Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Lipids Health Dis ; 23(1): 37, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308271

RESUMO

BACKGROUND: Interstitial fibrosis and tubular atrophy (IF/TA), a histologic feature of kidney allograft destruction, is linked to decreased allograft survival. The role of lipid metabolism is well-acknowledged in the area of chronic kidney diseases; however, its role in kidney allograft fibrosis is still unclarified. In this study, how lipid metabolism contributes to kidney allografts fibrosis was examined. METHODS: A comprehensive bioinformatic comparison between IF/TA and normal kidney allograft in the Gene Expression Omnibus (GEO) database was conducted. Further validations through transcriptome profiling or pathological staining of human recipient biopsy samples and in rat models of kidney transplantation were performed. Additionally, the effects of enhanced lipid metabolism on changes in the fibrotic phenotype induced by TGF-ß1 were examined in HK-2 cell. RESULTS: In-depth analysis of the GEO dataset revealed a notable downregulation of lipid metabolism pathways in human kidney allografts with IF/TA. This decrease was associated with increased level of allograft rejection, inflammatory responses, and epithelial mesenchymal transition (EMT). Pathway enrichment analysis showed the downregulation in mitochondrial LC-fatty acid beta-oxidation, fatty acid beta-oxidation (FAO), and fatty acid biosynthesis. Dysregulated fatty acid metabolism was also observed in biopsy samples from human kidney transplants and in fibrotic rat kidney allografts. Notably, the areas affected by IF/TA had increased immune cell infiltration, during which increased EMT biomarkers and reduced CPT1A expression, a key FAO enzyme, were shown by immunohistochemistry. Moreover, under TGF-ß1 induction, activating CPT1A with the compound C75 effectively inhibited migration and EMT process in HK-2 cells. CONCLUSIONS: This study reveal a critical correlation between dysregulated lipid metabolism and kidney allograft fibrosis. Enhancing lipid metabolism with CPT1A agonists could be a therapeutic approach to mitigate kidney allografts fibrosis.


Assuntos
Metabolismo dos Lipídeos , Fator de Crescimento Transformador beta1 , Humanos , Ratos , Animais , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Metabolismo dos Lipídeos/genética , Rim/metabolismo , Fibrose , Aloenxertos/metabolismo , Aloenxertos/patologia , Ácidos Graxos/metabolismo
2.
Pharmacol Res ; 200: 107051, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38190956

RESUMO

Renal interstitial fibrosis/tubular atrophy (IF/TA) is a prominent pathological feature of chronic allograft dysfunction (CAD). Our previous study has demonstrated that epithelial-mesenchymal transition (EMT) plays a significant role in shaping the development of IF/TA. Nuclear SET domain (NSD2), a histone methyltransferase catalyzing methylation at lysine 36 of histone 3, is crucially involved in the development and progression of solid tumors. But its role in the development of renal allograft interstitial fibrosis has yet to be elucidated. Here, we characterize NSD2 as a crucial mediator in the mouse renal transplantation model in vivo and a model of tumor necrosis factor-α (TNF-α) stimulated-human renal tubular epithelial cells (HK-2) in vitro. Functionally, NSD2 knockdown inhibits EMT, dynamin-related protein 1 (Drp1)-mediated mitochondrial fission in mice. Conversely, NSD2 overexpression exacerbates fibrosis-associated phenotypes and mitochondrial fission in tubular cells. Mechanistically, tubular NSD2 aggravated the Drp-1 mediated mitochondrial fission via STAT1/ERK/PI3K/Akt signaling pathway in TNF-α-induced epithelial cell models. Momentously, mass spectrometry (MS) Analysis and site-directed mutagenesis assays revealed that NSD2 interacted with and induced Mono-methylation of STAT1 on K173, leading to its phosphorylation, IMB1-dependent nuclear translocation and subsequent influence on TNF-α-induced EMT and mitochondrial fission in NSD2-dependent manner. Collectively, these findings shed light on the mechanisms and suggest that targeting NSD2 could be a promising therapeutic approach to enhance tubular cell survival and alleviate interstitial fibrosis in renal allografts during CAD.


Assuntos
Nefropatias , Transplante de Rim , Humanos , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Dinâmica Mitocondrial , Domínios PR-SET , Fibrose , Aloenxertos/metabolismo , Transição Epitelial-Mesenquimal , Fator de Transcrição STAT1/metabolismo
3.
BMC Cancer ; 24(1): 136, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38279092

RESUMO

BACKGROUND: Despite the utilization of immune checkpoint inhibitors (ICIs) in treating numerous types of cancers being approved, their efficacy in tumor control in the clinic is not satisfactory. Since adoptive cell therapy (ACT) can alter the tumor microenvironment, we hypothesized that ACT potentially synergized with ICI in tumor control and examined this hypothesis via a murine allograft model. METHODS: Female C57BL/6 mice were stimulated with interleukin 15 and granulocyte monocyte-colony stimulating factor, followed by collecting their bone marrow cells for murine NKDC cultivation. Then, female C57BL/6 mice, inoculated with lymphoma cancer cell line E.G7-OVA, were administrated with murine NKDC cells, murine anti-program cell death ligand-1 antibody (α-mPD-L1), or both for 28 days. After 28 days of treatment, mice were sacrificed whose inoculated tumors, spleen, sentinel lymph nodes, and peripheral blood were collected to measure tumor size, lymphocyte infiltration, and change of immune cell profile. RESULTS: Combined treatment of NKDCs with α-mPD-L1 exhibited significantly stronger tumor control efficacy than treatment of NKDCs or α-mPD-L1 alone. NKDCs/α-mPD-L1 combination increased migration of dendritic cells, CD4, CD8 T cells, and activated CD8 T cells to the tumor-bedding site, and promoted endogenous tumor-specific cytotoxic T-cell response. CONCLUSION: The current study confirmed our hypothesis that combining NKDC ACT with ICI therapy can potentiate tumor control efficacy by manipulating the tumor microenvironment. This study provided a novel circumstance on tumor immunotherapy.


Assuntos
Antígeno B7-H1 , Neoplasias , Feminino , Camundongos , Animais , Antígeno B7-H1/metabolismo , Camundongos Endogâmicos C57BL , Células Matadoras Naturais , Células Dendríticas , Aloenxertos/metabolismo , Microambiente Tumoral , Linhagem Celular Tumoral
4.
Cytokine ; 173: 156438, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37976702

RESUMO

OBJECTIVES: To explore the role of allograft inflammatory factor-1 (AIF-1) both in diabetic rat bladder urothelium and in high-glucose-treated human urothelial cell line (SV-HUC-1). METHODS: Inflammation and oxidative stress (OS) promote diabetic cystopathy (DCP), but the mechanisms are not fully understood. The expression level of AIF-1 in diabetic rat bladder urothelium and in the SV-HUC-1 cells treated with high glucose was detected using tissue immunofluorescence, immunohistochemistry and western blot assays. AIF-1 was knocked down and NF-κB was suppressed with the specific inhibitor BAY 11-7082 in high-glucose-treated SV-HUC-1 cells. RESULTS: High-glucose condition induced AIF-1 upregulation in vivo and in vitro. The up-regulated AIF-1 induced the production of inflammatory factors IL-6 and TNF-α and elevation of ROS. Informatics analysis suggested that NF-κB pathway is implicated in DCP. Through knockdown of AIF-1, we confirmed that AIF-1 simulated NF-κB pathway by enhancing the phosphorylation of IκB (p-IκB) and promoting the translocation of NF-κB p65 from cytoplasm into nucleus. Additionally, High-glucose-induced inflammation in SV-HUC-1 cells was attenuated by the addition of NF-κB inhibitor. CONCLUSIONS: This study provides novel information to understand the molecular regulation mechanisms of AIF-1 in DCP.


Assuntos
Diabetes Mellitus , NF-kappa B , Ratos , Humanos , Animais , NF-kappa B/metabolismo , Bexiga Urinária/metabolismo , Urotélio/metabolismo , Inflamação/metabolismo , Estresse Oxidativo , Diabetes Mellitus/metabolismo , Glucose/metabolismo , Aloenxertos/metabolismo
5.
Zhen Ci Yan Jiu ; 48(4): 372-7, 2023 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-37186202

RESUMO

OBJECTIVE: To observe the effects of electroacupuncture (EA) combined with acellular nerve allograft (ANA) on the morphological structure of spinal ganglion cells and the protein expressions of nerve growth factor (NGF) and phosphorylated protein kinase B (p-Akt) in rats with sciatic nerve injury (SNI), so as to explore the protective mechanism of EA combined with ANA on spinal ganglia. METHODS: SPF male SD rats were randomly divided into normal, model, single ANA bridging (bridging) and EA + ANA (combination) groups, with 10 rats in each group. The SNI rat model was established by right sciatic nerve transection. Rats in the bridging group were bridged with ANA to the two broken ends of injured sciatic nerves. Rats in the combination group were treated with EA at "Yanglingquan" (GB34) and "Huantiao" (GB30) 2 d after ANA bridging, with dilatational wave, frequency of 1 Hz/20 Hz, intensity of 1 mA, 15 min/d, 7 d as a course of treatment for 4 consecutive courses. Sciatic function index (SFI) was observed by footprint test. Wet weight ratio of tibialis anterior muscle was calculated after weighing. Morphology of rat spinal ganglion cells was observed after Nissl staining. The protein expressions of NGF and p-Akt were detected by immunofluorescence and Western blot. RESULTS: Compared with the normal group, the SFI and wet weight ratio of tibialis anterior muscle were significantly decreased (P<0.05), the number of Nissl bodies in spinal ganglion cells was significantly reduced (P<0.05) with dissolution and incomplete structure, the protein expressions of NGF and p-Akt in ganglion cells were significantly decreased (P<0.05) in the model group. Following the interventions and in comparison with the model group, the SFI and the wet weight ratio of tibialis anterior muscle were significantly increased (P<0.05), the damage of Nissl bodies in ganglion cells was reduced and the number was obviously increased (P<0.05), and the protein expressions of NGF and p-Akt in ganglion cells were significantly increased (P<0.05) in the bridging and combination groups. Compared with the bridging group, the SFI and the wet weight ratio of tibialis anterior muscle were increased (P<0.05), the morphology of Nissl bodies in ganglion cells was more regular and the number was increased (P<0.05), the protein expressions of NGF and p-Akt in spinal ganglion cells were significantly increased (P<0.05) in the combination group. CONCLUSION: EA combined with ANA can improve the SFI and the wet weight ratio of tibialis anterior muscle in SNI rats, improve the morphology and structure of Nissl bodies in spinal ganglion cells, and increase the protein expressions of NGF and p-Akt in spinal ganglion, so as to play a protective role on spinal ganglia.


Assuntos
Aloenxertos , Eletroacupuntura , Gânglios Espinais , Traumatismos dos Nervos Periféricos , Nervo Isquiático , Animais , Masculino , Ratos , Aloenxertos/metabolismo , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , Traumatismos dos Nervos Periféricos/terapia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Nervo Isquiático/lesões
6.
Front Immunol ; 14: 1151127, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168864

RESUMO

Introduction: The human immune system contains cells with either effector/memory or regulatory functions. Besides the well-established CD4+CD25hiCD127lo regulatory T cells (Tregs), we and others have shown that B cells can also have regulatory functions since their frequency and number are increased in kidney graft tolerance and B cell depletion as induction therapy may lead to acute rejection. On the other hand, we have shown that CD28-CD8+ T cells represent a subpopulation with potent effector/memory functions. In the current study, we tested the hypothesis that kidney allograft rejection may be linked to an imbalance of effector/memory and regulatory immune cells. Methods: Based on a large cohort of more than 1000 kidney graft biopsies with concomitant peripheral blood lymphocyte phenotyping, we investigated the association between kidney graft rejection and the percentage and absolute number of circulating B cells, Tregs, as well as the ratio of B cells to CD28-CD8+ T cells and the ratio of CD28-CD8+ T cells to Tregs. Kidney graft biopsies were interpreted according to the Banff classification and divided into 5 biopsies groups: 1) normal/subnormal, 2) interstitial fibrosis and tubular atrophy grade 2/3 (IFTA), 3) antibody-mediated rejection (ABMR), 4) T cell mediated-rejection (TCMR), and 5) borderline rejection. We compared group 1 with the other groups as well as with a combined group 3, 4, and 5 (rejection of all types) using multivariable linear mixed models. Results and discussion: We found that compared to normal/subnormal biopsies, rejection of all types was marginally associated with a decrease in the percentage of circulating B cells (p=0.06) and significantly associated with an increase in the ratio of CD28-CD8+ T cells to Tregs (p=0.01). Moreover, ABMR, TCMR (p=0.007), and rejection of all types (p=0.0003) were significantly associated with a decrease in the ratio of B cells to CD28-CD8+ T cells compared to normal/subnormal biopsies. Taken together, our results show that kidney allograft rejection is associated with an imbalance between immune cells with effector/memory functions and those with regulatory properties.


Assuntos
Linfócitos B Reguladores , Linfócitos T Reguladores , Humanos , Aloenxertos/metabolismo , Anticorpos/metabolismo , Linfócitos B Reguladores/metabolismo , Biópsia , Antígenos CD28 , Linfócitos T CD8-Positivos , Rim/patologia
7.
Curr Opin Nephrol Hypertens ; 32(3): 241-248, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36811623

RESUMO

PURPOSE OF REVIEW: This review discusses the important role of staining for components of the complement cascade in both native and transplant kidney biopsies. The use of complement staining as a marker of prognosis, disease activity, and as a potential future tool in identifying patients who may benefit from complement-targeted therapies is discussed. RECENT FINDINGS: While staining for C3, C1q and C4d can yield valuable information about complement activation in kidney biopsies, to adequately assess complement activation and potential therapeutic targets, expanded staining panels looking at multiple split products and complement regulatory proteins are needed. Recent progress has been made in identifying markers of disease severity in C3 glomerulonephritis and IgA nephropathy, such as Factor H-related Protein-5, which may serve as future tissue biomarkers. In the transplant setting, the limitation of relying on C4d staining to identify antibody mediated rejection is giving way to molecular diagnostics, including The Banff Human Organ Transplant (B-HOT) panel, which includes numerous complement complement-related transcripts, with the classical, lectin, alternative, and common pathways. SUMMARY: Staining for complement components in kidney biopsies to understand how complement is activated in individual cases may help to identify patients who may benefit from complement-targeted therapies.


Assuntos
Biópsia , Proteínas do Sistema Complemento , Humanos , Biópsia/métodos , Ativação do Complemento , Proteínas do Sistema Complemento/metabolismo , Glomerulonefrite por IGA/diagnóstico , Glomerulonefrite por IGA/patologia , Rejeição de Enxerto/diagnóstico , Rim/patologia , Aloenxertos/metabolismo , Coloração e Rotulagem , Nefropatias/diagnóstico
8.
Hum Immunol ; 84(2): 89-97, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36424231

RESUMO

Although decades of the reductionist approach achieved great milestones in optimizing the immunosuppression therapy, traditional clinical parameters still fail in predicting both acute and chronic (mainly) rejection events leading to higher rates across all solid organ transplants. To clarify the underlying immune-related cellular and molecular mechanisms, current biomedical research is increasingly focusing on "transplantomics" which relies on a huge quantity of big data deriving from genomics, transcriptomics, epigenomics, proteomics, and metabolomics platforms. The AlloMap (gene expression) and the AlloSure (donor-derived cell-free DNA) tests represent two successful examples of how omics and liquid biopsy can really improve the precision medicine of heart and kidney transplantation. One of the major challenges in translating big data in clinically useful biomarkers is the integration and interpretation of the different layers of omics datasets. Network Medicine offers advanced bioinformatic-molecular strategies which were widely used to integrate large omics datasets and clinical information in end-stage patients to prioritize potential biomarkers and drug targets. The application of network-oriented approaches to clarify the complex nature of graft rejection is still in its infancy. Here, we briefly discuss the real-life clinical applications derived from omics datasets as well as novel opportunities for establishing predictive tests in solid organ transplantation. Also, we provide an original "graft rejection interactome" and propose network-oriented strategies which can be useful to improve precision medicine of solid organ transplantation.


Assuntos
Genômica , Proteômica , Humanos , Transplante Homólogo , Biomarcadores/metabolismo , Aloenxertos/metabolismo , Rejeição de Enxerto/diagnóstico , Rejeição de Enxerto/genética , Rejeição de Enxerto/patologia
9.
Immunology ; 169(2): 157-166, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36517459

RESUMO

Immunotherapy with immune checkpoint inhibitors (ICIs), including antibodies against programmed cell death protein-1 (PD-1) and its receptor programmed cell death ligand-1 (PD-L1), represents a promising systematic treatment for advanced human malignancies. Transplantation remains the ultimate therapy for end-stage organ diseases. However, the efficacy of ICI treatment in solid organ transplant (SOT) recipients remains controversial. We established a transgenic primary liver cancer mouse model and performed allogeneic heterotopic heart transplantation. Different treatments were performed and survival curves were calculated. Graft samples were collected, and immune cells and the cell surface expression of PD-L1 were analysed by flow cytometry. Inflammatory cytokine levels in the serum were measured by an inflammatory array. The specificity of the histochemical techniques was tested by staining sections. A combination immunotherapy comprising a BET protein inhibitor (JQ1) and an immune checkpoint inhibitor (anti-PD-L1 antibody) was administered to primary liver cancer model mice bearing cardiac allografts. Interestingly, the combination immunotherapy effectively suppressed the progression of primary liver cancer but did not accelerate allograft rejection. In accordance with our previous findings, BET protein inhibition enhances the expression of a putative membrane transporter (Rab8A), which upregulates the expression of PD-L1 on the plasma membrane in a transgenic primary liver cancer mouse model. This may be a crucial mechanism of tumour progression arrest. Our data showed that heart transplantation upregulated the expression of the proinflammatory factor IFN-γ and suggested that BET protein inhibition (with JQ1) decreased PD-L1 expression in heart tissues after cardiac transplantation. This phenomenon was accompanied by enhanced infiltration of inflammatory IFN-γ. Our study provides a novel and efficient therapeutic strategy for SOT recipients.


Assuntos
Antineoplásicos , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Antígeno B7-H1/metabolismo , Interferon gama , Imunoterapia/métodos , Aloenxertos/metabolismo
10.
Free Radic Biol Med ; 193(Pt 2): 579-594, 2022 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-36356714

RESUMO

Renal interstitial fibrosis and tubular atrophy are essential pathological characteristics of chronic renal allograft dysfunction (CAD). Herein, we revealed that ferroptosis of renal tubular epithelial cells (RTECs) might contribute to renal tubular injury in CAD. Mechanistically, TNF-α induced ferroptosis by inhibiting GPX4 transcription through upregulating IRF1 in RTECs. IRF1 could bind with ZNF350 to form a transcription factor complex, which directly binds to the GPX4 promoter region to inhibit GPX4 transcription. Ferroptotic RTECs might secrete profibrotic factors, including PDGF-BB and IL-6, to activate neighboring fibroblasts to transform into myofibroblasts or induce EMT in adjacent RTECs. In conclusion, our results confirmed a novel role of ferroptosis in renal tubular injury and interstitial fibrosis, thereby providing insights into the pathogenesis of chronic renal allograft interstitial fibrosis during CAD.


Assuntos
Ferroptose , Nefropatias , Transplante de Rim , Humanos , Aloenxertos/metabolismo , Células Epiteliais/metabolismo , Ferroptose/genética , Fibrose , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Nefropatias/metabolismo
11.
Transplant Proc ; 54(7): 2008-2015, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35914969

RESUMO

BACKGROUND: BEZ235, a dual PI3K/mTOR inhibitor, has shown a critical impact in the treatment of cancers, with the ability to induce autophagy. However, the effects of BEZ235 in heart transplant have been rarely investigated. The aim of this study was to evaluate the potency of BEZ235 in cardiac allograft survival. METHODS: BEZ235 was administered during the perioperative period of syngeneic or allogeneic heart transplant to assess survival time. Next, the autophagy signaling pathway and the proinflammatory cytokines were analyzed. Furthermore, a cardiomyocytes-specific ATG5 gene-ablated mouse was used to confirm the results. RESULTS: BEZ235 treatment significantly prolonged the survival of the cardiac graft and reduced the infiltration of inflammatory cells. The expression levels of autophagy proteins were increased in the BEZ235 treatment group compared to the control group, but the therapeutic effect of BEZ235 was weakened in the cardiomyocytes-specific ATG5 gene-ablated mice. Moreover, BEZ235 significantly downregulated the expression of IL-1ß, IL-2, and TNF-α. CONCLUSIONS: It seems BEZ235 could induce autophagy and prolonged murine cardiac allograft survival in a mechanism that involved the autophagy pathway and changed multiple inflammatory factors. This study has proposed a theoretical foundation for the strong connection between mTOR-induced autophagy and heart transplant.


Assuntos
Transplante de Coração , Camundongos , Animais , Humanos , Transplante de Coração/efeitos adversos , Doadores de Tecidos , Serina-Treonina Quinases TOR , Autofagia , Inibidores de Fosfoinositídeo-3 Quinase , Fosfatidilinositol 3-Quinases/metabolismo , Aloenxertos/metabolismo , Proliferação de Células , Linhagem Celular Tumoral
12.
Am J Transplant ; 22(10): 2306-2322, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35671112

RESUMO

Human cytomegalovirus (HCMV) infection is associated with renal allograft failure. Allograft damage in animal models is accelerated by CMV-induced T helper 17 (Th17) cell infiltrates. However, the mechanisms whereby CMV promotes Th17 cell-mediated pathological organ inflammation are uncharacterized. Here we demonstrate that murine CMV (MCMV)-induced intragraft Th17 cells have a Th1/17 phenotype co-expressing IFN-γ and/or TNF-α, but only a minority of these cells are MCMV specific. Instead, MCMV promotes intragraft expression of CCL20 and CXCL10, which are associated with recruitment of CCR6+ CXCR3+ Th17 cells. MCMV also enhances Th17 cell infiltrates after ischemia-reperfusion injury, independent of allogeneic responses. Pharmacologic inhibition of the Th17 cell signature cytokine, IL-17A, ameliorates MCMV-associated allograft damage without increasing intragraft viral loads or reducing MCMV-specific Th1 cell infiltrates. Clinically, HCMV DNAemia is associated with higher serum IL-17A among renal transplant patients with acute rejection, linking HCMV reactivation with Th17 cell cytokine expression. In summary, CMV promotes allograft damage via cytokine-mediated Th1/17 cell recruitment, which may be pharmacologically targeted to mitigate graft injury while preserving antiviral T cell immunity.


Assuntos
Infecções por Citomegalovirus , Transplante de Rim , Muromegalovirus , Nefrite , Insuficiência Renal , Aloenxertos/metabolismo , Animais , Antivirais , Citocinas/metabolismo , Humanos , Inflamação/patologia , Interleucina-17/metabolismo , Transplante de Rim/efeitos adversos , Camundongos , Insuficiência Renal/complicações , Células Th1 , Células Th17 , Fator de Necrose Tumoral alfa/metabolismo
13.
J Invest Dermatol ; 142(9): 2424-2434, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35304249

RESUMO

Recessive dystrophic epidermolysis bullosa (RDEB) is a devastating genodermatosis characterized by dysfunctional collagen VII protein resulting in epithelial blistering of the skin, mucosa, and gastrointestinal tract. There is no cure for RDEB, but improvement of clinical phenotype has been achieved with bone marrow transplantation and subsequent epidermal allografting from the bone marrow transplant donor. Epidermal allografting of these patients has decreased wound surface area for up to 3 years after treatment. This study aimed to determine the phenotype of the epidermal allograft cells responsible for durable persistence of wound healing and skin integrity. We found that epidermal allografts provide basal keratinocytes coexpressing collagen VII and basal stem cell marker keratin 15. Characterization of RDEB full-thickness skin biopsies with single-cell RNA sequencing uncovered proinflammatory immune and fibroblast phenotypes potentially driven by the local environment of RDEB skin. This is further highlighted by the presence of a myofibroblast population, which has not been described in healthy control human skin. Finally, we found inflammatory fibroblasts expressing profibrotic gene POSTN, which may have implications in the development of squamous cell carcinoma, a common, lethal complication of RDEB that lacks curative treatment. In conclusion, this study provides insights into and targets for future RDEB studies and treatments.


Assuntos
Epidermólise Bolhosa Distrófica , Aloenxertos/metabolismo , Aloenxertos/patologia , Transplante de Medula Óssea , Colágeno Tipo VII/genética , Colágeno Tipo VII/metabolismo , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/patologia , Epidermólise Bolhosa Distrófica/terapia , Fibroblastos/metabolismo , Humanos , Queratina-15 , Queratinócitos/metabolismo , Pele/patologia , Transplante Homólogo
14.
Transl Vis Sci Technol ; 11(3): 34, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35353151

RESUMO

Purpose: M1 macrophages can promote corneal allograft rejection (CGR). Inhibiting M1 macrophage polarization by the JAK/STAT1 pathway may be a new strategy to prevent CGR. Tofacitinib, a potent pan-JAK inhibitor, can inhibit JAK/STAT activation. Here, we investigated the inhibitory effects of tofacitinib on M1 macrophage polarization and its therapeutic effect on rat CGR. Methods: Corneal allograft transplantation was performed and administrated with 0.3% tofacitinib in rats. The corneal allografts were assessed clinically. The corneas were detected for M1 macrophages, lymphatic vessels, and inflammatory cytokine expression using immunohistochemistry and real-time polymerase chain reaction (PCR). Dendritic cells (DCs) in ipsilateral cervical lymph nodes were detected by flow cytometry. The effect and mechanism of tofacitinib on macrophages were explored by real-time PCR, enzyme-linked immunoassay, and western blot analysis in vitro. Results: The results showed that topical administration of 0.3% tofacitinib significantly prolonged corneal graft survival. Tofacitinib-treated corneal allografts displayed a proportionate decrease in M1 macrophages and reduced lymphatic vessel density with fewer DCs in rat ipsilateral cervical lymph nodes. Tofacitinib reduced the mRNA expression of inflammatory cytokines, including iNOS, MCP-1, TNF-α, IL-6, IL-1ß, and VEGF-C, and inhibited STAT1 activation in rat corneal grafts. In addition, tofacitinib suppressed M1 macrophage polarization via STAT1 activation after IFN-γ and lipopolysaccharide stimulation in vitro. Conclusions: Tofacitinib could suppress M1 macrophage polarization and subsequently delay CGR by inhibiting STAT1 activation. The data indicate that tofacitinib is an effective drug for CGR. Translational Relevance: This study provided evidence that topical administration of 0.3% tofacitinib may be a novel clinical strategy to prevent CGR.


Assuntos
Córnea , Macrófagos , Administração Tópica , Aloenxertos/metabolismo , Animais , Córnea/metabolismo , Macrófagos/metabolismo , Piperidinas , Pirimidinas , Ratos , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/farmacologia
15.
J Nat Med ; 76(3): 584-593, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35171398

RESUMO

Medulloblastoma (MB), accounting for nearly 10% of all childhood brain tumors, are implicated with aberrant activation of the Hedgehog (Hh) signaling pathway. Saikosaponin B1 (SSB1) and Saikosaponin D (SSD), two bioactive constituents of Radix Bupleuri, are reported to have many biological activities including anticancer activities. In our work, we evaluated the inhibition of SSB1 and SSD on MB tumor growth in allograft mice and explored the underlying mechanisms. The associated biological activity was investigated in Shh Light II cells, an Hh-responsive fibroblast cell line, using the Dual-Glo® Luciferase Assay System. First, SSB1 (IC50, 241.8 nM) and SSD (IC50, 168.7 nM) inhibited GLI-luciferase activity in Shh Light II cells stimulated with ShhN CM, as well as Gli1 and Ptch1 mRNA expression. In addition, both compounds suppressed the Hh signaling activity provoked by smoothened agonist (SAG) or excessive Smoothened (SMO) expression. Meanwhile, SSB1 and SSD did not inhibit glioma-associated oncogene homolog (GLI) luciferase activity activated by abnormal expression of downstream molecules, suppressor of fuse (SUFU) knockdown or GLI2 overexpression. Consequently, SSB1 (30 mg/kg, ip) and SSD (10 mg/kg, ip) displayed excellent in vivo inhibitory activity in MB allografts, and the tumor growth inhibition ratios were approximately 50% and 70%, respectively. Our findings, thus, identify SSB1 and SSD significantly inhibit tumor growth in MB models by inhibiting the Hedgehog pathway through targeting SMO.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Aloenxertos/metabolismo , Aloenxertos/patologia , Animais , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Meduloblastoma/metabolismo , Camundongos , Ácido Oleanólico/análogos & derivados , Saponinas , Transdução de Sinais , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo
16.
Int J Mol Sci ; 23(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35163192

RESUMO

Interleukin-10 (IL-10) is a vital regulatory cytokine, which plays a constructive role in maintaining immune tolerance during an alloimmune inflammation. Our previous study highlighted that IL-10 mediated immunosuppression established the immune tolerance phase and thereby modulated both microvascular and epithelial integrity, which affected inflammation-associated graft malfunctioning and sub-epithelial fibrosis in rejecting allografts. Here, we further investigated the reparative effects of IL-10 on microvasculature and epithelium in a mouse model of airway transplantation. To investigate the IL-10 mediated microvascular and epithelial repair, we depleted and reconstituted IL-10, and monitored graft microvasculature, airway epithelium, and associated repair proteins. Our data demonstrated that both untreated control allografts and IL-10 (-) allografts showed a significant early (d6) increase in microvascular leakiness, drop-in tissue oxygenation, blood perfusion, and denuded airway epithelium, which is associated with loss of adhesion protein Fascin-1 and ß-catenin on vascular endothelial cells at d10 post-transplantation. However, IL-10 (+) promotes early microvascular and airway epithelial repair, and a proportional increase in endothelial Fascin-1, and ß-catenin at d10 post-transplantation. Moreover, airway epithelial cells also express a significantly higher expression of FOXJ1 and ß-catenin in syngrafts and IL-10 (+) allografts as compared to IL-10 (-) and untreated controls at d10 post-transplantation. Collectively, these findings demonstrated that IL-10 mediated microvascular and epithelial changes are associated with the expression of FOXJ1, ß-catenin, and Fascin-1 proteins on the airway epithelial and vascular endothelial cells, respectively. These findings establish a potential reparative modulation of IL-10 associated microvascular and epithelial repair, which could provide a vital therapeutic strategy to facilitate graft repair in clinical settings.


Assuntos
Aloenxertos/metabolismo , Rejeição de Enxerto/imunologia , Interleucina-10/metabolismo , Animais , Células Endoteliais/imunologia , Células Epiteliais/imunologia , Epitélio/imunologia , Sobrevivência de Enxerto/fisiologia , Tolerância Imunológica , Terapia de Imunossupressão , Interleucina-10/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microvasos/imunologia , Microvasos/fisiologia , Linfócitos T Reguladores/imunologia , Transplante Homólogo/métodos
17.
Transpl Immunol ; 71: 101556, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35202801

RESUMO

The unclear mechanism that ischemia-reperfusion injury (IRI) contributes to the development of primary graft dysfunction (PGD) and chronic lung allograft dysfunction (CLAD) remains a major issue in lung transplantation. Differentially expressed PGD-related genes and CLAD-related genes during IRI (IRI-PGD common genes and IRI-CLAD common genes) were identified using GEO datasets (GSE127003, GSE8021, GSE9102) and GeneCards datasets. Enrichment analysis and four network analyses, namely, protein-protein interaction, microRNA (miRNA)-gene, transcription factor (TF)-gene, and drug-gene networks, were then performed. Moreover, GSE161520 was analyzed to identify the differentially expressed core miRNAs during IRI in rats. Finally, Pearson correlation analysis and ROC analysis were performed. Eight IRI-PGD common genes (IL6, TNF, IL1A, IL1B, CSF3, CXCL8, SERPINE1, and PADI4) and 10 IRI-CLAD common genes (IL1A, ICAM1, CCL20, CCL2, IL1B, TNF, PADI4, CXCL8, GZMB, and IL6) were identified. Enrichment analysis showed that both IRI-PGD and IRI-CLAD common genes were significantly enriched in "AGE-RAGE signaling pathway in diabetic complication" and "IL-17 signaling pathway". Among the core miRNAs, miR-1-3p and miR-335 were differentially expressed in IRI rats. Among core TFs, CEBPB expression had a significant negative correlation with P/F ratio (r = -0.33, P = 0.021). In the reperfused lung allografts, the strongest positive correlation was exhibited between PADI4 expression and neutrophil proportion (r = 0.76, P < 0.001), and the strongest negative correlation was between PADI4 expression and M2 macrophage proportion (r = -0.74, P < 0.001). In lung allografts of PGD recipients, IL6 expression correlated with activated dendritic cells proportion (r = 0.86, P < 0.01), and IL1B expression correlated with the neutrophils proportion(r = 0.84, P < 0.01). In whole blood of CLAD recipients, GZMB expression correlated with activated CD4+ memory T cells proportion (r = 0.76, P < 0.001).Our study provides the novel insights into the molecular mechanisms by which IRI contributes to PGD and CLAD and potential targets for therapeutic intervention.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Pulmão , MicroRNAs , Disfunção Primária do Enxerto , Traumatismo por Reperfusão , Aloenxertos/metabolismo , Animais , Interleucina-6 , Pulmão/metabolismo , MicroRNAs/genética , Disfunção Primária do Enxerto/genética , Ratos , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Transcriptoma
18.
Aging Cell ; 20(10): e13461, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34499402

RESUMO

Bone marrow-derived mesenchymal stem cell (BMSC)-derived small extracellular vesicles (sEVs) are potent candidates for the suppression of acute rejection post-renal allograft and have been reported to halt dendritic cells (DCs) maturation. However, whether BMSC-derived sEVs mitigate acute rejection post-renal allograft by targeting DCs is still unclear. In this study, donor BMSC-derived sEVs (sEVs) relieved the inflammatory response and suppressed mature DCs (mDCs) location in kidney grafts, and increased regulatory T (Treg) cell population in the spleens of the rats that underwent kidney allograft. In lipopolysaccharide (LPS)-stimulated immature DCs (imDCs), sEVs suppressed the maturation and migration of DCs and inactivated toll-like receptor 4 (TLR4) signaling. Compared with LPS-treated imDCs, imDCs treated with LPS+sEVs promoted CD4+ T cells differentiated toward Treg cells. Subsequently, we found that Loc108349490, a long non-coding RNA (lncRNA) abundant in sEVs, mediated the inhibitory effect of sEVs on DC maturation and migration by promoting TLR4 ubiquitination. In rats that underwent an allograft, Loc108349490 deficiency weakened the therapeutic effect of sEVs on acute rejection. The present study firstly found that sEVs alleviated acute rejection post-renal allograft by transferring lncRNA to DCs and screened out the functional lncRNA loaded in sEVs was Loc108349490.


Assuntos
Aloenxertos/metabolismo , Células Dendríticas/metabolismo , Vesículas Extracelulares/metabolismo , Rejeição de Enxerto/fisiopatologia , Células-Tronco Mesenquimais/metabolismo , Doença Aguda , Animais , Diferenciação Celular , Humanos , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Ratos Wistar
19.
JCI Insight ; 6(18)2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34375309

RESUMO

Nox2 is a ROS-generating enzyme, deficiency of which increases suppression by Tregs in vitro and in an in vivo model of cardiac remodeling. As Tregs have emerged as a candidate therapy in autoimmunity and transplantation, we hypothesized that Nox2 deficiency in Tregs in recipient mice may improve outcomes in a heart transplant model. We generated a potentially novel B6129 mouse model with Treg-targeted Nox2 deletion (Nox2fl/flFoxP3Cre+ mice) and transplanted with hearts from CB6F1 donors. As compared with those of littermate controls, Nox2fl/flFoxP3Cre+ mice had lower plasma levels of alloantibodies and troponin-I, reduced levels of IFN-γ in heart allograft homogenates, and diminished cardiomyocyte necrosis and allograft fibrosis. Single-cell analyses of allografts revealed higher absolute numbers of Tregs and lower CD8+ T cell infiltration in Nox2-deficient recipients compared with Nox2-replete mice. Mechanistically, in addition to a greater suppression of CD8+CD25- T effector cell proliferation and IFN-γ production, Nox2-deficient Tregs expressed higher levels of CCR4 and CCR8, driving cell migration to allografts; this was associated with increased expression of miR-214-3p. These data indicate that Nox2 deletion in Tregs enhances their suppressive ability and migration to heart allografts. Therefore, Nox2 inhibition in Tregs may be a useful approach to improve their therapeutic efficacy.


Assuntos
Aloenxertos/imunologia , Rejeição de Enxerto/imunologia , Transplante de Coração , NADPH Oxidase 2/genética , Linfócitos T Reguladores/imunologia , Aloenxertos/metabolismo , Aloenxertos/patologia , Animais , Linfócitos T CD8-Positivos/fisiologia , Movimento Celular , Proliferação de Células , Feminino , Fibrose , Rejeição de Enxerto/sangue , Interferon gama/metabolismo , Isoanticorpos/sangue , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Miócitos Cardíacos/patologia , Necrose , Receptores CCR4/metabolismo , Receptores CCR8/metabolismo , Linfócitos T Reguladores/metabolismo , Transplante Homólogo , Troponina I/sangue
20.
Int J Mol Sci ; 22(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069909

RESUMO

The application of mesenchymal stromal cells (MSCs) from different sources, including bone marrow (BM, bmMSCs), adipose tissue (atMSCs), and human term placenta (hPSCs) has been proposed for various clinical purposes. Accumulated evidence suggests that the activity of the different MSCs is indirect and associated with paracrine release of pro-regenerative and anti-inflammatory factors. A major limitation of bmMSCs-based treatment for autologous application is the limited yield of cells harvested from BM and the invasiveness of the procedure. Similar effects of autologous and allogeneic MSCs isolated from various other tissues were reported. The easily available fresh human placenta seems to represent a preferred source for harvesting abundant numbers of human hPSCs for allogenic use. Cells derived from the neonate tissues of the placenta (f-hPSC) can undergo extended expansion with a low risk of senescence. The low expression of HLA class I and II on f-hPSCs reduces the risk of rejection in allogeneic or xenogeneic applications in normal immunocompetent hosts. The main advantage of hPSCs-based therapies seems to lie in the secretion of a wide range of pro-regenerative and anti-inflammatory factors. This renders hPSCs as a very competent cell for therapy in humans or animal models. This review summarizes the therapeutic potential of allogeneic applications of f-hPSCs, with reference to their indirect pro-regenerative and anti-inflammatory effects and discusses clinical feasibility studies.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Placenta/metabolismo , Tecido Adiposo/metabolismo , Aloenxertos/metabolismo , Animais , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Feminino , Humanos , Placenta/fisiologia , Gravidez , Células Estromais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA