Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Agric Food Chem ; 72(23): 13228-13239, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38810088

RESUMO

Limited alliinase resources cause difficulties in the biosynthesis of thiosulfinates (e.g., allicin), restricting their applications in the agricultural and food industries. To effectively biosynthesize thiosulfinates, this study aimed to excavate bacterial alliinase resources and elucidate their catalytic properties. Two bacterial cystathionine ß-lyases (MetCs) possessing high alliinase activity (>60 U mg -1) toward L-(-)-alliin were identified from Allium sativum rhizosphere isolates. Metagenomic exploration revealed that cystathionine ß-lyase from Bacillus cereus (BcPatB) possessed high activity toward both L-(±)-alliin and L-(+)-alliin (208.6 and 225.1 U mg -1), respectively. Although these enzymes all preferred l-cysteine S-conjugate sulfoxides as substrates, BcPatB had a closer phylogenetic relationship with Allium alliinases and shared several similar features with A. sativum alliinase. Interestingly, the Trp30Ile31Ala32Asp33 Met34 motif in a cuspate loop of BcPatB, especially sites 31 and 32 at the top of the motif, was modeled to locate near the sulfoxide of L-(+)-alliin and is important for substrate stereospecificity. Moreover, the stereoselectivity and activity of mutants I31V and A32G were higher toward L-(+)-alliin than those of mutant I31L/D33E toward L-(-)-alliin. Using bacterial alliinases and chemically synthesized substrates, we obtained thiosulfinates with high antimicrobial and antinematode activities that could provide insights into the protection of crops and food.


Assuntos
Proteínas de Bactérias , Alho , Especificidade por Substrato , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Alho/química , Alho/enzimologia , Alho/genética , Ácidos Sulfínicos/química , Ácidos Sulfínicos/metabolismo , Bacillus cereus/enzimologia , Bacillus cereus/genética , Bacillus cereus/metabolismo , Dissulfetos/química , Dissulfetos/metabolismo , Filogenia , Estereoisomerismo , Sequência de Aminoácidos , Bactérias/enzimologia , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Cinética , Liases de Carbono-Enxofre/metabolismo , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/química , Cisteína/análogos & derivados
3.
BMC Genom Data ; 25(1): 35, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532320

RESUMO

Pungency of garlic (Allium sativum L.) is generated from breakdown of the alk(en)yl cysteine sulphoxide (CSO), alliin and its subsequent breakdown to allicin under the activity of alliinase (All). Based on recent evidence, two other important genes including Sulfite reductase (SiR) and Superoxide dismutase (SOD) are thought to be related to sulfur metabolism. These three gene functions are in sulfate assimilation pathway. However, whether it is involved in stress response in crops is largely unknown. In this research, the order and priority of simultaneous expression of three genes including All, SiR and SOD were measured on some garlic ecotypes of Iran, collected from Zanjan, Hamedan and Gilan, provinces under sulfur concentrations (0, 6, 12, 24 and 60 g/ per experimental unit: pot) using real-time quantitative PCR (RT-qPCR) analysis. For understanding the network interactions between studied genes and other related genes, in silico gene network analysis was constructed to investigate various mechanisms underlying stimulation of A. sativum L. to cope with imposed sulfur. Complicated network including TF-TF, miRNA-TF, and miRNA-TF-gene, was split into sub-networks to have a deeper insight. Analysis of q-RT-PCR data revealed the highest expression in All and SiR genes respectively. To distinguish and select significant pathways in sulfur metabolism, RESNET Plant database of Pathway Studio software v.10 (Elsevier), and other relative data such as chemical reactions, TFs, miRNAs, enzymes, and small molecules were extracted. Complex sub-network exhibited plenty of routes between stress response and sulfate assimilation pathway. Even though Alliinase did not display any connectivity with other stress response genes, it showed binding relation with lectin functional class, as a result of which connected to leucine zipper, exocellulase, peroxidase and ARF functional class indirectly. Integration network of these genes revealed their involvement in various biological processes such as, RNA splicing, stress response, gene silencing by miRNAs, and epigenetic. The findings of this research can be used to extend further research on the garlic metabolic engineering, garlic stress related genes, and also reducing or enhancing the activity of the responsible genes for garlic pungency for health benefits and industry demands.


Assuntos
Alho , MicroRNAs , Alho/química , Alho/genética , Alho/metabolismo , Redes Reguladoras de Genes , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Sulfatos/metabolismo
4.
Cell Mol Biol (Noisy-le-grand) ; 69(3): 33-51, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37300690

RESUMO

Garlic, a popular vegetable cum condiment is known widely for its health benefits, pharmacological properties and in curing several pathological conditions. This compelling horticultural bulb crop is propagated asexually from individual bulbils or cloves. It is an obligate apomict that lost its fertility and blooming potential long ago and probable reason for evolution from fertility to sterility to greater contiguity of human selection to asexual propagules as they are used in culinary as and when required. The crop is likely to be sterile owing to nutritional competition between topsets, pollen degeneration, chromosomal deletion, irregular chromosomal pairing and abnormal meiosis during gametogenesis and thus curbing genetic variation is needed utmost for its improvement. With asexual reproduction, molecular studies are challenging due to its expected and complex genome. Alongside classical molecular markers like RAPDs, AFLPs, SRAPs, SSRs, and isozymes; recent high-throughput genotyping-by-sequencing (GBS) approaches like DArTseq has allowed characterization, mapping, whole-genome profiling, DNA fingerprinting among others in garlic. However, in recent years, biotechnological tools, genetic transformation via biolistic or Agrobacterium tumefaciens, polyploidization or chromosomal doubling have emerged as a potent breeding tool in enabling the improvement of vegetatively propagated plants such as garlic. In recent times biological responses of garlic and its compounds have been studied using epigenomics, proteomics and transcriptomics by researchers in preclinical studies instigating the biological effects of garlic and such gene expression revealed many early mechanistic events which may clinically underlie important health benefits pertaining to garlic intake. This review thus encompasses efforts achieved till present date towards elucidation of garlic genome with regard to molecular, biotechnological analysis and gene expression in terms of in vitro and in vivo studies.


Assuntos
Alho , Humanos , Alho/genética , Alho/metabolismo , Perfilação da Expressão Gênica , Técnica de Amplificação ao Acaso de DNA Polimórfico
5.
Eur J Nutr ; 62(5): 2279-2292, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37093261

RESUMO

PURPOSE: Garlic consumption has been inversely associated to intestinal adenoma (IA) and colorectal cancer (CRC) risk, although evidence is not consistent. Gut microbiota has been implied in CRC pathogenesis and is also influenced by garlic consumption. We analyzed whether dietary garlic influence CRC risk and bacterial DNA in blood. METHODS: We conducted a case-control study in Italy involving 100 incident CRC cases, 100 IA and 100 healthy controls matched by center, sex and age. We used a validated food frequency questionnaire to assess dietary habits and garlic consumption. Blood bacterial DNA profile was estimated using qPCR and16S rRNA gene profiling. We derived odds ratios (ORs) and the corresponding 95% confidence intervals (CIs) of IA and CRC according to garlic consumption from multiple conditional logistic regression. We used Mann-Whitney and chi-square tests to evaluate taxa differences in abundance and prevalence. RESULTS: The OR of CRC for medium/high versus low/null garlic consumption was 0.27 (95% CI = 0.11-0.66). Differences in garlic consumption were found for selected blood bacterial taxa. Medium/high garlic consumption was associated to an increase of Corynebacteriales order, Nocardiaceae family and Rhodococcus genus, and to a decrease of Family XI and Finegoldia genus. CONCLUSIONS: The study adds data on the protective effect of dietary garlic on CRC risk. Moreover, it supports evidence of a translocation of bacterial material to bloodstream and corroborates the hypothesis of a diet-microbiota axis as a mechanism behind the role of garlic in CRC prevention.


Assuntos
Neoplasias Colorretais , Alho , Humanos , Alho/genética , DNA Bacteriano/genética , Estudos de Casos e Controles , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/prevenção & controle , Neoplasias Colorretais/etiologia , Dieta , Modelos Logísticos , Antioxidantes , Bactérias/genética , Fatores de Risco
6.
Braz. j. biol ; 83: 1-10, 2023. tab, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1468807

RESUMO

Allium sativum L. is an herb of the Alliaceae family with a specific taste and aroma and medicinal and nutraceutical properties that are widely marketed in several countries. Brazil is one of the largest importers of garlic in the world, despite of its production is restricted and limited to internal consumption. Thus, explore the genetic diversity of commercial garlic conserved at germplasm banks is essential to generate additional genetic information about its economically important crop. A suitable tool for this purpose is the cytogenetic characterisation of these accessions. This study aimed to characterise the cytogenetic diversity among seven accessions of garlic from a Germplasm Bank in Brazil. The karyotypes were obtained by conventional staining and with chromomycin A3 (CMA) and 4,6-diamidino-2-phenylindole (DAPI) fluorochromes. All accessions analysed showed chromosome number 2n= 16, karyotype formula 6M+2SM, symmetrical karyotypes, reticulate interphase nuclei, and chromosomes with uniform chromatin condensation from prophase to metaphase. The fluorochromes staining showed differences in the amount and distribution of heterochromatin along the chromosomes and between accessions studied. Based on the distribution pattern of these small polymorphisms, it was possible to separate the seven accessions into three groups. It was also possible to differentiate some of the accessions individually. One of the results obtained showed a heteromorphic distension of the nucleolar organiser region observed on the chromosome pairs 6 or 7 with peculiar characteristics. It was suggested for example, that the heteromorphic block of heterochromatin (CMA+++/DAPI-) on chromosome 6 of the "Branco Mineiro Piauí" accession can be used as a marker to identify this genotype or may be associated with some character of economic interest.


Allium sativum L. é uma erva da família Alliaceae com sabor e aroma específicos e propriedades medicinais e nutracêuticas amplamente comercializada em diversos países. O Brasil é um dos maiores importadores de alho do mundo, apesar da sua produção ser restrita e limitada ao consumo interno. Assim, explorar a diversidade genética do alho comercial conservado em bancos de germoplasma é essencial para fornecer informações genéticas adicionais acerca dessa cultura economicamente importante. Uma ferramenta adequada para esse fim é a caracterização citogenética desses acessos. Este estudo teve como objetivo caracterizar a diversidade citogenética entre sete acessos de alho de um Banco de Germoplasma no Brasil. Os cariótipos foram obtidos por coloração convencional e com os fluorocromos de cromomicina A3 (CMA) e 4,6-diamidino-2-fenilindol (DAPI). Todos os acessos analisados apresentaram número cromossômico 2n = 16, fórmula cariotípica 6M + 2SM, cariótipos simétricos, núcleos reticulados em intérfase e cromossomos com condensação uniforme da cromatina da prófase para a metáfase. A coloração com fluorocromos mostrou diferenças na quantidade e distribuição de heterocromatina ao longo dos cromossomos e entre os acessos estudados. Com base no padrão de distribuição desses pequenos polimorfismos, foi possível separar os sete acessos em três grupos. Também foi possível diferenciar individualmente alguns dos acessos. Um dos resultados obtidos mostrou distensão heteromórfica da região organizadora nucleolar observada nos pares dos cromossomos 6 ou 7 com características peculiares. Foi sugerido, por exemplo, que o bloco heteromórfico de heterocromatina (CMA +++ / DAPI-) no cromossomo 6 do acesso “Branco Mineiro Piauí” pode ser usado como um marcador para identificar esse genótipo ou pode estar associado a algum caráter de interesse econômico.


Assuntos
Alho/citologia , Alho/genética , Heterocromatina
7.
Food Res Int ; 161: 111823, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36192892

RESUMO

Garlic stored at low temperature (0-13 ℃) for some times and subsequently crushed and placed at room temperature would turn green, while the one stored at high temperature (30 ℃) would not. In order to elucidate the regulatory mechanism of low temperature on garlic greening, transcriptome and proteome profiles of garlic stored at 4 ℃ and 30 ℃ were explored by RNA-seq and iTRAQ techniques. Principal component analysis showed that garlic at different storage temperatures were of significant differences on both gene and protein levels. 14,381 and 861 differential expression genes (DEGs) and proteins (DEPs) were identified respectively, in which 268 factors were shared according to their joint analysis, including 186 (144) up-regulated genes (proteins) and 82 (124) down-regulated genes (proteins) in comparing garlic stored at 4 ℃ with ones at 30 ℃. These 268 factors were mainly attributed to biological process (metabolic process) and molecular function (catalytic activity, binding) categories by Gene Ontology classification. The KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways enrichment of DEGs and DEPs revealed that GSSG production, GSH degradation, amino acid biosynthesis (cysteine and methionine) and energy metabolism (TCA and HMP cycles) were promoted by low-temperature storage to responding to oxidative stress and prepared for pigment synthesis in garlic. These results provide valuable information for the regulation of garlic greening during processing.


Assuntos
Alho , Transcriptoma , Cisteína , Alho/química , Alho/genética , Dissulfeto de Glutationa/genética , Metionina , Proteoma/metabolismo , Temperatura
8.
Int J Mol Sci ; 23(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35806016

RESUMO

Chinese chives is a popular herb vegetable and medicine in Asian countries. Southwest China is one of the centers of origin, and the mountainous areas in this region are rich in wild germplasm. In this study, we collected four samples of germplasm from different altitudes: a land race of cultivated Chinese chives (Allium tuberosum), wide-leaf chives and extra-wide-leaf chives (Allium hookeri), and ovoid-leaf chives (Allium funckiaefolium). Leaf metabolites were detected and compared between A. tuberosum and A. hookeri. A total of 158 differentially accumulated metabolites (DAM) were identified by Gas Chromatography-Mass Spectrometry (GC-MS) and Liquid Chromatography-Mass Spectrometry (LC-MS), among which there was a wide range of garlic odor compounds, free amino acids, and sugars. A. hookeri contains a higher content of fructose, garlic odor compounds, and amino acids than A. tuberosum, which is supported by the higher expression level of biosynthetic genes revealed by transcriptome analysis. A. hookeri accumulates the same garlic odor compound precursors that A. tuberosum does (mainly methiin and alliin). We isolated full-length gene sequences of phytochelatin synthase (PCS), γ-glutamyltranspeptidases (GGT), flavin-containing monooxygenase (FMO), and alliinase (ALN). These sequences showed closer relations in phylogenetic analysis between A. hookeri and A. tuberosum (with sequence identities ranging from 86% to 90%) than with Allium cepa or Allium sativum (which had a lower sequence identity ranging from 76% to 88%). Among these assayed genes, ALN, the critical gene controlling the conversion of odorless precursors into odor compounds, was undetected in leaves, bulbs, and roots of A. tuberosum, which could account for its weaker garlic smell. Moreover, we identified a distinct FMO1 gene in extra-wide-leaf A. hookeri that is due to a CDS-deletion and frameshift mutation. These results above reveal the molecular and metabolomic basis of impressive strong odor in wild Chinese chives.


Assuntos
Allium , Cebolinha-Francesa , Alho , Allium/química , Allium/genética , Cebolinha-Francesa/genética , Alho/genética , Alho/metabolismo , Espectrometria de Massas/métodos , Odorantes , Filogenia
9.
J Sci Food Agric ; 102(7): 2864-2873, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34741310

RESUMO

BACKGROUND: Garlic (Allium sativum L.), whose bioactive components are mainly organosulfur compounds (OSCs), is a herbaceous perennial widely consumed as a green vegetable and a condiment. Yet, the metabolic enzymes involved in the biosynthesis of OSCs are not identified in garlic. RESULTS: Here, a full-length transcriptome of purple garlic was generated via PacBio and Illumina sequencing, to characterize the garlic transcriptome and identify key proteins mediating the biosynthesis of OSCs. Overall, 22.56 Gb of clean data were generated, resulting in 454 698 circular consensus sequence (CCS) reads, of which 83.4% (379 206) were identified as being full-length non-chimeric reads - their further transcript clustering facilitated identification of 36 571 high-quality consensus reads. Once corrected, their genome-wide mapping revealed that 6140 reads were novel isoforms of known genes, and 2186 reads were novel isoforms from novel genes. We detected 1677 alternative splicing events, finding 2902 genes possessing either two or more poly(A) sites. Given the importance of serine O-acetyltransferase (SERAT) in cysteine biosynthesis, we investigated the five SERAT homologs in garlic. Phylogenetic analysis revealed a three-tier classification of SERAT proteins, each featuring a serine acetyltransferase domain (N-terminal) and one or two hexapeptide transferase motifs. Template-based modeling showed that garlic SERATs shared a common homo-trimeric structure with homologs from bacteria and other plants. The residues responsible for substrate recognition and catalysis were highly conserved, implying a similar reaction mechanism. In profiling the five SERAT genes' transcript levels, their expression pattern varied significantly among different tissues. CONCLUSION: This study's findings deepen our knowledge of SERAT proteins, and provide timely genetic resources that could advance future exploration into garlic's genetic improvement and breeding. © 2021 Society of Chemical Industry.


Assuntos
Alho , Transcriptoma , Cisteína/metabolismo , Alho/genética , Alho/metabolismo , Filogenia , Melhoramento Vegetal , Isoformas de Proteínas/genética , Serina O-Acetiltransferase/genética , Serina O-Acetiltransferase/metabolismo
10.
Genome ; 64(11): 1021-1028, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34609923

RESUMO

Garlic (Allium sativum), a widely distributed plant with great cultural and medicinal significance, is one of the most popular herbal dietary supplements in Europe and North America. Garlic supplements are consumed for a variety of reasons, including for their purported antihypertensive, antibacterial, and anticarcinogenic effects. The steady increase in the global herbal dietary supplement market paired with a global patchwork of regulatory frameworks makes the development of assays for authentication of these products increasingly important. A DNA mini-barcode assay was developed using the P6 loop of the plastid trnLUAA intron to positively identify A. sativum products. Analysis of 43 commercially available garlic herbal dietary supplements produced mini-barcode sequences for 33 supplements, all of which contained detectable amounts of A. sativum. The trnLUAA P6 mini-barcode can be highly useful for specimen identification, particularly for samples that may contain degraded DNA.


Assuntos
Código de Barras de DNA Taxonômico , Suplementos Nutricionais/normas , Alho/genética , Íntrons
11.
BMC Plant Biol ; 21(1): 174, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33838642

RESUMO

BACKGROUND: Allium sativum (garlic) is an economically important food source and medicinal plant rich in sulfides and other protective substances such as alliin, the precursor of allicin biosynthesis. Cysteine, serine and sulfur is the precursor of alliin biosynthesis. However, little is known about the alliin content under abiotic stress or the mechanism by which it is synthesized. RESULTS: The findings revealed that the content of alliin was lowest in the garlic roots, and highest in the buds. Furthermore, alliin levels decreased in mature leaves following wounding. Transcriptome data generated over time after wounding further revealed significant up-regulation of genes integral to the biosynthetic pathways of cysteine and serine in mature garlic leaves. CONCLUSIONS: The findings suggest that differential expression of cysteine, serine and sulfide-related genes underlies the accumulation of alliin and its precursors in garlic, providing a basis for further analyses of alliin biosynthesis.


Assuntos
Cisteína/análogos & derivados , Alho/genética , Expressão Gênica , Folhas de Planta/fisiologia , Cisteína/biossíntese , Sulfóxidos
12.
Electromagn Biol Med ; 39(2): 97-108, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32138556

RESUMO

The aim of this study was to investigate the response of chromosomes in typical human and plant cells under applied low-frequency magnetic fields at low and high intensities. Neuronal-like cells and roots of Allium sativum and Vicia faba were used to investigate chromosome's response to a static and 50 Hz magnetic fields at intensities ranging from 1 mT to 0.8 T, generated by two Helmholtz coils driven by direct current or alternate current voltage. Vertex spectrometer and Olympus microscope with camera were used. A significant decrease in intensity of the phosphate bands in the DNA infrared region was observed by FTIR spectroscopy analysis after exposure of neuronal-like cells to static and 50 Hz magnetic field at low intensity of 1 mT, which can be explained assuming that uncoiling and unpackaging of chromatin constituents occurred after exposure. This effect was directly observed by microscope in roots of Allium sativum and Vicia faba under exposure to a static magnetic field at high intensity of 0.8 T. These findings can be explained assuming that exposure to both low- and high-intensity magnetic fields of chromosomes in typical human and plant cells induces uncoiling and unpackaging of chromatin constituents, followed by chromosome alignment towards the direction of applied magnetic field, providing further demonstration that magnetic fields can induce the orientation of organic macromolecules even at low-intensity values.


Assuntos
Aberrações Cromossômicas , Campos Magnéticos/efeitos adversos , Linhagem Celular Tumoral , Alho/genética , Humanos , Neurônios/metabolismo , Vicia faba/genética
13.
J Exp Bot ; 70(16): 4123-4137, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31106832

RESUMO

S-Alk(en)ylcysteine sulfoxides are sulfur-containing natural products characteristic of the genus Allium. Both the flavor and medicinal properties of Allium plants are attributed to a wide variety of sulfur-containing compounds that are generated from S-alk(en)ylcysteine sulfoxides. Previous radiotracer experiments proposed that S-alk(en)ylcysteine sulfoxides are biosynthesized from glutathione. The recent identification of γ-glutamyl transpeptidases and a flavin-containing S-oxygenase involved in the biosynthesis of S-allylcysteine sulfoxide (alliin) in garlic (Allium sativum) provided insights into the reaction order of deglutamylation and S-oxygenation together with the localization of the biosynthesis, although the rest of the enzymes in the pathway still await discovery. In intact plants, S-alk(en)ylcysteine sulfoxides are stored in the cytosol of storage mesophyll cells. During tissue damage, the vacuolar enzyme alliinase contacts and hydrolyzes S-alk(en)ylcysteine sulfoxides to produce the corresponding sulfenic acids, which are further converted into various sulfur-containing bioactive compounds mainly via spontaneous reactions. The formed sulfur-containing compounds exhibit bioactivities related to pathogen defense, the prevention and alleviation of cancer and cardiovascular diseases, and neuroprotection. This review summarizes the current understanding of the occurrence, biosynthesis, and alliinase-triggered chemical conversion of S-alk(en)ylcysteine sulfoxides in Allium plants as well as the impact of S-alk(en)ylcysteine sulfoxides and their derivatives on medicinal, food, and agricultural sciences.


Assuntos
Alho/metabolismo , Sulfóxidos/metabolismo , Vias Biossintéticas , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Citosol/metabolismo , Alho/química , Alho/enzimologia , Alho/genética , Glutationa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sulfóxidos/química
14.
Sci Rep ; 8(1): 14514, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30266995

RESUMO

Antimicrobial genes are found in all classes of life. To efficiently isolate these genes, we used Bacillus subtilis and Escherichia coli as target indicator bacteria and transformed them with cDNA libraries. Among thousands of expressed proteins, candidate proteins played antimicrobial roles from the inside of the indicator bacteria (internal effect), contributing to the sensitivity (much more sensitivity than the external effect from antimicrobial proteins working from outside of the cells) and the high throughput ability of screening. We found that B. subtilis is more efficient and reliable than E. coli. Using the B. subtilis expression system, we identified 19 novel, broad-spectrum antimicrobial genes. Proteins expressed by these genes were extracted and tested, exhibiting strong external antibacterial, antifungal and nematicidal activities. Furthermore, these newly isolated proteins could control plant diseases. Application of these proteins secreted by engineered B. subtilis in soil could inhibit the growth of pathogenic bacteria. These proteins are thermally stable and suitable for clinical medicine, as they exhibited no haemolytic activity. Based on our findings, we speculated that plant, animal and human pathogenic bacteria, fungi or even cancer cells might be taken as the indicator target cells for screening specific resistance genes.


Assuntos
Bacillus subtilis/genética , Resistência à Doença/genética , Alho/genética , Pinellia/genética , Proteínas de Plantas/genética , Animais , Bacillus subtilis/metabolismo , Caenorhabditis elegans , Membrana Celular/ultraestrutura , Clonagem Molecular , DNA Complementar/genética , DNA de Plantas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Alho/microbiologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Ensaios de Triagem em Larga Escala , Interações Hospedeiro-Patógeno , Organismos Geneticamente Modificados , Pinellia/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/fisiologia , Estabilidade Proteica , Proteínas Recombinantes/genética , Especificidade da Espécie , Transformação Bacteriana
15.
Arch Virol ; 163(6): 1419-1427, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29417240

RESUMO

Allexiviruses are economically important garlic viruses that are involved in garlic mosaic diseases. In this study, we characterized the allexivirus cysteine-rich protein (CRP) gene located just downstream of the coat protein (CP) gene in the viral genome. We determined the nucleotide sequences of the CP and CRP genes from numerous allexivirus isolates and performed a phylogenetic analysis. According to the resulting phylogenetic tree, we found that allexiviruses were clearly divided into two major groups (group I and group II) based on the sequences of the CP and CRP genes. In addition, the allexiviruses in group II had distinct sequences just before the CRP gene, while group I isolates did not. The inserted sequence between the CP and CRP genes was partially complementary to garlic 18S rRNA. Using a potato virus X vector, we showed that the CRPs affected viral accumulation and symptom induction in Nicotiana benthamiana, suggesting that the allexivirus CRP is a pathogenicity determinant. We assume that the inserted sequences before the CRP gene may have been generated during viral evolution to alter the termination-reinitiation mechanism for coupled translation of CP and CRP.


Assuntos
Proteínas do Capsídeo/genética , Flexiviridae/genética , Alho/virologia , Regulação Viral da Expressão Gênica , Filogenia , Fatores de Virulência/genética , Pareamento de Bases , Sequência de Bases , Evolução Biológica , Proteínas do Capsídeo/metabolismo , Flexiviridae/classificação , Flexiviridae/isolamento & purificação , Flexiviridae/patogenicidade , Alho/genética , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Genoma Viral , Interações Hospedeiro-Patógeno , Mutagênese Insercional , Doenças das Plantas/genética , Doenças das Plantas/virologia , Potexvirus/genética , Potexvirus/metabolismo , Biossíntese de Proteínas , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Nicotiana/genética , Nicotiana/virologia , Fatores de Virulência/metabolismo
16.
Food Chem ; 251: 103-109, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29426415

RESUMO

Garlic is a valuable source of healthy compounds, including secondary metabolites rich in sulphur such as cysteine sulphoxides (CSOs). Here, we present new qRT-PCR assays analysing the transcription of two genes encoding key enzymes in CSO biosynthetic pathways (cysteine synthase and alliinase) in developing garlic. We also identified a set of genes (ACT I, GAPDH, and TUB) to use as transcription normalisation controls. We showed that the (normalised) transcription of both enzymes was highest during sprouting and decreased significantly in fully developed leaves, which are the major CSO-producing organs. Transcriptional activity further declined at the end of the growing season. Different cultivars show similar sulphur metabolism gene expression when European garlics were compared to Chinese and American genotypes. The qRT-PCR assays presented are also suitable for investigating the effects of agricultural practices on CSO formation in garlic to satisfy consumer demands.


Assuntos
Liases de Carbono-Enxofre/genética , Cisteína Sintase/genética , Alho/crescimento & desenvolvimento , Alho/genética , Proteínas de Plantas/genética , Cisteína/metabolismo , Alho/enzimologia , Regulação da Expressão Gênica de Plantas , Folhas de Planta/enzimologia , Folhas de Planta/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Food Chem ; 245: 7-12, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29287429

RESUMO

Recent studies show a significant variation in antioxidant and antimicrobial properties between the various garlic genotypes mostly due to differences in chemical composition and bioactive compounds content. The aim of the present study was to evaluate antioxidant properties and antimicrobial activity of garlics collected from the main cultivation areas of Greece, as well as to correlate this activity with their total phenolics content. Genotype G5 showed the highest total phenolics content, which was significantly correlated with the lowest EC50 values for all the tested antioxidant activity assays. Antimicrobial activity was significant, especially against the bacteria Proteus mirabilis and Antibiotic resistant Escherichia coli. In conclusion, significant variation was observed between the studied garlic genotypes, indicating the importance of both growing conditions and genotype on bioactive properties of dry garlic bulbs. This variation could be further exploited in breeding programs in order to select elite genotypes with increased bioactive properties.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Alho/química , Alho/genética , Antioxidantes/química , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Genótipo , Grécia , Testes de Sensibilidade Microbiana , Fenóis/análise , Raízes de Plantas/química , Raízes de Plantas/genética
18.
Sci Rep ; 7: 42203, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28176832

RESUMO

Investigations into the epigenetic status of individual cells within tissues can produce both epigenetic data for different cell types and positional information of the cells. Thus, these investigations are important for understanding the intra- and inter-cellular control systems of developmental and environmental responses in plants. However, a simple method to detect epigenetic modifications of individual cells in plant tissues is not yet available because detection of the modifications requires immunohistochemistry using specific antibodies. In this study, we developed a simple immunohistochemical method that does not require sectioning to investigate epigenetic modifications. This method uses a clearing system to detect methylated histones, acetylated histones, methylated DNA and/or centromeric histone H3 variants. Analyses of four dicots and five monocots indicated that this method provides a universal technique to investigate epigenetic modifications in diverse plant species.


Assuntos
Epigênese Genética , Imuno-Histoquímica/métodos , Proteínas de Plantas/genética , Ureia/química , Xilitol/química , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteína Centromérica A/genética , Proteína Centromérica A/metabolismo , Alho/genética , Alho/crescimento & desenvolvimento , Alho/metabolismo , Helianthus/genética , Helianthus/crescimento & desenvolvimento , Helianthus/metabolismo , Histonas/genética , Histonas/metabolismo , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Triticum/genética , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
19.
Protoplasma ; 254(3): 1353-1366, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27650870

RESUMO

To investigate the relationship between nuclear factor Y (NF-Y) and stress tolerance in garlic, we cloned a NF-Y family gene AsNF-YC8 from garlic, which was largely upregulated at dehydrate stage. Expression pattern analyses in garlic revealed that AsNF-YC8 is induced through abscisic acid (ABA) and abiotic stresses, such as NaCl and PEG. Compared with wild-type plants, the overexpressing-AsNF-YC8 transgenic tobacco plants showed higher seed germination rates, longer root length and better plant growth under salt and drought stresses. Under drought stress, the transgenic plants maintained higher relative water content (RWC), net photosynthesis, lower levels of malondialdehyde (MDA), and less ion leakage (IL) than wild-type control plants. These results indicate the high tolerance of the transgenic plants to drought stress compared to the WT. The transgenic tobacco lines accumulated less reactive oxygen species (ROS) and exhibited higher antioxidative enzyme activities compared with wild-type (WT) plants under drought stress, which suggested that the overexpression of AsNF-YC8 improves the antioxidant defense system by regulating the activities of these antioxidant enzymes, which in turn protect transgenic lines against drought stress. These results suggest that AsNF-YC8 plays an important role in tolerance to drought and salt stresses.


Assuntos
Antioxidantes/metabolismo , Fator de Ligação a CCAAT/genética , Nicotiana/genética , Nicotiana/metabolismo , Pressão Osmótica/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Tolerantes a Sal/fisiologia , Clonagem Molecular , Secas , Alho/genética , Alho/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Germinação/genética , Malondialdeído/metabolismo , Estresse Oxidativo/fisiologia , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plantas Tolerantes a Sal/genética , Plântula/metabolismo , Cloreto de Sódio , Transformação Genética
20.
Plant J ; 83(6): 941-51, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26345717

RESUMO

S-Alk(en)yl-l-cysteine sulfoxides are cysteine-derived secondary metabolites highly accumulated in the genus Allium. Despite pharmaceutical importance, the enzymes that contribute to the biosynthesis of S-alk-(en)yl-l-cysteine sulfoxides in Allium plants remain largely unknown. Here, we report the identification of a flavin-containing monooxygenase, AsFMO1, in garlic (Allium sativum), which is responsible for the S-oxygenation reaction in the biosynthesis of S-allyl-l-cysteine sulfoxide (alliin). Recombinant AsFMO1 protein catalyzed the stereoselective S-oxygenation of S-allyl-l-cysteine to nearly exclusively yield (RC SS )-S-allylcysteine sulfoxide, which has identical stereochemistry to the major natural form of alliin in garlic. The S-oxygenation reaction catalyzed by AsFMO1 was dependent on the presence of nicotinamide adenine dinucleotide phosphate (NADPH) and flavin adenine dinucleotide (FAD), consistent with other known flavin-containing monooxygenases. AsFMO1 preferred S-allyl-l-cysteine to γ-glutamyl-S-allyl-l-cysteine as the S-oxygenation substrate, suggesting that in garlic, the S-oxygenation of alliin biosynthetic intermediates primarily occurs after deglutamylation. The transient expression of green fluorescent protein (GFP) fusion proteins indicated that AsFMO1 is localized in the cytosol. AsFMO1 mRNA was accumulated in storage leaves of pre-emergent nearly sprouting bulbs, and in various tissues of sprouted bulbs with green foliage leaves. Taken together, our results suggest that AsFMO1 functions as an S-allyl-l-cysteine S-oxygenase, and contributes to the production of alliin both through the conversion of stored γ-glutamyl-S-allyl-l-cysteine to alliin in storage leaves during sprouting and through the de novo biosynthesis of alliin in green foliage leaves.


Assuntos
Cisteína/análogos & derivados , Alho/metabolismo , Oxigenases/genética , Oxigenases/metabolismo , Clonagem Molecular , Cisteína/biossíntese , Cisteína/metabolismo , Citosol/metabolismo , Dipeptídeos/metabolismo , Alho/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Dados de Sequência Molecular , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA