition effect of Thalassiolin B on aldose reductase, alpha-glucosidase and alpha-amylase enzymes. In the next step, the molecular docking method was used to compare the biological activities of the Thalassiolin B molecule against enzymes formed from the assembly of proteins. In these calculations, the enzymes used are Aldose reductase, Alpha-Amylase, and Alpha-Glucosidase, respectively. After the docking method, ADME/T analysis of Thalassiolin B molecule was performed to be used as a drug in the pharmaceutical industry. In the MTT assay, the anti-human colon cancer properties of Thalassiolin B against EB, LS1034, and SW480 cell lines were investigated. The cell viability of Thalassiolin B was very low against human colon cancer cell lines without any cytotoxicity on the human normal (HUVEC) cell line. The IC50 of the Thalassiolin B against EB, LS1034, and SW480 were 483, 252, and 236 µg/mL, respectively. Thereby, the best cytotoxicity results and anti-human colon cancer potentials of our Thalassiolin B were observed in the case of the SW480 cell line. Maybe the anti-human colon cancer properties of Thalassiolin B are related to their antioxidant effects.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Antineoplásicos Fitogênicos , Antioxidantes , Produtos Biológicos/farmacologia , Neoplasias do Colo/patologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Flavonoides/farmacologia , Inibidores de Glicosídeo Hidrolases , Simulação de Acoplamento Molecular/métodos , alfa-Amilases/antagonistas & inibidores , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Endoteliais da Veia Umbilical Humana , Humanos , alfa-Glucosidases
4.
Neurotox Res ; 39(4): 1360-1371, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34043181

RESUMO

Chronic exposure to cathinone derivatives increases the risk of severe health hazards, whereas little is known about the detailed pathogenic mechanisms triggered by the derivatives. We have recently shown that treatment with α-pyrrolidinononanophenone (α-PNP, a highly lipophilic cathinone derivative possessing a long hydrocarbon main chain) provokes neuronal cell apoptosis and its 4'-fluorinated analog (F-α-PNP) potently augments the apoptotic effect. In this study, we found that neuronal SK-N-SH cell damage elicited by F-α-PNP treatment is augmented most potently by pre-incubation with an AKR1B1 inhibitor tolrestat, among specific inhibitors of four aldo-keto reductase (AKR) family members (1B1, 1C1, 1C2, and 1C3) expressed in the neuronal cells. In addition, forced overexpression of AKR1B1 remarkably lowered the cell sensitivity to F-α-PNP toxicity, clearly indicating that AKR1B1 protects from neurotoxicity of the derivative. Treatment of SK-N-SH cells with F-α-PNP resulted in a dose-dependent up-regulation of AKR1B1 expression and activation of its transcription factor NF-E2-related factor 2. Metabolic analyses using liquid chromatography/mass spectrometry/mass spectrometry revealed that AKR1B1 is hardly involved in the F-α-PNP metabolism. The F-α-PNP treatment resulted in production of reactive oxygen species and lipid peroxidation byproduct 4-hydroxy-2-nonenal (HNE) in the cells. The enhanced HNE level was reduced by overexpression of AKR1B1, which also lessened the cell damage elicited by HNE. These results suggest that the AKR1B1-mediated neuronal cell protection is due to detoxification of HNE formed by F-α-PNP treatment, but not to metabolism of the derivative.


Assuntos
Aldeído Redutase/biossíntese , Butirofenonas/toxicidade , Drogas Desenhadas/toxicidade , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Neuroproteção/fisiologia , Pirrolidinas/toxicidade , Aldeído Redutase/antagonistas & inibidores , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Humanos , Naftalenos/farmacologia , Neurônios/patologia
5.
Molecules ; 26(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916292

RESUMO

Methanolic leaf extracts of four Lauraceae species endemic to Laurisilva forest (Apollonias barbujana, Laurus novocanariensis, Ocotea foetens and Persea indica) were investigated for the first time for their potential to inhibit key enzymes linked to type-2 diabetes (α-amylase, α-glucosidase, aldose reductase) and obesity (pancreatic lipase), and protein glycation. Lauraceae extracts revealed significant inhibitory activities in all assays, altough with different ability between species. In general, P. indica showed the most promissing results. In the protein glycation assay, all analysed extracts displayed a stronger effect than a reference compound: aminoguanidine (AMG). The in vitro anti-diabetic, anti-obesity and anti-glycation activities of analysed extracts showed correlation with their flavonols and flavan-3-ols (in particular, proanthocyanins) contents. These Lauraceae species have the capacity to assist in adjuvant therapy of type-2 diabetes and associated complications, through modulation of the activity of key metabolic enzymes and prevention of advanced glycation end-products (AGEs) formation.


Assuntos
Biomarcadores , Diabetes Mellitus Tipo 2/metabolismo , Glicoproteínas/metabolismo , Hipoglicemiantes/farmacologia , Lauraceae/química , Obesidade/metabolismo , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Aldeído Redutase/antagonistas & inibidores , Aldeído Redutase/química , Animais , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/etiologia , Florestas , Glicosilação , Hipoglicemiantes/química , Redes e Vias Metabólicas , Estrutura Molecular , Obesidade/enzimologia , Obesidade/etiologia , Fenóis/química , Extratos Vegetais/química , Ratos
6.
Neurotox Res ; 39(3): 588-597, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33713301

RESUMO

Aldose reductase (AR) catalyzes the conversion of glucose to sorbitol in a NADPH-dependent reaction, thereby increasing the production of reactive oxygen species (ROS). Since AR activation is linked to redox dysregulation and cell damage in neurodegenerative diseases, AR inhibitors (ARIs) constitute promising therapeutic tools for the treatment of these disorders. Among these compounds, the novel substituted triazinoindole derivatives cemtirestat (CMTI) and COTI, as well as the clinically employed epalrestat (EPA) and the pyridoindole-antioxidant stobadine (STB), were tested in both PC12 cells and BV2 microglia exposed to four different neurotoxic models. These include (1) oxidative stress with hydrogen peroxide (H2O2), (2) mitochondrial complex IV inhibition with NaN3, (3) endoplasmic reticulum-stress and lipotoxicity induced by palmitic acid/bovine serum albumin (PAM/BSA), and (4) advanced carbonyl compound lipotoxicity by 4-hydroxynonenal (4-HNE). All toxic compounds decreased cell viability and increased ROS formation in both PC12 and BV2 cells in a concentration-dependent manner (1-1000 µM; NaN3 < H2O2≈PAM/BSA < 4-HNE). In PC12 cells, EPA increased cell viability in all toxic models only at 1 µM, whereas CMTI restored baseline viability in all toxic models. COTI afforded protection against lipotoxicity, while STB only prevented H2O2-induced toxicity. Except for the 4-HNE model, EPA prevented ROS generation in all other toxic models, whereas CMTI, COTI, and STB prevented ROS production in all toxic models. In BV2 cells, EPA and CMTI restored baseline cell viability in all toxic models tested, while COTI and STB did not prevent the loss of viability in the NaN3 model. All ARIs and STB efficiently prevented ROS formation in all toxic models in a concentration-independent manner. The differential protective effects evoked by the novel ARIs and STB on the toxic models tested herein provide novel and relevant comparative evidence for the design of specific therapeutic strategies against neurodegenerative events associated with neurological disorders.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Antioxidantes/farmacologia , Carbolinas/farmacologia , Inibidores Enzimáticos/farmacologia , Microglia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Rodanina/análogos & derivados , Tiazolidinas/farmacologia , Aldeído Redutase/metabolismo , Animais , Antioxidantes/química , Carbolinas/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Indóis/química , Indóis/farmacologia , Camundongos , Microglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/fisiologia , Células PC12 , Piridonas/química , Piridonas/farmacologia , Ratos , Rodanina/química , Rodanina/farmacologia , Tiazolidinas/química
7.
Int J Mol Sci ; 22(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494154

RESUMO

Aldose reductase (AR) is a member of the reduced nicotinamide adenosine dinucleotide phosphate (NADPH)-dependent aldo-keto reductase superfamily. It is also the rate-limiting enzyme of the polyol pathway, catalyzing the conversion of glucose to sorbitol, which is subsequently converted to fructose by sorbitol dehydrogenase. AR is highly expressed by Schwann cells in the peripheral nervous system (PNS). The excess glucose flux through AR of the polyol pathway under hyperglycemic conditions has been suggested to play a critical role in the development and progression of diabetic peripheral neuropathy (DPN). Despite the intensive basic and clinical studies over the past four decades, the significance of AR over-activation as the pathogenic mechanism of DPN remains to be elucidated. Moreover, the expected efficacy of some AR inhibitors in patients with DPN has been unsatisfactory, which prompted us to further investigate and review the understanding of the physiological and pathological roles of AR in the PNS. Particularly, the investigation of AR and the polyol pathway using immortalized Schwann cells established from normal and AR-deficient mice could shed light on the causal relationship between the metabolic abnormalities of Schwann cells and discordance of axon-Schwann cell interplay in DPN, and led to the development of better therapeutic strategies against DPN.


Assuntos
Aldeído Redutase/metabolismo , Redes e Vias Metabólicas , Polímeros/metabolismo , Células de Schwann/metabolismo , Aldeído Redutase/antagonistas & inibidores , Aldeído Redutase/genética , Animais , Diabetes Mellitus/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glucose/metabolismo , Humanos , Oxirredução , Sorbitol/metabolismo
8.
Eur J Pharmacol ; 895: 173884, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33482179

RESUMO

We have recently demonstrated that aldose reductase (AR) inhibitor; fidarestat prevents doxorubicin (Dox)-induced cardiotoxic side effects and inflammation in vitro and in vivo. However, the effect of fidarestat and its combination with Dox on immune cell activation and the immunomodulatory effects are not known. In this study, we examined the immunomodulatory effects of fidarestat in combination with Dox in vivo and in vitro. We observed that fidarestat decreased Dox-induced upregulation of CD11b in THP-1 monocytes. Fidarestat further attenuated Dox-induced upregulation of IL-6, IL-1ß, and Nos2 in murine BMDM. Fidarestat also attenuated Dox-induced activation and infiltration of multiple subsets of inflammatory immune cells identified by expression of markers CD11b+, CD11b+F4/80+, Ly6C+CCR2high, and Ly6C+CD11b+ in the mouse spleen and liver. Furthermore, significant upregulation of markers of mitochondrial biogenesis PGC-1α, COX IV, TFAM, and phosphorylation of AMPKα1 (Ser485) was observed in THP-1 cells and livers of mice treated with Dox in combination with fidarestat. Our results suggest that fidarestat by up-regulating mitochondrial biogenesis exerts protection against Dox-induced immune and inflammatory responses in vitro and in vivo, providing further evidence for developing fidarestat as a combination agent with anthracycline drugs to prevent chemotherapy-induced inflammation and toxicity.


Assuntos
Aldeído Redutase/metabolismo , Doxorrubicina/toxicidade , Inflamação/induzido quimicamente , Macrófagos/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Biogênese de Organelas , Aldeído Redutase/antagonistas & inibidores , Animais , Antígeno CD11b/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Neoplasias do Colo/imunologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Citocinas/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Imidazolidinas/farmacologia , Inflamação/enzimologia , Inflamação/imunologia , Inflamação/prevenção & controle , Mediadores da Inflamação/metabolismo , Macrófagos/enzimologia , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Hepáticas/imunologia , Mitocôndrias Hepáticas/patologia , Monócitos/enzimologia , Monócitos/imunologia , Monócitos/patologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Células THP-1
9.
J Mass Spectrom ; 56(2): e4694, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33410180

RESUMO

The progression of diabetic complications can be prevented by inhibition of aldose reductase and fidarestat considered to be highly potent. To date, metabolites of the fidarestat, toxicity, and efficacy are unknown. Therefore, the present study on characterization of hitherto unknown in vitro and in vivo metabolites of fidarestat using liquid chromatography-electrospray ionization tandem mass spectrometry (LC/ESI/MS/MS) is undertaken. In vitro and in vivo metabolites of fidarestat have been identified and characterized by using LC/ESI/MS/MS and accurate mass measurements. To identify in vivo metabolites, plasma, urine, and feces samples were collected after oral administration of fidarestat to Sprague-Dawley rats, whereas for in vitro metabolites, fidarestat was incubated in human S9 fraction, human liver microsomes, and rat liver microsomes. Furthermore, in silico toxicity and efficacy of the identified metabolites were evaluated. Eighteen metabolites have been identified. The main in vitro phase I metabolites of fidarestat are oxidative deamination, oxidative deamination and hydroxylation, reductive defluroniation, and trihydroxylation. Phase II metabolites are methylation, acetylation, glycosylation, cysteamination, and glucuronidation. Docking studies suggest that oxidative deaminated metabolite has better docking energy and conformation that keeps consensus with fidarestat whereas the rest of the metabolites do not give satisfactory results. Aldose reductase activity has been determined for oxidative deaminated metabolite (F-1), and it shows an IC50 value of 0.44 µM. The major metabolite, oxidative deaminated, did not show any cytotoxicity in H9C2, HEK, HEPG2, and Panc1 cell lines. However, in silico toxicity, the predication result showed toxicity in skin irritation and ocular irritancy SEV/MOD versus MLD/NON (v5.1) model for fidarestat and its all metabolites. In drug discovery and development research, it is distinctly the case that the potential for pharmacologically active metabolites must be considered. Thus, the active metabolites of fidarestat may have an advantage as drug candidates as many drugs were initially observed as metabolites.


Assuntos
Imidazolidinas/metabolismo , Imidazolidinas/farmacocinética , Aldeído Redutase/antagonistas & inibidores , Aldeído Redutase/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão/métodos , Feminino , Humanos , Imidazolidinas/análise , Imidazolidinas/toxicidade , Microssomos Hepáticos/metabolismo , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos
10.
Molecules ; 26(2)2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33435264

RESUMO

Diabetes mellitus (DM) is a complex disease which currently affects more than 460 million people and is one of the leading cause of death worldwide. Its development implies numerous metabolic dysfunctions and the onset of hyperglycaemia-induced chronic complications. Multiple ligands can be rationally designed for the treatment of multifactorial diseases, such as DM, with the precise aim of simultaneously controlling multiple pathogenic mechanisms related to the disease and providing a more effective and safer therapeutic treatment compared to combinations of selective drugs. Starting from our previous findings that highlighted the possibility to target both aldose reductase (AR) and protein tyrosine phosphatase 1B (PTP1B), two enzymes strictly implicated in the development of DM and its complications, we synthesised 3-(5-arylidene-4-oxothiazolidin-3-yl)propanoic acids and analogous 2-butenoic acid derivatives, with the aim of balancing the effectiveness of dual AR/PTP1B inhibitors which we had identified as designed multiple ligands (DMLs). Out of the tested compounds, 4f exhibited well-balanced AR/PTP1B inhibitory effects at low micromolar concentrations, along with interesting insulin-sensitizing activity in murine C2C12 cell cultures. The SARs here highlighted along with their rationalization by in silico docking experiments into both target enzymes provide further insights into this class of inhibitors for their development as potential DML antidiabetic candidates.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Diabetes Mellitus/tratamento farmacológico , Inibidores Enzimáticos , Hipoglicemiantes , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Aldeído Redutase/metabolismo , Animais , Diabetes Mellitus/enzimologia , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Células Hep G2 , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Ligantes , Camundongos , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Relação Estrutura-Atividade
11.
Neurotox Res ; 39(2): 210-226, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33146867

RESUMO

Cellular redox dysregulation produced by aldose reductase (AR) in the presence of high blood sugar is a mechanism involved in neurodegeneration commonly observed in diabetes mellitus (DM) and Parkinson's disease (PD); therefore, AR is a key target for treatment of both diseases. The substituted triazinoindole derivatives 2-(3-thioxo-2H-[1,2,4]triazino[5,6-b]indol-5(3H)-yl) acetic acid (cemtirestat or CMTI) and 2-(3-oxo-2H-[1,2,4]triazino[5,6-b]indol-5(3H)-yl) acetic acid (COTI) are well-known AR inhibitors (ARIs). The neuroprotective properties of CMTI, COTI, the clinically used epalrestat (EPA), and the pyridoindole antioxidants stobadine and SMe1EC2 were all tested in the neurotoxic models produced by hyperglycemic glucotoxicity (HG, 75 mM D-glucose, 72 h), 6-hydroxydopamine (6-OHDA), and HG+6-OHDA models in PC12 cells. Cell viability decreased in all toxic models, increased by 1-5 µM EPA, and decreased by COTI at ≥ 2.5 µM. In the HG model alone, where compounds were present in the medium for 24 h after a continuous 24-h exposure to HG, cell viability was improved by 100 nM-5 µM EPA, 1-10 µM ARIs, and the antioxidants studied, but decreased by EPA at ≥ 10 µM. In the 6-OHDA model alone, where cells were treated with compounds for 24 h and further exposed to 100 µM 6-OHDA (8 h), only the antioxidants protected cell viability. In the HG+6-OHDA model, where cells were treated with all compounds (1 nM to 50 µM) for 48 h and exposed to 75 mM glucose for 24 h followed by incubation with 6-OHDA for 8 h, cell viability was protected by 100 nM-10 µM ARIs and 100-500 nM EPA, but not by antioxidants. All ARIs inhibited the HG+6-OHDA-induced increase in iNOS, IL-1ß, TNF-α, 3-NT, and total oxidant status at 1-50 µM, while increased SOD, CAT, GPx, and total antioxidant status at 1-10 µM. EPA and CMTI also reduced the HG+6-OHDA-induced increase in the cellular levels of nuclear factor kB (NF-KB). The neuroprotective potential of the novel ARIs and the pyridoindole antioxidants studied constitutes a promising tool for the development of therapeutic strategies against DM-induced and PD-related neurodegeneration.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Glucose/toxicidade , Inflamação/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Estresse Nitrosativo/efeitos dos fármacos , Oxidopamina/toxicidade , Animais , Antioxidantes/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Inflamação/induzido quimicamente , Células PC12 , Ratos
12.
J Mol Cell Cardiol ; 150: 54-64, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33045251

RESUMO

AIMS: Calcific aortic valve disease (CAVD) is a primary cause of cardiovascular mortality; however, its mechanisms are unknown. Currently, no effective pharmacotherapy is available for CAVD. Aldo-keto reductase family 1 member B (Akr1B1) has been identified as a potential therapeutic target for valve interstitial cell calcification. Herein, we hypothesized that inhibition of Akr1B1 can attenuate aortic valve calcification. METHODS AND RESULTS: Normal and degenerative tricuspid calcific valves from human samples were analyzed by immunoblotting and immunohistochemistry. The results showed significant upregulation of Akr1B1 in CAVD leaflets. Akr1B1 inhibition attenuated calcification of aortic valve interstitial cells in osteogenic medium. In contrast, overexpression of Akr1B1 aggravated calcification in osteogenic medium. Mechanistically, using RNA sequencing (RNAseq), we revealed that Hippo-YAP signaling functions downstream of Akr1B1. Furthermore, we established that the protein level of the Hippo-YAP signaling effector active-YAP had a positive correlation with Akr1B1. Suppression of YAP reversed Akr1B1 overexpression-induced Runx2 upregulation. Moreover, YAP activated the Runx2 promoter through TEAD1 in a manner mediated by ChIP and luciferase reporter systems. Animal experiments showed that the Akr1B1 inhibitor epalrestat attenuated aortic valve calcification induced by a Western diet in LDLR-/- mice. CONCLUSION: This study demonstrates that inhibition of Akr1B1 can attenuate the degree of calcification both in vitro and in vivo. The Akr1B1 inhibitor epalrestat may be a potential treatment option for CAVD.


Assuntos
Aldeído Redutase/metabolismo , Aldo-Ceto Redutases/metabolismo , Estenose da Valva Aórtica/enzimologia , Estenose da Valva Aórtica/patologia , Valva Aórtica/enzimologia , Valva Aórtica/patologia , Calcinose/enzimologia , Calcinose/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aldeído Redutase/antagonistas & inibidores , Animais , Valva Aórtica/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Inibidores Enzimáticos/farmacologia , Técnicas de Silenciamento de Genes , Humanos , Lentivirus/metabolismo , Camundongos , Osteogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
13.
Bioorg Chem ; 105: 104428, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33161249

RESUMO

AKR1B1 (Aldose reductase) has been used as therapeutic intervention target for treatment of diabetic complications over 50 years, and more recently for inflammation and cancer. However, most developed small molecule inhibitors have the defect of low bioactivity. To address this limitation, novel series of 3,4-dihydroquinolin-2(1H)-one derivatives as dual inhibitor targeting AKR1B1/ROS (Reactive Oxygen Species) were designed and synthesized. Most of these derivatives were found to be potent and selective against AKR1B1, and compound 8a was the most active with an IC50 value of 0.035 µM. Moreover, some prepared derivatives showed strong anti-ROS activity, and among them the phenolic 3,5-dihydroxyl compound 8b was proved to be the most potent, even comparable to that of the well-known antioxidant Trolox at a concentration of 100 µM. Thus the results suggested a success in the construction of potent dual inhibitor for the therapeutic intervention target of AKR1B1/ROS.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Antioxidantes/farmacologia , Complicações do Diabetes/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Quinolonas/farmacologia , Espécies Reativas de Oxigênio/antagonistas & inibidores , Aldeído Redutase/metabolismo , Antioxidantes/síntese química , Antioxidantes/química , Compostos de Bifenilo/antagonistas & inibidores , Complicações do Diabetes/metabolismo , Relação Dose-Resposta a Droga , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Picratos/antagonistas & inibidores , Quinolonas/síntese química , Quinolonas/química , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
14.
Yakugaku Zasshi ; 140(11): 1381-1388, 2020.
Artigo em Japonês | MEDLINE | ID: mdl-33132274

RESUMO

Epalrestat (EPS), approved in Japan, is currently the only aldose reductase inhibitor that is available for the treatment of diabetic neuropathy. Recently, we found that EPS at near-plasma concentration increases the intracellular levels of glutathione (GSH) in rat Schwann cells. GSH, the most abundant non-protein thiol antioxidant in cells, is important for protection against oxidative stress. Oxidative stress is associated with the development and progression of many pathological conditions, such as atherosclerosis, diabetes, and neurodegeneration. In this study, we tested the hypothesis that EPS enhances resistance to oxidative stress, by using rat Schwann cells. To determine whether EPS protects Schwann cells from oxidative stress, we performed experiments by using radical generators, drugs, and heavy metals as the source of oxidative stress. EPS reduced the cytotoxicity induced by 2,2-azobis-[2-(2-imidazolin-2-yl) propane] dihydrochloride, 6-hydroxydopamine, cisplatin, palmitate, cadmium chloride, and manganese (II) sulfate, indicating that EPS plays a role in protecting cells from oxidative stress. We suggest that EPS has the potential to prevent the development and progression of disorders caused by oxidative stress.


Assuntos
Antioxidantes/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Glutationa/metabolismo , Metais Pesados/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Rodanina/análogos & derivados , Células de Schwann/metabolismo , Tiazolidinas/farmacologia , Aldeído Redutase/antagonistas & inibidores , Animais , Células Cultivadas , Inibidores Enzimáticos , Ratos , Rodanina/farmacologia
15.
PLoS One ; 15(10): e0240856, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33064762

RESUMO

UPLC-MS/MS profiling of Cassia glauca leaves extract revealed the identification of 10 flavonoids. Kaempferol 3-O-ß-D-rutinoside was isolated and studied for its cytotoxic activity. It showed high cytotoxic effects against MCF-7 (IC50 of 4.6±0.038 µg/ml) and HepG-2 (IC50 of 8.2±0.024 µg/ml) cancer cell lines, compared to the leaves extracts, their Ag nanoparticles, and doxorubicin. Moreover, Kaempferol 3-O-ß-D-rutinoside exerted a synergistic cytotoxic effect with doxorubicin on MCF-7 cell lines. It was discovered as kinases and aldose reductase inhibitor while rationalizing its cytotoxic activity through molecular docking study. Thus, it is expected that the cardiotoxic effects of doxorubicin can be also decreased by using Kaempferol 3-O-ß-D-rutinoside due to its aldose reductase inhibitory effect. These findings suggested that Kaempferol 3-O-ß-D-rutinoside could be used in combination with chemotherapeutic drugs to increase the sensitivity to their cytotoxic activity and protect against their side effects.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Cassia/química , Inibidores Enzimáticos/química , Nanopartículas Metálicas/química , Simulação de Acoplamento Molecular , Prata/química , Aldeído Redutase/metabolismo , Sítios de Ligação , Cassia/metabolismo , Domínio Catalítico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Doxorrubicina/farmacologia , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Flavonoides/química , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Humanos , Quempferóis/farmacologia , Nanopartículas Metálicas/toxicidade , Extratos Vegetais/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Espectrometria de Massas em Tandem
16.
J Agric Food Chem ; 68(42): 11747-11757, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33047600

RESUMO

Pelvic inflammatory disease (PID) is a common inflammation in the upper reproductive tract in women and may cause serious and costly consequences without effective treatment. Engeletin is a flavanonol glycoside and a naturally derived aldose reductase (AR) inhibitor that is widely distributed in vegetables, fruits, and plant-based foods. The present study investigated the anti-PID activity of engeletin in a mucilage-induced rat model of PID and LPS-stimulated RAW 264.7 macrophages. Engeletin significantly reduced inflammation and ameliorated the typical uterine pathological changes in PID rats. Engeletin also inhibited AR-dependent PLC/PKC/NF-κB and MAPK inflammatory pathways, as indicated by the suppression of the phosphorylation levels of PLC, PKC, p38, ERK, and JNK and the nuclear translocation of NF-κB p65. In vitro studies demonstrated that engeletin significantly inhibited inflammatory mediator expression and enhanced the phagocytic ability of LPS-induced RAW 264.7 macrophages. RNA interference of AR prevented the engeletin-induced inhibition of inflammatory mediators. Engeletin also inhibited AR-dependent PLC/PKC/NF-κB and MAPK inflammatory pathways, which was consistent with the in vivo results. These findings support engeletin as a potential agent for prevention or treatment of PID.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Anti-Inflamatórios/administração & dosagem , Inibidores Enzimáticos/administração & dosagem , Flavonóis/administração & dosagem , Glicosídeos/administração & dosagem , Doença Inflamatória Pélvica/dietoterapia , Proteína Quinase C/imunologia , Fator de Transcrição RelA/imunologia , Fosfolipases Tipo C/imunologia , Aldeído Redutase/genética , Aldeído Redutase/imunologia , Animais , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Doença Inflamatória Pélvica/genética , Doença Inflamatória Pélvica/imunologia , Proteína Quinase C/genética , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Fator de Transcrição RelA/genética , Fosfolipases Tipo C/genética
17.
Chem Biol Interact ; 332: 109286, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33038328

RESUMO

(4-Oxo-2-thioxothiazolidin-3-yl)acetic acids exhibit a wide range of pharmacological activities. Among them, the only derivative used in clinical practice is the aldose reductase inhibitor epalrestat. Structurally related compounds, [(5Z)-(5-arylalkylidene-4-oxo-2-thioxo-1,3-thiazolidin-3-yl)]acetic acid derivatives were prepared previously as potential antifungal agents. This study was aimed at the determination of aldose reductase inhibitory action of the compounds in comparison with epalrestat and evaluation of structure-activity relationships (SAR). The aldose reductase (ALR2) enzyme was isolated from the rat eye lenses, while aldehyde reductase (ALR1) was obtained from the kidneys. The compounds studied were found to be potent inhibitors of ALR2 with submicromolar IC50 values. (Z)-2-(5-(1-(5-butylpyrazin-2-yl)ethylidene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid (3) was identified as the most efficacious inhibitor (over five times more potent than epalrestat) with mixed-type inhibition. All the compounds also exhibited low antiproliferative (cytotoxic) activity to the HepG2 cell line. Molecular docking simulations of 3 into the binding site of the aldose reductase enzyme identified His110, Trp111, Tyr48, and Leu300 as the crucial interaction counterparts responsible for the high-affinity binding. The selectivity factor for 3 in relation to the structurally related ALR1 was comparable to that for epalrestat. SAR conclusions suggest possible modifications to improve further inhibition efficacy, selectivity, and biological availability in the group of rhodanine carboxylic acids.


Assuntos
Ácido Acético/farmacologia , Aldeído Redutase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Ácido Acético/síntese química , Ácido Acético/química , Aldeído Redutase/metabolismo , Animais , Sítios de Ligação , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Células Hep G2 , Humanos , Cristalino/efeitos dos fármacos , Cristalino/enzimologia , Ligantes , Masculino , Ratos Wistar , Rodanina/análogos & derivados , Rodanina/química , Rodanina/farmacologia , Tiazolidinas/química , Tiazolidinas/farmacologia
18.
Mol Biol Rep ; 47(8): 6091-6103, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32761301

RESUMO

Cervical cancer is the leading cause of cancer-related death among women worldwide. Identifying an effective treatment with fewer side effects is imperative, because all of the current treatments have unique disadvantages. Aldo-keto reductase family 1 member B1 (AKR1B1) is highly expressed in various cancers and is associated with tumor development, but has not been studied in cervical cancer. In the current study, we used CRISPR/Cas9 technology to establish a stable HeLa cell line with AKR1B1 knockout. In vitro, AKR1B1 knockout inhibited the proliferation, migration and invasion of HeLa cells, providing evidence that AKR1B1 is an innovative therapeutic target. Notably, the clinically used epalrestat, an inhibitor of aldose reductases, including AKR1B1, had the same effect as AKR1B1 knockout on HeLa cells. This result suggests that epalrestat could be used in the clinical treatment of cervical cancer, a prospect that undoubtedly requires further research. Moreover, aiming to determine the underlying regulatory mechanism of AKR1B1, we screened a series of differentially regulated genes (DEGs) by RNA sequencing and verified selected DEGs by quantitative RT-PCR. In addition, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the DEGs revealed a correlation between AKR1B1 and cancer. In summary, epalrestat inhibits the progression of cervical cancer by inhibiting AKR1B1, and thus may be a new drug for the clinical treatment of cervical cancer.


Assuntos
Aldeído Redutase/fisiologia , Inibidores Enzimáticos/farmacologia , Proteínas de Neoplasias/fisiologia , Rodanina/análogos & derivados , Tiazolidinas/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Aldeído Redutase/antagonistas & inibidores , Aldeído Redutase/genética , Divisão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Ontologia Genética , Células HeLa , Humanos , Invasividade Neoplásica , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/farmacologia , Rodanina/farmacologia , Ensaio Tumoral de Célula-Tronco , Neoplasias do Colo do Útero/patologia
19.
Bioorg Med Chem ; 28(15): 115575, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32631572

RESUMO

Therapeutic interventions with aldose reductase inhibitors appear to be a promising approach to major pathological conditions (i.e. neuropathy/angiopathy related to chronic hyperglycemia, chronic inflammation and cancer). Until now, the most potent aldose reductase inhibitors have been carboxylic acid derivatives, which poorly permeate biological membranes. In this work, continuing our previous works, we promote the bioisosteric replacement of the carboxylic acid moiety to make equally potent yet more druggable inhibitors.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Inibidores Enzimáticos/química , Indóis/química , Fenóis/química , Sulfonas/química , Aldeído Redutase/química , Aldeído Redutase/metabolismo , Animais , Domínio Catalítico , Desenho de Fármacos , Ensaios Enzimáticos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Indóis/síntese química , Indóis/metabolismo , Simulação de Acoplamento Molecular , Fenóis/síntese química , Fenóis/metabolismo , Ligação Proteica , Ratos , Sulfonas/síntese química , Sulfonas/metabolismo
20.
Brasília; s.n; 6 jul. 2020. 31 p.
Não convencional em Português | BRISA, LILACS, PIE | ID: biblio-1117629

RESUMO

O Informe Diário de Evidências é uma produção do Ministério da Saúde que tem como objetivo acompanhar diariamente as publicações científicas sobre tratamento farmacológico e vacinas para a COVID-19. Dessa forma, são realizadas buscas estruturadas em bases de dados biomédicas, referente ao dia anterior desse informe. Não são incluídos estudos pré-clínicos (in vitro, in vivo, in silico). A frequência dos estudos é demonstrada de acordo com a sua classificação metodológica (revisões sistemáticas, ensaios clínicos randomizados, coortes, entre outros). Para cada estudo é apresentado um resumo com avaliação da qualidade metodológica. Essa avaliação tem por finalidade identificar o grau de certeza/confiança ou o risco de viés de cada estudo. Para tal, são utilizadas ferramentas já validadas e consagradas na literatura científica, na área de saúde baseada em evidências. Cabe ressaltar que o documento tem caráter informativo e não representa uma recomendação oficial do Ministério da Saúde sobre a temática. Foram encontrados 17 artigos.


Assuntos
Humanos , Pneumonia Viral/tratamento farmacológico , Infecções por Coronavirus/tratamento farmacológico , Betacoronavirus/efeitos dos fármacos , Avaliação da Tecnologia Biomédica , gama-Globulinas/uso terapêutico , Imunoglobulinas/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Vacinas/uso terapêutico , Cloroquina/uso terapêutico , Interferon beta/uso terapêutico , Aldeído Redutase/antagonistas & inibidores , Corticosteroides/uso terapêutico , Azitromicina/uso terapêutico , Sulfato de Zinco/uso terapêutico , Ritonavir/uso terapêutico , Oseltamivir/uso terapêutico , Lopinavir/uso terapêutico , Hidroxicloroquina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA