Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Sci Rep ; 14(1): 11228, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755187

RESUMO

Antimicrobial resistance in fungal pathogens (both human and plant) is increasing alarmingly, leading to massive economic crises. The existing anti-fungal agents are becoming ineffective, and the situation worsens on a logarithmic scale. Novel antifungals from unique natural sources are highly sought to cope sustainably with the situation. Metabolites from endophytic microbes are the best-fitted alternatives in this case. Endophytes are the untapped sources of 'plants' internal microbial population' and are promising sources of effective bio-therapeutic agents. Fungal endophytes were isolated from Tropaeolum majus and checked for antifungal activity against selected plant and human pathogens. Bioactive metabolites were identified through chromatographic techniques. The mode of action of those metabolites was evaluated through various spectroscopic techniques. The production of antifungal metabolite was optimized also. In particular VOCs (volatile organic compounds) of TML9 were tested in vitro for their anti-phytopathogenic activity. Ethyl acetate (EA) extract of cell-free culture components of Colletotrichum aenigma TML3 exhibited broad-spectrum antifungal activity against four species of Candida and the major constituents reported were 6-pentyl-2H-pyran-2-one, 2-Nonanone, 1 propanol 2-amino. The volatile metabolites, trans-ocimene, geraniol, and 4-terpinyl acetate, produced from Curvularia lunata TML9, inhibited the growth of some selected phyto pathogens. EA extract hampered the biofilm formation, minimised the haemolytic effect, and blocked the transformation of Candida albicans (MTCC 4748) from yeast to hyphal form with a Minimum Fungicidal Concentration (MFC) of 200-600 µg mL-1. Central carbohydrate metabolism, ergosterol synthesis, and membrane permeability were adversely affected and caused the lethal leakage of necessary macromolecules of C. albicans. Volatile metabolites inhibited the growth of phytopathogens i.e., Rhizoctonia solani, Alternaria alternata, Botrytis cinerea, Cercospora beticola, Penicillium digitatum, Aspergillus fumigatus, Ceratocystis ulmi, Pythium ultimum up to 89% with an IC50 value of 21.3-69.6 µL 50 mL-1 and caused leakage of soluble proteins and other intracellular molecules. Citrusy sweet odor volatiles of TML9 cultured in wheat-husk minimised the infections of Penicillium digitatum (green mold), in VOC-exposed sweet oranges (Citrus sinensis). Volatile and non-volatile antifungal metabolites of these two T. majus endophytes hold agricultural and pharmaceutical interests. Metabolites of TML3 have strong anti-Candida activity and require further assessment for therapeutic applications. Also, volatile metabolites of TML9 can be further studied as a source of antifungals. The present investigational outcomes bio-prospects the efficacy of fungal endophytes of Garden Nasturtium.


Assuntos
Antifúngicos , Endófitos , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/química , Antifúngicos/farmacologia , Antifúngicos/química , Endófitos/metabolismo , Endófitos/química , Testes de Sensibilidade Microbiana , Colletotrichum/efeitos dos fármacos , Fungos/efeitos dos fármacos , Alternaria/efeitos dos fármacos , Rhizoctonia/efeitos dos fármacos , Humanos , Candida/efeitos dos fármacos
2.
BMC Plant Biol ; 22(1): 17, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34986803

RESUMO

BACKGROUND: The elemental defense hypothesis states a new defensive strategy that hyperaccumulators defense against herbivores or pathogens attacks by accumulating heavy metals. Brassica juncea has an excellent ability of cadmium (Cd) accumulation. However, the elemental defense effect and its regulation mechanism in B. juncea remain unclear. RESULTS: In this study, we profiled the elemental defense effect and the molecular regulatory mechanism in Cd-accumulated B. juncea after Alternaria brassicicola infection. B. juncea treated with 180 mg Kg- 1 DW CdCl2 2.5H2O exhibited obvious elemental defense effect after 72 h of infection with A. brassicicola. The expression of some defense-related genes including BjNPR1, BjPR12, BjPR2, and stress-related miRNAs (miR156, miR397, miR398a, miR398b/c, miR408, miR395a, miR395b, miR396a, and miR396b) were remarkably elevated during elemental defense in B. juncea. CONCLUSIONS: The results indicate that Cd-accumulated B. juncea may defend against pathogens by coordinating salicylic acid (SA) and jasmonic acid (JA) mediated systemic acquired resistance (SAR) and elemental defense in a synergistic joint effect. Furthermore, the expression of miRNAs related to heavy metal stress response and disease resistance may regulate the balance between pathogen defense and heavy metal stress-responsive in B. juncea. The findings provide experimental evidence for the elemental defense hypothesis in plants from the perspectives of phytohormones, defense-related genes, and miRNAs.


Assuntos
Alternaria/fisiologia , Cádmio/farmacologia , Mostardeira/imunologia , Doenças das Plantas/imunologia , Alternaria/efeitos dos fármacos , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Mostardeira/efeitos dos fármacos , Mostardeira/genética , Mostardeira/microbiologia , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta , RNA de Plantas/metabolismo , Ácido Salicílico/metabolismo , Esporos Fúngicos/efeitos dos fármacos
3.
Mol Biotechnol ; 63(9): 792-806, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34037929

RESUMO

We have constructed two intra-molecularly shuffled promoters, namely S100 and D100. The S100 recombinant promoter (621 bp) was generated by ligation of 250 bp long upstream activation sequence (UAS) of Strawberry vein banding virus (SV10UAS; - 352 to - 102 relative to TSS) with its 371 bp long TATA containing core promoter domain (SV10CP; - 352 to + 19). Likewise, 726 bp long D100 promoter was constructed by fusion of 170 bp long UAS of Dahlia mosaic virus (DaMV14UAS; - 203 to - 33) with its 556 bp long core promoter domain (DaMV4CP; - 474 to + 82). S100 and D100 promoters showed 1.8 and 2.2 times stronger activities than that of the CaMV35S promoter. The activity of the promoters is comparable to that of the CaMV35S2 promoter. Transcript analysis employing qRT-PCR and histochemical assays supported the above findings. Abscisic acid and salicylic acid induce the activity of the D100 promoter. Leaf protein obtained from Nicotiana tabacum plant expressing NSD2 gene (Nigella sativa L. defensin 2) driven by the D100 promoter showed antifungal activity against Alternaria alternata and Phoma exigua var. exigua and antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus. Strong S100 and D100 promoters have potential to become efficient candidates for plant metabolic engineering and molecular pharming.


Assuntos
Caulimovirus/genética , Defensinas/genética , Nicotiana/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Proteínas Virais/genética , Ácido Abscísico/farmacologia , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Agrobacterium tumefaciens/virologia , Alternaria/efeitos dos fármacos , Alternaria/crescimento & desenvolvimento , Ascomicetos/efeitos dos fármacos , Ascomicetos/crescimento & desenvolvimento , Caulimovirus/metabolismo , Defensinas/metabolismo , Defensinas/farmacologia , Expressão Gênica , Humanos , Testes de Sensibilidade Microbiana , Agricultura Molecular/métodos , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Ácido Salicílico/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Nicotiana/efeitos dos fármacos , Nicotiana/metabolismo , Nicotiana/virologia , Transformação Genética , Transgenes , Proteínas Virais/metabolismo
4.
Chem Biodivers ; 18(5): e2100079, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33821531

RESUMO

Eight natural biphenyl-type phytoalexins exhibiting antifungal effect were isolated from the leaves of Sorbus pohuashanensis, which invaded by Alternaria tenuissi, and their growth inhibition rate towards A. tenuissi were 50.3 %, 54.0 %, 66.4 %, 58.8 %, 48.5 %, 51.0 %, 33.3 %, and 37.0 %, respectively. In vivo activity assay verified the protective effect of these natural biphenyls on tobacco leaves. The observation of mycelial morphology revealed that these compounds possessed adverse effects on mycelial growth of A. tenuissi. Subsequently, the most potent active compounds, 3',4',5'-trimethoxy[1,1'-biphenyl]-4-ol (3) and 3,4,4',5-tetramethoxy-1,1'-biphenyl (4), were conducted to the further antifungal evaluation and showed significant activity against the other four crop pathogens, Fusarium graminearum, Helminthosporium maydis, Sclerotinia sclerotiorum, and Exserohilum turcicum. Further, the structure-activity relationships and biosynthesis of these compounds were speculated in this work.


Assuntos
Alternaria/efeitos dos fármacos , Antifúngicos/farmacologia , Compostos de Bifenilo/farmacologia , Sorbus/química , Alternaria/crescimento & desenvolvimento , Alternaria/patogenicidade , Antifúngicos/química , Antifúngicos/isolamento & purificação , Ascomicetos/efeitos dos fármacos , Ascomicetos/patogenicidade , Compostos de Bifenilo/química , Compostos de Bifenilo/isolamento & purificação , Bipolaris/efeitos dos fármacos , Bipolaris/patogenicidade , Fusarium/efeitos dos fármacos , Fusarium/patogenicidade , Testes de Sensibilidade Microbiana , Estrutura Molecular , Extratos Vegetais , Folhas de Planta/química
5.
Fungal Biol ; 125(2): 143-152, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33518204

RESUMO

There is a growing interest in finding safe and natural anti-microbial compounds as a valid alternative to conventional chemical treatments for managing post-harvest fruit diseases. This study investigated the anti-fungal capacity of orange peel polyphenolic extract (OPE) against three relevant post-harvest fungal pathogens, Monilinia fructicola, Botrytis cinerea and Alternaria alternata. OPE extract at 1.5 g/L inhibited (100%) the mycelial growth and conidial germination of the three target fungi. At lower concentration, the effect varied, depending on the dose applied and target fungi. When the anti-fungal activity of the main phenolic compounds in sweet orange peel, namely, the flavonoids (naringin, hesperidin and neohesperidin) and phenolic acids (ferulic and p-coumaric), were evaluated, ferulic acid and p-coumaric acid displayed significantly higher inhibitory capacity in synthetic medium, while the activity of flavonoids was limited. Synergism between compounds was not detected, and the inhibitory activity of OPE may be attributed to an additive effect of phenolic acids. Interestingly, in peach-based medium, ferulic acid remained active against M. fructicola and A. alternata and was more efficient than p-coumaric to control B. cinerea. These results highlight peel orange waste as an excellent source of anti-fungal compounds, suggesting the possibility of using ferulic acid or ferulic acid-rich extracts, either alone or in combination with other post-harvest treatment, as a natural alternative to reduce post-harvest losses and, also, enhance the shelf-life of fruit.


Assuntos
Citrus sinensis , Microbiologia de Alimentos , Frutas , Fungos , Extratos Vegetais , Alternaria/efeitos dos fármacos , Ascomicetos/efeitos dos fármacos , Botrytis/efeitos dos fármacos , Citrus sinensis/química , Frutas/química , Frutas/microbiologia , Fungos/efeitos dos fármacos , Fenol/química , Extratos Vegetais/farmacologia
6.
Int J Biol Macromol ; 174: 352-361, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33497693

RESUMO

In this study, encoding sequence of a new type 2 RIP (pebulin) was isolated and cloned from dwarf elder (Sambucus ebulus L.) native to the northern regions of Iran. The nucleotide sequence of pebulin was ligated to the pET-28a(+) expression plasmid and cloned into the E. coli strain BL21 (DE3) in order to express heterologously of recombinant protein. The recombinant pebulin protein was mainly produced in the form of insoluble inclusion bodies probably because to absence of N-glycosylation process in E. coli. Therefore, in order to increase the expression of recombinant protein in soluble form, co-expression of the target protein with the pG-Tf2 chaperone plasmid and incubation of bacterial culture under low temperature were used to enhance solubility and accumulation of recombinant protein. After purification of the recombinant protein using affinity chromatography method, the bioactivity of pebulin was analyzed by hemagglutination, anticancer, and antifungal assays. The results of the hemagglutination assay showed that purified pebulin agglutinated erythrocytes in all human blood groups. In addition, pebulin considerably inhibited the proliferation of cancer cell lines MCF-7 and HT-29 in a time- and dose-dependent manner and indicated remarkably growth-inhibiting effect against the plant pathogenic fungi such as Alternaria solani and Fusarium oxysporum.


Assuntos
Antifúngicos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Proteínas Recombinantes/farmacologia , Proteínas Inativadoras de Ribossomos Tipo 2/genética , Sambucus/metabolismo , Alternaria/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia de Afinidade , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Fusarium/efeitos dos fármacos , Células HT29 , Humanos , Células MCF-7 , Testes de Sensibilidade Microbiana , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plasmídeos/genética , Proteínas Inativadoras de Ribossomos Tipo 2/metabolismo , Sambucus/genética
7.
Molecules ; 26(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450940

RESUMO

Based on the structure of the natural product cysteine, a series of thiazolidine-4-carboxylic acids were designed and synthesized. All target compounds bearing thiazolidine-4-carboxylic acid were characterized by 1H-NMR, 13C-NMR, and HRMS techniques. The antiviral and antifungal activities of cysteine and its derivatives were evaluated in vitro and in vivo. The results of anti-TMV activity revealed that all compounds exhibited moderate to excellent activities against tobacco mosaic virus (TMV) at the concentration of 500 µg/mL. The compounds cysteine (1), 3-4, 7, 10, 13, 20, 23, and 24 displayed higher anti-TMV activities than the commercial plant virucide ribavirin (inhibitory rate: 40, 40, and 38% at 500 µg/mL for inactivation, curative, and protection activity in vivo, respectively), especially compound 3 (inhibitory rate: 51%, 47%, and 49% at 500 µg/mL for inactivation, curative, and protection activity in vivo, respectively) with excellent antiviral activity emerged as a new antiviral candidate. Antiviral mechanism research by TEM exhibited that compound 3 could inhibit virus assembly by aggregated the 20S protein disk. Molecular docking results revealed that compound 3 with higher antiviral activities than that of compound 24 did show stronger interaction with TMV CP. Further fungicidal activity tests against 14 kinds of phytopathogenic fungi revealed that these cysteine derivatives displayed broad-spectrum fungicidal activities. Compound 16 exhibited higher antifungal activities against Cercospora arachidicola Hori and Alternaria solani than commercial fungicides carbendazim and chlorothalonil, which emerged as a new candidate for fungicidal research.


Assuntos
Alternaria/efeitos dos fármacos , Antifúngicos/farmacologia , Antivirais/farmacologia , Ascomicetos/efeitos dos fármacos , Cisteína/farmacologia , Vírus do Mosaico do Tabaco/efeitos dos fármacos , Antifúngicos/síntese química , Antifúngicos/química , Antivirais/síntese química , Antivirais/química , Cisteína/síntese química , Cisteína/química , Descoberta de Drogas , Testes de Sensibilidade Microbiana , Estrutura Molecular
8.
Planta ; 253(2): 29, 2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33423117

RESUMO

MAIN CONCLUSION: Silicon inhibits the growth of Alternaria alternata into sorghum root cells by maintaining their integrity through stimulating biochemical defense reactions rather than by silica-based physical barrier creation. Although the ameliorating effect of silicon (Si) on plant resistance against fungal pathogens has been proven, the mechanism of its action needs to be better understood on a cellular level. The present study explores the effect of Si application in sorghum roots infected with fungus Alternaria alternata under controlled in vitro conditions. Detailed anatomical and cytological observations by both fluorescent and electron microscopy revealed that Si supplementation results in the inhibition of fungal hyphae growth into the protoplast of root cells. An approach of environmental scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy enabling spatial detection of Si even at low concentrations showed that there is no continual solid layer of silica in the root cell walls of the rhizodermis, mesodermis and exodermis physically blocking the fungal growth into the protoplasts. Additionally, biochemical evidence suggests that Si speeds up the onset of activities of phenylpropanoid pathway enzymes phenylalanine ammonia lyase, peroxidases and polyphenol oxidases involved in phenolic compounds production and deposition to plant cell walls. In conclusion, Si alleviates the negative impact of A. alternata infection by limiting hyphae penetration through sorghum root cell walls into protoplasts, thus maintaining their structural and functional integrity. This might occur by triggering plant biochemical defense responses rather than by creating compact Si layer deposits.


Assuntos
Alternaria , Raízes de Plantas , Silício , Sorghum , Alternaria/efeitos dos fármacos , Fenilalanina Amônia-Liase , Doenças das Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/microbiologia , Silício/farmacologia , Sorghum/efeitos dos fármacos , Sorghum/enzimologia , Sorghum/microbiologia
9.
Bioorg Chem ; 105: 104445, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33197848

RESUMO

Rare and endangered plants (REPs) and their associated endophytes survived in unique habitats are promising sources for natural product-derived drug discovery. In this study, six new (cephaloverines A-F, 1-6, resp.) and 16 known (11-26) cephalotaxine-type alkaloids, together with three new (oliverbiflavones A-C, 7-9, resp.) and 11 known (27-37) biflavonoids were isolated and characterized from the twigs and leaves of Cephalotaxus oliveri, an endangered plant endemic to China. Meanwhile, a preliminary investigation on the secondary metabolites from a selected fungal endophyte (i.e., Alternaria alternate Y-4-2) associated with the title plant led to the isolation of 21 structurally distinct polyketides including one new dimeric xanthone (10). The new structures (1-10) with the absolute configurations were determined by detailed spectroscopic analyses, electronic circular dichroism (ECD) or Na2MoO4-induced ECD, the modified Mosher's method, and some chemical transformations. Compounds 1-4 are the first representatives of naturally occurring N-oxides of cephalotaxine esters, while compounds 7-9 have a special structural feature of having a C-methylated biflavonoid skeleton. The Cephalotaxus alkaloids with ester side-chains at C-3 (1-6, 13-22, and 26) and four biflavonoids (27-29 and 34) were found to show pronounced cytotoxicities against a small panel of human cancer cell lines (A549, NCI-H460, HL60, NCI-H929, and RPMI-8226), with IC50 values mainly ranging from 0.003 to 9.34 µM. The most potent compound, deoxyharringtonine (16), generally exhibited IC50 values less than 10 nM. The structure-activity relationship (SAR) of the aforementioned Cephalotaxus alkaloids was briefly discussed.


Assuntos
Alternaria/efeitos dos fármacos , Antineoplásicos/isolamento & purificação , Biflavonoides/isolamento & purificação , Cephalotaxus/química , Folhas de Planta/química , Antineoplásicos/farmacologia , Biflavonoides/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Endófitos , Mepesuccinato de Omacetaxina/química , Humanos , Estrutura Molecular , Policetídeos/química , Metabolismo Secundário , Relação Estrutura-Atividade , Xantonas/química
10.
Pharm Res ; 37(12): 246, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33215292

RESUMO

PURPOSE: The present study made an attempt to develop copper nanoparticles (Cu-NP) with antifungal property using green synthesis method. Copper oxide nanoparticles (CuO-NPs) botanically synthesized using Neem leaf extract (Azadirachta indica A. Juss) were characterized by using different techniques like; UV-visible spectrophotometry, FTIR, XRD, SEM and TEM. METHODS: Materials were chosen the disease free and fresh Azadirachta indica A. Juss were collected and identified at Center of Biodiversity and Taxonomy. The plant samples were vigorously washed with distilled water then shade dried followed by sterilization with 0.1% mercuric chloride for 20 s and again it was washed with distilled water. 15 g powder form of plant material was added to 200 ml double distilled, CO2 free and deionized water and kept in shaker at 80°C and 1500 rpm for six hours. After agitation, the extract was separated by regular centrifugation at 10,000 rpm followed by filtration by using whatmann filter paper. The final volume of 100 ml of supernatant was collected as pure extract and stored in cool place for further use. RESULTS: The final results confirm a significant inhibition of CuO-NPs for the test fungi. Additionally, CuO-NPs demonstrated an enhanced effect when combined with Neem leaf extract. A total of 20-30% improvement in activity was noticed after combination, which correlates with commonly used synthetic fungicides. The toxicity results reveal that A. indica extract and their combined fractions with CuO-NP were less toxic to the test seeds of experimental plant while as bulk Cu followed by biosynthesized CuO-NPs influenced the germination rate as compared to control pots. CONCLUSIONS: The study drops a concern of research and offers a promising route of developing Copper based green fungicides that can help to combat with modern issues of synthetic fungicides. An average size of 80 ± 15 nm monoclinic cupric oxide (CuO) and cubic cuprous oxides (Cu2O) nanocrystals that existed in mixed form were successfully developed.


Assuntos
Azadirachta/metabolismo , Cobre/metabolismo , Frutas/microbiologia , Fungicidas Industriais/metabolismo , Química Verde , Malus/microbiologia , Nanopartículas Metálicas , Extratos Vegetais/metabolismo , Alternaria/efeitos dos fármacos , Alternaria/crescimento & desenvolvimento , Ascomicetos/efeitos dos fármacos , Ascomicetos/crescimento & desenvolvimento , Cobre/farmacologia , Fungicidas Industriais/farmacologia , Folhas de Planta/metabolismo
11.
Int J Mol Sci ; 21(8)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316699

RESUMO

Rutaceae are widely used in ethnomedicine to treat infectious diseases in humans and plants. In this study, the antifungal activity of the Vepris macrophylla leaf essential oil (VEO) and its main components, citral and citronellol, was evaluated against six phytopathogenic fungi. In addition, the possible action of VEO on the synthesis of mycotoxins was evaluated as well. To determine the antifungal activity of VEO we used the agar dilution method and VEO showed inhibitory activity against all the tested fungi. In particular, VEO resulted to be fungicidal against Phytophthora cryptogea and Fusarium avenaceum. For all other fungi VEO exhibited fungistatic activity and the weakest effect was observed on Alternaria solani. Citral was very effective against P. cryptogea, F. avenaceum, F. poae and F. graminearum. On the other hand, citronellol showed good activity towards P. cryptogea and F. avenaceum and weaker activity towards F. poae and F. graminearum. It can be concluded that VEO can be considered a promising antifungal agent, especially against P. cryptogea and F. avenaceum, suggesting a possible use in the formulation of new selective and natural fungicides.


Assuntos
Fungos/crescimento & desenvolvimento , Fungicidas Industriais/farmacocinética , Micotoxinas/metabolismo , Óleos Voláteis/farmacologia , Rutaceae/química , Monoterpenos Acíclicos/química , Monoterpenos Acíclicos/farmacologia , Alternaria/efeitos dos fármacos , Alternaria/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Fungos/classificação , Fungos/efeitos dos fármacos , Fungicidas Industriais/química , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Óleos Voláteis/química , Phytophthora/efeitos dos fármacos , Phytophthora/crescimento & desenvolvimento , Folhas de Planta/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia
12.
Rev. argent. microbiol ; 52(1): 43-49, mar. 2020. graf
Artigo em Inglês | LILACS | ID: biblio-1155684

RESUMO

Abstract Dark septate endophytes (DSE) are a heterogeneous group of fungi, mostly belonging to the Phylum Ascomycota, that are involved in a mutualistic symbiosis with plant roots. The aim of this study is to evaluate the behavior of two strains of DSE isolated from wheat roots of two cropping areas in the province of Buenos Aires, Argentina, against some agrochemicals. Of all the isolates obtained, two strains were identified as Alternaria alternata and Cochliobolus sp. These DSE were found to be tolerant to glyphosate, carbendazim and cypermethrin when evaluated at the recommended agronomic dose (AD), 2 AD and, in some cases, 10 AD. This work contributes to the study of the biology of this group of fungi and their tolerance in the presence of xenobiotics widely used in agriculture.© 2019 Asociaci´on Argentina de Microbiolog´ıa. Published by Elsevier Espa˜na, S.L.U. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/bync-nd/4.0/).


Resumen Los endófitos septados oscuros (DSE) son un grupo heterogéneo de hongos que participan de una simbiosis mutualista con raíces de plantas, perteneciendo principalmente al Phylum Ascomycota. El objetivo de este estudio fue aislar DSE de raíces de trigo proveniente de dos áreas de cultivo de la provincia de Buenos Aires y evaluar el comportamiento de dos cepas de DSE aisladas de raíces de trigo frente a algunos agroquímicos en dos áreas de cultivo de la provincia de Buenos Aires. De todos los aislamientos obtenidos se seleccionaron dos cepas que se identificaron como Alternaria alternata y Cochliobolus sp. Se encontró que estos DSE son tolerantes al glifosato, el carbendazim y la cipermetrina, evaluados a las dosis agronómicas recomendadas (AD), a 2x AD y, en algunos casos, a 10x AD. Este trabajo contribuye al conocimiento de la biología de este grupo de hongos y su tolerancia a xenobióticos ampliamente utilizados en la agricultura.


Assuntos
Ascomicetos/efeitos dos fármacos , Agroquímicos/farmacologia , Alternaria/efeitos dos fármacos , Endófitos/efeitos dos fármacos , Argentina , Piretrinas/farmacologia , Triticum , Benzimidazóis/farmacologia , Carbamatos/farmacologia , Raízes de Plantas/microbiologia , Farmacorresistência Fúngica , Fungicidas Industriais/farmacologia , Glicina/análogos & derivados , Glicina/farmacologia , Inseticidas/farmacologia , Antifúngicos/farmacologia
13.
Recent Pat Food Nutr Agric ; 11(2): 182-188, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31215382

RESUMO

BACKGROUND: Ammoides verticillata Briq is an aromatic and medicinal herb that has been widely used in folk medicine for treatment of several types of pathologies such as respiratory problems, colds, fever, headache, gastric disorders and renal infections. OBJECTIVE: Essential oils have been subjected of numerous works for their antimicrobial and insecticidal properties which have been valued by hundreds of publications and patents. The main objective of this work was to evaluate the chemical composition, and the in vitro and in vivo antifungal, and insecticidal properties of essential oil of Ammoides verticillata. METHODS: In this work, the air-dried aerial parts of Ammoides verticillata were hydrodistilled in a Clevenger-type apparatus. The essential oil isolated was analyzed using gas chromatography (GC) and mass spectrometry (GC/MS). The in vitro antifungal activity of the essential oil was investigated against four plant fungi using radial growth technique. The effect of the essential oil on disease development of olive caused by Penicillium crustosum and Aspergillus niger in the in vivo conditions. The fumigation test of the essential oil was evaluated against L3 stages, pupas and adults of Bactrocera oleae known as the olive fly. RESULTS: The essential oil of A. verticillata was characterized mainly by carvacrol (44.3%), limonene (19.3%) and p-cymene (19.2%). The result of in vitro antifungal activity of essential oil showed an interesting antifungal inhibition against Alternaria alternata and Fusarium solani strains with percentage inhibition of 89%. Furthermore, oil of A. verticillata has demonstrated promising in vivo antifungal activity to control infections of olives caused by Aspergillus niger and Penicillium crustosum. In addition, the essential oil exhibited fumigation toxicity against Bactrocera oleae with mortality percentage of 100% at 2 µL/L air. CONCLUSION: The results showed that essential oil of A. verticillata has interesting biological activities, which suggests that oil have the potential to be used as biocide to protect olives of pathogenic fungi and pests.


Assuntos
Antifúngicos/farmacologia , Apiaceae/química , Fungos/efeitos dos fármacos , Inseticidas/farmacologia , Óleos Voláteis/farmacologia , Olea/química , Tephritidae/efeitos dos fármacos , Alternaria/efeitos dos fármacos , Animais , Cimenos/análise , Cimenos/farmacologia , Fusarium/efeitos dos fármacos , Limoneno/análise , Limoneno/farmacologia , Monoterpenos/análise , Monoterpenos/farmacologia , Óleos Voláteis/química , Olea/microbiologia , Patentes como Assunto , Penicillium/efeitos dos fármacos , Componentes Aéreos da Planta , Doenças das Plantas/microbiologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Árvores/microbiologia
14.
Mycoses ; 63(2): 212-224, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31651065

RESUMO

BACKGROUND: Cutaneous phaeohyphomycosis is an emerging disease in immunocompromised patients, being Alternaria one of the most common genera reported as a causative agent. Species identification is not carried out mainly due to the complexity of the genus. Analysis of the ITS barcode has become standard for fungal identification, but in Alternaria it is only able to discriminate among species-groups or sections. METHODS: We present three cases of cutaneous infection caused by Alternaria isolates morphologically identified as belonging to section Infectoriae. They have been morphologically characterised and phylogenetically delineated with five molecular markers (ITS, ATPase, gapdh, rpb2 and tef1). RESULTS: Mycotic infections have been diagnosed by repeated cultures and histopathological examination in two of the cases. The polyphasic approach has allowed to delineate three new species of Alternaria section Infectoriae, that is A anthropophila, A atrobrunnea and A guarroi. ATPase has been the only locus able to discriminate most of the species (29 out of 31) currently sequenced in this section, including A infectoria the commonest reported species causing alternariosis. Susceptibility test showed different antifungal patterns for the three species, although terbinafine was the most active in vitro drug against these fungi. CONCLUSIONS: The ATPase gene is recommended as an alternative barcode locus to identify Alternaria clinical isolates in section Infectoriae. Our results reinforce the relevance of identification of Alternaria isolates at the species level and the necessity to carry out antifungal susceptibility testing to determine the most adequate drug for treatment.


Assuntos
Alternaria/classificação , Alternariose/microbiologia , Adenocarcinoma/complicações , Adenocarcinoma/radioterapia , Idoso , Alternaria/efeitos dos fármacos , Alternaria/genética , Alternaria/isolamento & purificação , Alternariose/complicações , Antifúngicos/farmacologia , Teorema de Bayes , Sequência Consenso , Feminino , Humanos , Imunossupressores/administração & dosagem , Funções Verossimilhança , Transplante de Pulmão , Masculino , Pessoa de Meia-Idade , Isquemia Miocárdica/complicações , Fenótipo , Filogenia , Neoplasias da Próstata/complicações , Neoplasias da Próstata/radioterapia , Alinhamento de Sequência , Úlcera Cutânea/complicações , Úlcera Cutânea/microbiologia , Imunologia de Transplantes/imunologia
15.
Toxins (Basel) ; 11(10)2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31547106

RESUMO

Alternaria alternata is a critical phytopathogen that causes foodborne spoilage and produces a polyketide mycotoxin, alternariol (AOH), and its derivative, alternariol monomethyl ether (AME). In this study, the inhibitory effects of the essential oil citral on the fungal growth and mycotoxin production of A. alternata were evaluated. Our findings indicated that 0.25 µL/mL (222.5 µg/mL) of citral completely suppressed mycelial growth as the minimum inhibitory concentration (MIC). Moreover, the 1/2MIC of citral could inhibit more than 97% of the mycotoxin amount. Transcriptomic profiling was performed by comparative RNA-Seq analysis of A. alternata with or without citral treatment. Out of a total of 1334 differentially expressed genes (DEGs), 621 up-regulated and 713 down-regulated genes were identified under citral stress conditions. Numerous DEGs for cell survival, involved in ribosome and nucleolus biogenesis, RNA processing and metabolic processes, and protein processing, were highly expressed in response to citral. However, a number of DEGs responsible for the metabolism of several carbohydrates and amino acids, sulfate and glutathione metabolism, the metabolism of xenobiotics and transporter activity were significantly more likely to be down-regulated. Citral induced the disturbance of cell integrity through the disorder of gene expression, which was further confirmed by the fact that exposure to citral caused irreversibly deleterious disruption of fungal spores and the inhibition of ergosterol biosynthesis. Citral perturbed the balance of oxidative stress, which was likewise verified by a reduction of total antioxidative capacity. In addition, citral was able to modulate the down-regulation of mycotoxin biosynthetic genes, including pksI and omtI. The results provide new insights for exploring inhibitory mechanisms and indicate citral as a potential antifungal and antimytoxigenic alternative for cereal storage.


Assuntos
Monoterpenos Acíclicos/farmacologia , Alternaria/efeitos dos fármacos , Perfilação da Expressão Gênica , Micotoxinas/biossíntese , Óleos Voláteis/farmacologia , Alternaria/crescimento & desenvolvimento , Alternaria/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Esporos Fúngicos/fisiologia
16.
J Agric Food Chem ; 67(36): 10018-10031, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31448918

RESUMO

Plant diseases seriously endanger plant health, and it is very difficult to control them. A series of nortopsentin analogues were designed, synthesized, and evaluated for their antiviral activities and fungicidal activities. Most of these compounds displayed higher antiviral activities than ribavirin. Compounds 1d, 1e, and 12a, with excellent antiviral activities, emerged as novel antiviral lead compounds, among which 1e was selected for further antiviral mechanism research. The mechanism research results indicated that these compounds may play an antiviral role by aggregating viral particles to prevent their movement in plants. Further fungicidal activity tests revealed that nortopsentin analogues displayed broad-spectrum fungicidal activities. Compounds 2p and 2f displayed higher antifungal activities against Alternaria solani than the commercial fungicides carbendazim and chlorothalonil. Current research has laid a foundation for the application of nortopsentin analogues in plant protection.


Assuntos
Antivirais/farmacologia , Fungicidas Industriais/farmacologia , Oxazóis/farmacologia , Tiazóis/farmacologia , Alternaria/efeitos dos fármacos , Alternaria/crescimento & desenvolvimento , Antivirais/síntese química , Antivirais/química , Desenho de Fármacos , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Oxazóis/química , Relação Estrutura-Atividade , Tiazóis/química , Vírus do Mosaico do Tabaco/efeitos dos fármacos , Vírus do Mosaico do Tabaco/crescimento & desenvolvimento
17.
Fitoterapia ; 137: 104254, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31271782

RESUMO

Five new polyphenolic derivatives, sepiumols A-E (1-5), were isolated from the root barks of Periploca sepium. Their structures were elucidated by interpretation of NMR spectroscopic and mass spectrometric data. Compounds 1, 3 and 5 were found to exhibit significant antifungal activity, particularly for 3 with the remarkable activity against Gibberella saubinetii and Alternaria longipes with MIC values of 1.56 and 3.13 µg/mL (ketoconazole: 0.78 µg/mL), respectively. In addition, compounds 1, 3 and 5 also displayed significant antibacterial activity against methicillin-resistant Staphylococcus aureu with MIC values of 12.50-25 µg/mL (ciprofloxacin: 0.78 µg/mL).


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Periploca/química , Polifenóis/farmacologia , Alternaria/efeitos dos fármacos , Antibacterianos/isolamento & purificação , Antifúngicos/isolamento & purificação , Gibberella/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Estrutura Molecular , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Casca de Planta/química , Raízes de Plantas/química , Polifenóis/isolamento & purificação
18.
Molecules ; 24(11)2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31174300

RESUMO

In this study, two phenol compounds, magnolol and honokiol, were extracted from Magnolia officinalis and identified by LC-MS, 1H- and 13C-NMR. The magnolol and honokiol were shown to be effective against seven pathogenic fungi, including Alternaria alternata (Fr.) Keissl, Penicillium expansum (Link) Thom, Alternaria dauci f.sp. solani, Fusarium moniliforme J. Sheld, Fusarium oxysporum Schltdl., Valsa mali Miyabe & G. Yamada, and Rhizoctonia solani J.G. Kühn, with growth inhibition of more than 57%. We also investigated the mechanisms underlying the potential antifungal activity of magnolol and honokiol. The results showed that they inhibited the growth of A. alternata in a dose-dependent manner. Moreover, magnolol and honokiol treatment resulted in distorted mycelia and increased the cell membrane permeability of A. alternata, as determined by conductivity measurements. These results suggest that magnolol and honokiol are potential antifungal agents for application against plant fungal diseases.


Assuntos
Compostos de Bifenilo/química , Compostos de Bifenilo/farmacologia , Lignanas/química , Lignanas/farmacologia , Magnolia/efeitos dos fármacos , Doenças das Plantas/microbiologia , Alternaria/efeitos dos fármacos , Alternaria/patogenicidade , Antifúngicos/química , Antifúngicos/farmacologia , Magnolia/química , Nicotiana/efeitos dos fármacos , Nicotiana/microbiologia
19.
Biocontrol Sci ; 24(2): 123-127, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31204357

RESUMO

Fumigation has been the most convenient method in the field of pest control in museums. In this study, as fumigants, ethanol 70%, deltamethrin (commercial pesticide (CP) ) , essential oil (EO) from Pinus regida, and low oxygen microenvironment (0.1%, (LOM) ) were tested individually and jointly against museum fungal strain Alternaria alternata. Three concentrations of each CP and EO were chosen for evaluating the individual effect. In the joint action fumigation process, three lower concentrations of CP and EO were tested in LOM. The rate of mycelial growth inhibition at each fumigation process was determined by two steps: 1) directly after the fumigation process and 2) after 7 d of the inoculation of the fumigated spores in new medium and incubating it in normal condition. The results demonstrated that applying of each chemical (CP or EO) in LOM enhanced its fungicidal activity and that effect of EO improved from fungistatic to fungicidal by jointing with LOM.


Assuntos
Alternaria/efeitos dos fármacos , Fumigação/métodos , Fungicidas Industriais/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Óleos Voláteis/farmacologia , Oxigênio/farmacologia , Alternaria/crescimento & desenvolvimento , Sinergismo Farmacológico , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento
20.
Hig. aliment ; 33(288/289): 2774-2778, abr.-maio 2019. tab
Artigo em Português | LILACS, VETINDEX | ID: biblio-1482335

RESUMO

O objetivo deste trabalho foi determinar a atividade antimicrobiana do carvacrol e sua combinação com tiabendazol no controle de fungos patogênicos deteriorantes de frutas (Colletotrichum gloesporioides, Fusarium solani e Alternaria alternata). O carvacrol apresentou uma concentração inibitória mínima (CIM) de 282 a 563 μg mL-1 para os fungos testados. Quando avaliado em conjunto com o tiabendazol apresentou efeito aditivo contra C. gloesporioides e F. solani (FICI 0,5 e 1,0, respectivamente) e sinérgico contra a A.alternata (FICI 0,1). Houve redução da CIM do carvacrol de 50 a 88%. Este estudo mostra o potencial do uso.


Assuntos
Alternaria/efeitos dos fármacos , Colletotrichum/efeitos dos fármacos , Fungicidas Industriais/administração & dosagem , Fungicidas Industriais/análise , Fungos/efeitos dos fármacos , Fusarium/efeitos dos fármacos , Microbiologia de Alimentos , Tiabendazol/administração & dosagem , Sinergismo Farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA