Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(10): 5895-5911, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38716875

RESUMO

Argonautes are an evolutionary conserved family of programmable nucleases that identify target nucleic acids using small guide oligonucleotides. In contrast to eukaryotic Argonautes (eAgos) that act on RNA, most studied prokaryotic Argonautes (pAgos) recognize DNA targets. Similarly to eAgos, pAgos can protect prokaryotic cells from invaders, but the biogenesis of guide oligonucleotides that confer them specificity to their targets remains poorly understood. Here, we have identified a new group of RNA-guided pAgo nucleases and demonstrated that a representative pAgo from this group, AmAgo from the mesophilic bacterium Alteromonas macleodii, binds guide RNAs of varying lengths for specific DNA targeting. Unlike most pAgos and eAgos, AmAgo is strictly specific to hydroxylated RNA guides containing a 5'-adenosine. AmAgo and related pAgos are co-encoded with a conserved RNA endonuclease from the HEPN superfamily (Ago-associated protein, Agap-HEPN). In vitro, Agap cleaves RNA between guanine and adenine nucleotides producing hydroxylated 5'-A guide oligonucleotides bound by AmAgo. In vivo, Agap cooperates with AmAgo in acquiring guide RNAs and counteracting bacteriophage infection. The AmAgo-Agap pair represents the first example of a pAgo system that autonomously produces RNA guides for DNA targeting and antiviral defense, which holds promise for programmable DNA targeting in biotechnology.


Assuntos
Alteromonas , Proteínas Argonautas , DNA Viral , RNA Guia de Sistemas CRISPR-Cas , Ribonucleases , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Ribonucleases/metabolismo , RNA Guia de Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas/metabolismo , Alteromonas/enzimologia , Alteromonas/virologia , DNA Viral/metabolismo , Bacteriófagos/fisiologia
2.
Antonie Van Leeuwenhoek ; 117(1): 28, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280034

RESUMO

A novel Gram-stain-negative, strictly aerobic and bioflocculant-producing bacterium, designated as ASW11-36T, was isolated from an intertidal sand collected from coastal areas of Qingdao, PR China. Growth occurred at 15-40 °C (optimum, 30 °C), pH 7.0-9.0 (optimum, pH 7.5) and with 1.5-7.0% (w/v) NaCl (optimum, 2.5-3.0%). In the whole-cell fatty acid pattern prevailed C16:0 and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c). The major isoprenoid quinone was determined to be Q-8 and the major polar lipids were phosphatidylethanolamine (PE) and phosphatidylglycerol (PG), one unidentified aminolipid (AL), one unidentified glycolipid (GL), and two lipids (L1, L2). Based on the phylogenetic analyses of 16S rRNA gene sequences and 618 single-copy orthologous clusters, strain ASW11-36T could represent a novel member of the genus Alteromonas and was closely related to Alteromonas flava P0211T (98.4%) and Alteromonas facilis P0213T (98.3%). The pairwise average nucleotide identity and digital DNA-DNA hybridization values of the ASW11-36T genome assembly against the closely related species genomes were 71.8% and 21.7%, respectively, that clearly lower than the proposed thresholds for species. Based on phenotypic, phylogenetic, and chemotaxonomic analyses, strain ASW11-36T is considered to represent a novel species of the genus Alteromonas, for which the name Alteromonas arenosi sp. nov. is proposed. The type strain is ASW11-36T (= KCTC 82496T = MCCC 1K05585T). In addition, the strain yielded 65% of flocculating efficiency in kaolin suspension with CaCl2 addition. The draft genome of ASW11-36T shared abundant putative CAZy family related genes, especially involved in the biosynthesis of exopolysaccharides, implying its potential environmental and biological applications.


Assuntos
Alteromonas , Areia , Filogenia , RNA Ribossômico 16S/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos , Ubiquinona , DNA , Análise de Sequência de DNA , DNA Bacteriano/genética , Fosfolipídeos
3.
Arch Microbiol ; 204(6): 325, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35575833

RESUMO

A Gram-stain-negative, aerobic and rod-shaped bacterium, designated strain SM 2104T, was isolated from a deep-sea sediment sample collected from the Southwest Indian Ocean. Strain SM 2104T grew at 10-37 °C (optimum at 25 °C), and with 1.0-9.0% (w/v, optimum with 2-4%) NaCl. It hydrolyzed starch, tween 80 and gelatin but did not reduced nitrate to nitrite. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain SM 2104T was affiliated with the genus Alteromonas, sharing the highest 16S rRNA gene sequence similarities with type strains of Alteromonas flava (97.5%) and Alteromonas facilis (97.4%) and forming a distinct clade together with the two Alteromonas species. The digital DNA-DNA hybridization and average nucleotide identity values between strain SM 2104 T and type strains of Alteromonas flava and Alteromonas facilis were below 14.5%, and 71.0%, respectively. The major fatty acids of strain SM 2104T were summed feature 3 (C16:1ω6c/C16:1ω7c), C16:0 and summed feature 8 (C18:1ω7c/C18:1ω6c). The major polar lipids of strain SM 2104T were phosphatidylethanolamine and phosphatidylglycerol and the only respiratory quinone of strain SM 2104T was ubiquinone-8. The genomic DNA G + C content of strain SM 2104T was 48.0%. On the basis of the phylogenetic, phenotypic, chemotaxonomic and genomic analyses presented in this study, strain SM 2104T is considered to represent a novel species within the genus Alteromonas, for which the name Alteromonas oceansediminis sp. nov. is proposed. The type strain is SM 2104T (= CCTCC AB 2021121T = KCTC 82867T).


Assuntos
Alteromonas , Alteromonas/genética , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Ubiquinona
4.
ISME J ; 16(2): 358-369, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34341506

RESUMO

It is now widely accepted that siderophores play a role in marine iron biogeochemical cycling. However, the mechanisms by which siderophores affect the availability of iron from specific sources and the resulting significance of these processes on iron biogeochemical cycling as a whole have remained largely untested. In this study, we develop a model system for testing the effects of siderophore production on iron bioavailability using the marine copiotroph Alteromonas macleodii ATCC 27126. Through the generation of the knockout cell line ΔasbB::kmr, which lacks siderophore biosynthetic capabilities, we demonstrate that the production of the siderophore petrobactin enables the acquisition of iron from mineral sources and weaker iron-ligand complexes. Notably, the utilization of lithogenic iron, such as that from atmospheric dust, indicates a significant role for siderophores in the incorporation of new iron into marine systems. We have also detected petrobactin, a photoreactive siderophore, directly from seawater in the mid-latitudes of the North Pacific and have identified the biosynthetic pathway for petrobactin in bacterial metagenome-assembled genomes widely distributed across the global ocean. Together, these results improve our mechanistic understanding of the role of siderophore production in iron biogeochemical cycling in the marine environment wherein iron speciation, bioavailability, and residence time can be directly influenced by microbial activities.


Assuntos
Alteromonas , Sideróforos , Alteromonas/metabolismo , Benzamidas , Ferro/metabolismo , Oceanos e Mares , Sideróforos/metabolismo
5.
Dalton Trans ; 50(46): 17215-17227, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34783812

RESUMO

Exopolysaccharide (EPS) derivatives, produced by Alteromonas infernus bacterium, showed anti-metastatic properties in osteosarcoma (bone tumor). These EPSs could be employed as new drug delivery systems for therapeutic uses. They may represent a new class of ligands to be combined in a theranostic approach with fluorescent metals, such as Eu(III), to serve as imaging probe. The goal of this work was to investigate the feasibility of such coupling by time-resolved laser-induced fluorescence spectroscopy (TRLFS). Since these EPSs are polyelectrolytes their conformation could affect the complexation properties. Thus, viscosimetric measurements were performed as a function of their concentration as well as the background electrolyte concentration. Polysaccharides conformation exhibited a lower hydrodynamic volume for the highest ionic strengths. The resulting random-coiled conformation could affect the complexation with metal for high concentration but no change was evidenced when increasing europium concentration. Two sites of complexation of Eu(III) were evidenced by TRLFS in heparin, whereas only one site was evidenced in two modified EPSs produced from Alteromonas infernus.


Assuntos
Alteromonas/química , Complexos de Coordenação/química , Európio/química , Corantes Fluorescentes/química , Polissacarídeos/química , Nanomedicina Teranóstica , Alteromonas/metabolismo , Complexos de Coordenação/síntese química , Corantes Fluorescentes/síntese química , Polissacarídeos/biossíntese , Espectrometria de Fluorescência , Viscosidade
6.
Mar Drugs ; 19(3)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806830

RESUMO

Antimetastatic properties on both murine and human osteosarcoma cell lines (POS-1 and KHOS) have been evidenced using exopolysaccharide (EPS) derivatives, produced by Alteromonas infernus bacterium. These derivatives had no significant effect on the cell cycle neither a pro-apoptotic effect on osteosarcoma cells. Based on this observation, these EPSs could be employed as new drug delivery systems for therapeutic uses. A theranostic approach, i.e., combination of a predictive biomarker with a therapeutic agent, has been developed notably by combining with true pair of theranostic radionuclides, such as scandium 47Sc/44Sc. However, it is crucial to ensure that, once complexation is done, the biological properties of the vector remain intact, allowing the molecular tropism of the ligand to recognize its molecular target. It is important to assess if the biological properties of EPS evidenced on osteosarcoma cell lines remain when scandium is complexed to the polymers and can be extended to other cancer cell types. Scandium-EPS complexes were thus tested in vitro on human cell lines: MNNG/HOS osteosarcoma, A375 melanoma, A549 lung adenocarcinoma, U251 glioma, MDA231 breast cancer, and Caco2 colon cancer cells. An xCELLigence Real Cell Time Analysis (RTCA) technology assay was used to monitor for 160 h, the proliferation kinetics of the different cell lines. The tested complexes exhibited an anti-proliferative effect, this effect was more effective compared to EPS alone. This increase of the antiproliferative properties was explained by a change in conformation of EPS complexes due to their polyelectrolyte nature that was induced by complexation. Alterations of both growth factor-receptor signaling, and transmembrane protein interactions could be the principal cause of the antiproliferative effect. These results are very promising and reveal that EPS can be coupled to scandium for improving its biological effects and also suggesting that no major structural modification occurs on the ligand.


Assuntos
Alteromonas/metabolismo , Proliferação de Células/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Polissacarídeos Bacterianos/farmacologia , Escândio/farmacologia , Células A549 , Animais , Células CACO-2 , Complexos de Coordenação , Heparina/farmacologia , Humanos , Cinética , Camundongos , Neoplasias/patologia , Polissacarídeos Bacterianos/isolamento & purificação
7.
Molecules ; 26(4)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672781

RESUMO

(1) Background: Exopolysaccharide (EPS) derivatives, produced by Alteromonas infernus bacterium, showed anti-metastatic properties. They may represent a new class of ligands to be combined with theranostic radionuclides, such as 47Sc/44Sc. The goal of this work was to investigate the feasibility of such coupling. (2) Methods: EPSs, as well as heparin used as a drug reference, were characterized in terms of molar mass and dispersity using Asymmetrical Flow Field-Flow Fractionation coupled to Multi-Angle Light Scattering (AF4-MALS). The intrinsic viscosity of EPSs at different ionic strengths were measured in order to establish the conformation. To determine the stability constants of Sc with EPS and heparin, a Free-ion selective radiotracer extraction (FISRE) method has been used. (3) Results: AF4-MALS showed that radical depolymerization produces monodisperse EPSs, suitable for therapeutic use. EPS conformation exhibited a lower hydrodynamic volume for the highest ionic strengths. The resulting random-coiled conformation could affect the complexation with metal for high concentration. The LogK of Sc-EPS complexes have been determined and showing that they are comparable to the Sc-Hep. (4) Conclusions: EPSs are very promising to be coupled with the theranostic pair of scandium for Nuclear Medicine.


Assuntos
Alteromonas/química , Complexos de Coordenação/química , Polissacarídeos/química , Escândio/química , Configuração de Carboidratos , Fracionamento por Campo e Fluxo , Hidrodinâmica , Luz , Medicina Nuclear , Concentração Osmolar , Espalhamento de Radiação , Nanomedicina Teranóstica , Viscosidade
8.
Appl Microbiol Biotechnol ; 105(1): 389-400, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33191461

RESUMO

Indiscriminate use of organophosphorus (OP)-based insecticides is a great concern to human health because of bioaccumulation-induced health hazards. Potentially fatal consequences and limited treatment methods of OP poisoning necessitate the need for the development of reliable, selective, cost-effective, and sensitive methods of OP detection. To tackle this issue, the development of effective devices and methods is required to sensitively detect as well as degrade OPs. Enzymatic sensor systems have gained popularity due to high catalytic activity, enhanced detection limits, and high sensitivity with the environmentally benign operation. Organophosphorus acid anhydrolase (OPAA) from Alteromonas sp. JD6.5 is capable of hydrolyzing the P-F, P-O, P-S, and P-CN bonds, in OPs, including nerve agents of the G/V-series. Several mutants of OPAA are reported which have greater activity against various OPs. In this study, recombinant expression of the OPAA-FL variant in Escherichia coli was performed, purified, and subsequently tested for activity against ethyl paraoxon. OPAA-FL variant showed its optimum activity at pH 8.5 and 50 °C. Colorimetric and fluorometric assays were used for estimation of ethyl paraoxon based on p-nitrophenol and fluorescein isothiocyanate (FITC) fluorescence intensity, respectively. Colorimetric and fluorometric assay estimation indicates that ethyl paraoxon can be estimated in the linear range of 0.01 to 1 mM and 0.1 to 0.5 mM, with LOD values 0.04 mM and 0.056 mM, respectively. Furthermore, the OPAA-FL variant was immobilized into alginate microspheres for colorimetric detection of ethyl paraoxon and displayed a linear range of 0.025 to 1 mM with a LOD value of 0.06 mM. KEY POINTS: • Biosensing of paraoxon with purified and encapsulated OPAA-FL variant. • Colorimetric and fluorometric biosensing assay developed using OPAA-FL variant for paraoxon. • First report on alginate encapsulation of OPAA-FL variant for biosensing of paraoxon. Graphical abstract.


Assuntos
Alteromonas , Técnicas Biossensoriais , Praguicidas , Arildialquilfosfatase/genética , Colorimetria , Compostos Organofosforados , Paraoxon , Praguicidas/análise
9.
Int J Syst Evol Microbiol ; 70(12): 6396-6401, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33156994

RESUMO

A Gram-stain-negative, aerobic, non-spore-forming, non-motile and ovoid or rod-shaped bacterial strain, MYP5T, was isolated from seawater in Jeju island of South Korea. MYP5T grew optimally at 30-35 °C and in the presence of 2.0 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences revealed that MYP5T fell within the clade enclosed by the type strains of species of the genus Alteromonas, clustering with the type strains of Alteromonas confluentis and Alteromonas halophila. MYP5T exhibited the highest 16S rRNA gene sequence similarity value (98.0 %) to the type strain of A. confluentis and similarities of 95.1-97.9 % to the type strains of the other species of the genus Alteromonas. ANI and dDDH values of genomic sequences between MYP5T and the type strains of 22 species of the genus Alteromonas were 66.8-70.5 % and 18.6-27.5 %, respectively. The DNA G+C content of MYP5T, determined from the genome sequence, was 46.1 %. MYP5T contained Q-8 as the predominant ubiquinone and C18 : 1 ω7c, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0 and 10-methyl C17 : 0 as the major fatty acids. The major polar lipids of MYP5T were phosphatidylethanolamine and phosphatidylglycerol. Distinguishing phenotypic properties, along with the phylogenetic and genetic distinctiveness, revealed that MYP5T is separated from species of the genus Alteromonas. On the basis of the data presented, MYP5T is considered to represent a novel species of the genus Alteromonas, for which the name Alteromonas ponticola sp. nov. is proposed. The type strain is MYP5T (=KCTC 82144T=NBRC 114354T).


Assuntos
Alteromonas/classificação , Filogenia , Água do Mar/microbiologia , Alteromonas/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfatidiletanolaminas/química , Fosfatidilgliceróis/química , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA
10.
J Nat Prod ; 83(9): 2696-2705, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32869646

RESUMO

Co-cultivation has been used as a promising tool to turn on or up-regulate cryptic biosynthetic pathways for microbial natural product discovery. Recently, a modified culturing strategy similar to co-cultivation was investigated, where heat-killed inducer cultures were supplemented to the culture medium of producer fermentations to induce cryptic pathways. In the present study, the repeatability and effectiveness of both methods in turning on cryptic biosynthetic pathways were unbiasedly assessed using UHPLC-HRESIMS-based metabolomics analysis. Both induction methods had good repeatability, and they resulted in very different induced metabolites from the tested producers. Co-cultivation generated more induced mass features than the heat-killed inducer cultures, while both methods resulted in the induction of mass features not observed using the other induction method. As examples, pathways leading to two new natural products, N-carbamoyl-2-hydroxy-3-methoxybenzamide (1) and carbazoquinocin G (5), were induced and up-regulated through co-culturing a producer Streptomyces sp. RKND-216 with inducers Alteromonas sp. RKMC-009 and M. smegmatis ATCC 120515, respectively.


Assuntos
Redes e Vias Metabólicas , Metaboloma , Alteromonas/metabolismo , Antineoplásicos/farmacologia , Bactérias/efeitos dos fármacos , Produtos Biológicos , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Técnicas de Cocultura , Descoberta de Drogas , Temperatura Alta , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium smegmatis/efeitos dos fármacos , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray , Esterilização , Streptomyces/metabolismo
11.
Int J Syst Evol Microbiol ; 70(3): 1516-1521, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31935177

RESUMO

An alginate lyase-excreting bacterium, designated strain HB161718T, was isolated from coastal sand collected from Tanmen Port in Hainan, PR China. Cells were Gram-stain-negative rods and motile with a single polar flagellum. Its major isoprenoid quinone was ubiquinone 8 (Q-8), and its cellular fatty acid profile mainly consisted of C16 : 1 ω7c and/or C16 : 1 ω6c, C18 : 1 ω6c and/or C18 : 1 ω7c, C16 : 0, C17 : 0 10-methyl and C16 : 0 N alcohol. The G+C content of the genomic DNA was 44.1 mol%. 16S rRNA gene sequence analysis suggested that strain HB161718T belonged to the genus Alteromonas, sharing 99.5, 99.4, 99.2, 98.9 and 98.5 % sequence similarities to its closest relatives, Alteromonas macleodii JCM 20772T, Alteromonas gracilis 9a2T, Alteromonas australica H17T, Alteromonas marina SW-47T and Alteromonas mediterranea DET, respectively. The low values of DNA-DNA hybridization and average nucleotide identity showed that it formed a distinct genomic species. The combined phenotypic and molecular features supported the conclusion that strain HB161718T represents a novel species of the genus Alteromonas, for which the name Alteromonas portus sp. nov. is proposed. The type strain is HB161718T (=CGMCC 1.13585T=JCM 32687T).


Assuntos
Alteromonas/classificação , Filogenia , Polissacarídeo-Liases , Areia/microbiologia , Alteromonas/enzimologia , Alteromonas/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
12.
Int J Syst Evol Microbiol ; 70(1): 267-273, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31622231

RESUMO

A novel non-pigmented, Gram-stain-negative, motile by means of a polar flagellum, aerobic and rod-shaped bacterium, designated HMF8227T, was isolated from solar saltern sediment sampled at Shinan, Republic of Korea. The isolate was able to grow at 15-42 °C (optimum, 37 °C), at pH 6-8 (pH 7) and with 0.5-12 % NaCl (2-5 %). Strain HMF8227T was positive for hydrolysis of starch and dextrin. 16S rRNA gene sequence analysis revealed that strain HMF8227T was affiliated with the family Alteromonadaceae, sharing the highest sequence similarities to the genera Salinimonas (93.0-94.4 %), Aestuariibacter (92.0-94.2 %), Alteromonas (92.0-93.6 %) and Lacimicrobium (93.6 %). In the phylogenetic trees, strain HMF8227T formed an independent clade with Lacimicrobium alkaliphilum X13M-12T. The major fatty acids were C16 : 0, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The major respiratory quinone was ubiquinone-8 (Q-8). The major polar lipids are phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid and two unidentified glycolipids. The DNA G+C content of the genomic DNA was 52.1 mol%. On the basis of the polyphasic characterizations, strain HMF8227T represents a novel species and genus within the family Alteromonadaceae, for which the name Saliniradius amylolyticus gen. nov., sp. nov. is proposed, with the type strain being HMF8227T (=KCTC 62462T =NBRC 113230T).


Assuntos
Alteromonadaceae/classificação , Sedimentos Geológicos/microbiologia , Filogenia , Salinidade , Alteromonadaceae/isolamento & purificação , Alteromonas/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Glicolipídeos/química , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Ubiquinona/química
13.
Molecules ; 24(19)2019 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-31546751

RESUMO

Bacteria from deep-sea hydrothermal vents constitute an attractive source of bioactive molecules. In particular, exopolysaccharides (EPS) produced by these bacteria become a renewable source of both biocompatible and biodegradable molecules. The low molecular weight (LMW) derivatives of the GY785 EPS produced by the deep-sea hydrothermal vent strain Alteromonas infernus have previously displayed some biological properties, similar to those of glycosaminoglycans (GAG), explored in cancer and tissue engineering. These GAG-mimetic derivatives are obtained through a free radical depolymerization process, which could, however, affect their structural integrity. In a previous study, we have shown that A. infernus produces depolymerizing enzymes active on its own EPS. In the present study, an enzymatic reaction was optimized to generate LMW derivatives of the GY785 EPS, which could advantageously replace the present bioactive derivatives obtained by a chemical process. Analysis by mass spectrometry of the oligosaccharide fractions released after enzymatic treatment revealed that mainly a lyase activity was responsible for the polysaccharide depolymerization. The repeating unit of the GY785 EPS produced by enzyme cleavage was then fully characterized.


Assuntos
Alteromonas/química , Oligossacarídeos/química , Polissacarídeos Bacterianos/química , Espectrometria de Massas
14.
Int J Syst Evol Microbiol ; 69(8): 2514-2521, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31199221

RESUMO

Strain 1T, isolated in the 1970s from the thallus of the carrageenophytic red algae, Eucheuma spinosum, collected in Hawaii, USA, was characterized using a polyphasic method. Cells were Gram-stain-negative, strictly aerobic, non-flagellated, ovoid or rod-shaped and grew optimally at 20-25 °C, at pH 6-9 and with 2-4 % NaCl. Strain 1T used the seaweed polysaccharides ι-carrageenan, laminarin and alginic acid as sole carbon sources. The major fatty acids were C16 : 0, C18 : 1 ω7c and summed feature 3 (C16 : 1 ω7c and/or iso-C15 : 0 2OH) with significant amounts (>6 %) of C16 : 0 N alcohol and 10 methyl C17 : 0. The respiratory quinone was Q-8 and major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and an unknown aminolipid. Phylogenetic analyses showed that the bacterium is affiliated to the genus Alteromonas (family Alteromonadaceae, class Gammaproteobacteria). Strain 1T exhibited 16S rRNA gene sequence similarity values of 98.8 and 99.2 % to the type strains of Alteromonas mediterranea and Alteromonas australica respectively, and of 95.2-98.6 % to other species of the genus Alteromonas. The DNA G+C content of strain 1T was determined to be 43.9 mol%. Digital DNA-DNA hybridization predictions by the ANI and GGDC methods between strain 1T and other members of the genus Alteromonas showed values below 83 % and 30 %, respectively. The phenotypic, phylogenetic and genomic analyses show that strain 1T is distinct from species of the genus Alteromonas with validly published names and that it represents a novel species of the genus Alteromonas, for which the name Alteromonasfortis sp. nov. is proposed. The type strain is 1T (=ATCC 43554T=RCC 5933T=CIP 111645T=DSM 106819T).


Assuntos
Alteromonas/classificação , Carragenina/metabolismo , Filogenia , Rodófitas/microbiologia , Alteromonas/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Havaí , Hibridização de Ácido Nucleico , Fosfatidiletanolaminas/química , Fosfatidilgliceróis/química , RNA Ribossômico 16S/genética , Alga Marinha/microbiologia , Análise de Sequência de DNA
15.
Int J Syst Evol Microbiol ; 69(6): 1579-1584, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30900969

RESUMO

A novel strain, U0105T, was isolated from marine sediment of the coast of Weihai, China. The bacterium was aerobic, Gram-stain-negative, oxidase-positive, catalase-positive, rod-shaped and motile. Growth was observed at salinities of 1.0-6.0 % (w/v) NaCl (optimum with 2.0-3.0 %), temperatures of 20-40 °C (optimum at 37 °C) and pH of 6.5-9.5 (optimum at pH 7.0-7.5). The isolate could not reduce nitrate to nitrite. It could hydrolyse starch and Tweens 20, 40 and 60, but not casein or cellulose. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain U0105T belonged to the genus Alteromonas, with highest sequence similarity to Alteromonas aestuariivivens KCTC 52655T (97.1 %). The average nucleotide identity value and the digital DNA-DNA hybridization value between strain U0105T and A. aestuariivivens KCTC 52655T were 69.2 % and 21.2 %, respectively. Strain U0105T was found to contain Q-8 as the sole menaquinone and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and C18 : 1ω7c as the major fatty acids. The major polar lipids were identified as phosphatidylglycerol and phosphatidylethanolamine. The G+C content of the chromosomal DNA was 45.3 mol%. The combined genotypic and phenotypic data show that strain U0105T represents a novel species of the genus Alteromonas, for which the name Alteromonas sediminis sp. nov. is proposed. The type strain is U0105T (=KCTC 62080T=MCCC 1H00299T).


Assuntos
Alteromonas/classificação , Sedimentos Geológicos/microbiologia , Filogenia , Pepinos-do-Mar , Água do Mar/microbiologia , Alteromonas/isolamento & purificação , Animais , Aquicultura , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Lagoas , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
16.
Pak J Biol Sci ; 22(10): 467-476, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31930836

RESUMO

BACKGROUND AND OBJECTIVE: Algae-associated bacteria produce secondary metabolites that have a great biological impact. The aim of this study was isolation, identification and evaluation the antioxidant activities of the associated bacteria of seven algae, Padina pavonica, Dictyota dichotoma, Cystoseira myrica, Halimeda opuntia, Ulva lactuca, Digenea simplex and Jania sp. The bacteria were isolated, characterized and identified. Identification was carried out using 16S rRNA gene sequencing. MATERIALS AND METHODS: The identified bacteria were belonging to 6 families, Alteromonadaceae, Bacillaceae, Lactobacillaceae, Pseudomonadaceae, Rhodobacteraceae and Vibrionaceae and 9 genera. The identified bacteria were belonging to genera, Alteromonas, Bacillus, Lysinibacillus Vibrio, Lactobacillus, Paracoccus, Leisingera, Pseudomonas and Pseudovibrio. The antioxidant activities of the bacterial ethyl acetate extracts was examined by scavenging DPPH (2,2-diphenyl-1-picrylhydrazyl) and FRAP (Ferric Reducing Antioxidant Power) methods. RESULTS: Out of the 17 isolated bacteria, Lactobacillus plantarum showed 95.7% free radical scavenging with EC50 = 17.7 µg mL-1, which is nearly similar to the positive control (Butylated Hydroxytoluene, BHT). The FRAP value of Lactobacillus extract was 2.00 mM ferric equivalent/mg of the extract. Phytochemical analysis of the bacterial extract revealed the presence of some secondary metabolites such as steroids, saponins, tannins, flavonoids, anthocyanin and betacyanin in all tested extracts. CONCLUSION: The Red Sea algal associated bacteria have a great antioxidant potential that can be used in pharmaceutical industries.


Assuntos
Antioxidantes/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Filogenia , Ulva/microbiologia , Alteromonas , Bacillaceae , Bacillus , Flavonoides/análise , Radicais Livres , Lactobacillus , Paracoccus , Pseudomonas , RNA Ribossômico 16S/genética , Rhodobacteraceae , Arábia Saudita , Análise de Sequência de RNA , Vibrio
17.
Int J Syst Evol Microbiol ; 69(1): 278-284, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30499768

RESUMO

A Gram-stain-negative, strictly aerobic, motile by one polar flagellum, non-spore-forming, rod-shaped bacterium, designated as 190T, was isolated from seawater of the West Pacific Ocean and subjected to a polyphasic taxonomic investigation. Colonies were 1.0-2.0 mm in diameter, smooth, circular, convex and white after growth on marine agar at 30 °C for 24 h. Strain 190T was found to grow at 4-40 °C (optimum, 30 °C), at pH 5.5-10.5 (optimum, pH 6.5) and with 0.5-12.5 % (w/v) NaCl (optimum, 2.0 %). Chemotaxonomic analysis showed the sole respiratory quinone was ubiquinone 8 (Q-8), and the major fatty acids were summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH), C16 : 0 and summed feature 8 (C18 : 1ω6c and/or C18 : 1ω7c). The major polar lipids were phosphatidylethanolamine (PE), phosphatidylglycerol (PG), one unidentified aminolipid (AL1) and two unidentified glycolipids (GL1, GL2). The DNA G+C content of strain 190T was 48.7 mol% based on the genome sequence. The comparison of 16S rRNA gene sequence similarities showed that strain 190T was closely related to Alteromonas oceani S35T (99.6 % sequence similarity), A. lipolytica JW12T (98.2 %), A. aestuariivivens JDTF-113T (97.7 %) and A. mediterranea DET (97.5 %); it exhibited 97.0 % or less sequence similarity with the type strains of other species with validly published names. Phylogenetic trees reconstructed with the neighbour-joining, maximum-parsimony and maximum-likelihood methods based on 16S rRNA gene sequences showed that strain 190T constituted a separate branch with A. oceani, A. confluentis, A. aestuariivivens and A. lipolytica in a clade of the genus Alteromonas. OrthoANI values between strain 190T and A. oceani S35T and A. lipolytica JW12T were 93.5 and 77.9 %, respectively, and in silico DNA-DNA hybridization values were 53.8 and 21.2 %, respectively. Differential phenotypic properties, together with phylogenetic distinctiveness, demonstrated that strain 190T is clearly distinct from recognized species of the genus Alteromonas. On the basis of these features, we propose that strain 190T (=MCCC 1K03456T=KCTC 62227T) represents a novel species of the genus Alteromonas with the name Alteromonas alba sp. nov.


Assuntos
Alteromonas/classificação , Filogenia , Água do Mar/microbiologia , Alteromonas/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Glicolipídeos/química , Hibridização de Ácido Nucleico , Oceano Pacífico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
18.
PLoS One ; 13(12): e0208406, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30521589

RESUMO

Sinking marine oil snow was found to be a major mechanism in the transport of spilled oil from the surface to the deep sea following the Deepwater Horizon (DwH) oil spill. Marine snow formation is primarily facilitated by extracellular polymeric substances (EPS), which are mainly composed of proteins and carbohydrates secreted by microorganisms. While numerous bacteria have been identified to degrade oil, there is a paucity of knowledge on bacteria that produce EPS in response to oil and Corexit exposure in the northern Gulf of Mexico (nGoM). In this study, we isolated bacteria from surface water of the nGoM that grow on oil or Corexit dispersant. Among the 100 strains isolated, nine were identified to produce remarkable amounts of EPS. 16S rRNA gene analysis revealed that six isolates (strains C1, C5, W10, W11, W14, W20) belong to the genus Alteromonas; the others were related to Thalassospira (C8), Aestuariibacter (C12), and Escherichia (W13a). The isolates preferably degraded alkanes (17-77%), over polycyclic aromatic hydrocarbons (0.90-23%). The EPS production was determined in the presence of a water accommodated fraction (WAF) of oil, a chemical enhanced WAF (CEWAF), Corexit, and control. The highest production of visible aggregates was found in Corexit followed by CEWAF, WAF, and control; indicating that Corexit generally enhanced EPS production. The addition of WAF and Corexit did not affect the carbohydrate content, but significantly increased the protein content of the EPS. On the average, WAF and CEWAF treatments had nine to ten times more proteins, and Corexit had five times higher than the control. Our results reveal that Alteromonas and Thalassospira, among the commonly reported bacteria following the DwH spill, produce protein rich EPS that could have crucial roles in oil degradation and marine snow formation. This study highlights the link between EPS production and bacterial oil-degrading capacity that should not be overlooked during spilled oil clearance.


Assuntos
Bactérias/classificação , Matriz Extracelular de Substâncias Poliméricas/microbiologia , Sedimentos Geológicos/microbiologia , Poluição por Petróleo/análise , Alteromonas/classificação , Alteromonas/isolamento & purificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Biodegradação Ambiental , Carboidratos/análise , DNA Bacteriano/genética , DNA Ribossômico/genética , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Golfo do México , Filogenia , RNA Ribossômico 16S/genética , Rhodospirillaceae/classificação , Rhodospirillaceae/isolamento & purificação
19.
Mar Pollut Bull ; 135: 205-215, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30301032

RESUMO

A distinctive feature of the Deepwater Horizon (DwH) oil spill was the formation of significant quantities of marine oil snow (MOS), for which the mechanism(s) underlying its formation remain unresolved. Here, we show that Alteromonas strain TK-46(2), Pseudoalteromonas strain TK-105 and Cycloclasticus TK-8 - organisms that became enriched in sea surface oil slicks during the spill - contributed to the formation of MOS and/or dispersion of the oil. In roller-bottle incubations, Alteromonas cells and their produced EPS yielded MOS, whereas Pseudoalteromonas and Cycloclasticus did not. Interestingly, the Cycloclasticus strain was able to degrade n-alkanes concomitantly with aromatics within the complex oil mixture, which is atypical for members of this genus. Our findings, for the first time, provide direct evidence on the hydrocarbon-degrading capabilities for these bacteria enriched during the DwH spill, and that bacterial cells of certain species and their produced EPS played a direct role in MOS formation.


Assuntos
Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Poluição por Petróleo , Água do Mar/microbiologia , Alcanos/metabolismo , Alteromonas/fisiologia , Biodegradação Ambiental , Emulsões/química , Golfo do México , Hidrocarbonetos/metabolismo , Petróleo/metabolismo
20.
J Enzyme Inhib Med Chem ; 33(1): 920-935, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29768059

RESUMO

Pentabromopseudilin (PBrP) is a marine antibiotic isolated from the marine bacteria Pseudomonas bromoutilis and Alteromonas luteoviolaceus. PBrP exhibits antimicrobial, anti-tumour, and phytotoxic activities. In mammalian cells, PBrP is known to act as a reversible and allosteric inhibitor of myosin Va (MyoVa). In this study, we report that PBrP is a potent inhibitor of transforming growth factor-ß (TGF-ß) activity. PBrP inhibits TGF-ß-stimulated Smad2/3 phosphorylation, plasminogen activator inhibitor-1 (PAI-1) protein production and blocks TGF-ß-induced epithelial-mesenchymal transition in epithelial cells. PBrP inhibits TGF-ß signalling by reducing the cell-surface expression of type II TGF-ß receptor (TßRII) and promotes receptor degradation. Gene silencing approaches suggest that MyoVa plays a crucial role in PBrP-induced TßRII turnover and the subsequent reduction of TGF-ß signalling. Because, TGF-ß signalling is crucial in the regulation of diverse pathophysiological processes such as tissue fibrosis and cancer development, PBrP should be further explored for its therapeutic role in treating fibrotic diseases and cancer.


Assuntos
Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Miosina Tipo V/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirróis/farmacologia , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/antagonistas & inibidores , Alteromonas/química , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Células HEK293 , Células Hep G2 , Humanos , Vison , Estrutura Molecular , Miosina Tipo V/metabolismo , Proteínas Serina-Treonina Quinases/biossíntese , Pseudomonas/química , Pirróis/química , Pirróis/isolamento & purificação , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/biossíntese , Relação Estrutura-Atividade , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA