Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
J Pharm Biomed Anal ; 245: 116187, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692215

RESUMO

The continuous emergence of new psychoactive substances (NPS) attracted a great deal of attention within recent years. Lately, the two hallucinogenic NPS 1cP-LSD and 4-AcO-DET have appeared on the global market. Knowledge about their metabolism to identify potential metabolic targets for analysis and their cytotoxic properties is lacking. The aim of this work was thus to study their in vitro and in vivo metabolism in pooled human liver S9 fraction (pHLS9) and in zebrafish larvae (ZL) by means of liquid chromatography-high-resolution tandem mass spectrometry. Monooxygenases involved in the initial metabolic steps were elucidated using recombinant human isozymes. Investigations on their cytotoxicity were performed on the human hepatoma cell line HepG2 using a multiparametric, fluorescence-based high-content screening assay. This included measurement of CYP-enzyme mediated effects by means of the unspecific CYP inhibitor 1-aminbenzotriazole (ABT). Several phase I metabolites of both compounds and two phase II metabolites of 4-AcO-DET were produced in vitro and in vivo. After microinjection of 1cP-LSD into the caudal vein of ZL, three out of seven metabolites formed in pHLS9 were also detected in ZL. Twelve 4-AcO-DET metabolites were identified in ZL after exposure via immersion bath and five of them were found in pHLS9 incubations. Notably, unique metabolites of 4-AcO-DET were only produced by ZL, whereas 1cP-LSD specific metabolites were found both in ZL and in pHLS9. No toxic effects were observed for 1cP-LSD and 4-AcO-DET in HepG2 cells, however, two parameters were altered in incubations containing 4-AcO-DET together with ABT compared with incubations without ABT but in concentrations far above expected in vivo concentration. Further investigations should be done with other hepatic cell lines expressing higher levels of CYP enzymes.


Assuntos
Alucinógenos , Larva , Fígado , Espectrometria de Massas em Tandem , Peixe-Zebra , Animais , Humanos , Células Hep G2 , Espectrometria de Massas em Tandem/métodos , Larva/efeitos dos fármacos , Larva/metabolismo , Cromatografia Líquida/métodos , Alucinógenos/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fenetilaminas/toxicidade , Ensaios de Triagem em Larga Escala/métodos , Sistema Enzimático do Citocromo P-450/metabolismo , Benzilaminas , Dimetoxifeniletilamina/análogos & derivados
2.
J Appl Toxicol ; 44(2): 216-234, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37646119

RESUMO

Serotonergic psychedelics, such as lysergic acid diethylamide (LSD), psilocybin, dimethyltryptamine (DMT), and 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), are currently being investigated for the treatment of psychiatric disorders such as depression and anxiety. Clinical trials with psilocybin and LSD have shown improvement in emotional and psychological scores. Although these drugs are reported to be safe in a controlled environment (such as clinical trials), exposure to low doses of these drugs can result in psychedelic effects, and therefore, occupational safety is an important consideration to prevent adverse effects in the workplace from low daily exposure. This article will discuss the factors involved in the derivation of occupational exposure limits (OELs) and risk assessment of these psychedelic drugs. To support the OEL derivations of psychedelic drugs, information regarding their mechanism of action, adverse effect profiles, pharmacokinetics, clinical effects, and nonclinical toxicity were considered. Additionally, psilocybin and LSD, which are the most extensively researched psychedelic substances, are employed as illustrative examples in case studies. The OELs derived for psilocybin and for LSD are 0.05 and 0.002 µg/m3 , respectively, which indicates that these are highly hazardous compounds, and it is important to take into account suitable safety measures and risk-management strategies in order to minimize workplace exposure.


Assuntos
Alucinógenos , Humanos , Alucinógenos/toxicidade , Alucinógenos/uso terapêutico , Psilocibina/toxicidade , Psilocibina/uso terapêutico , Dietilamida do Ácido Lisérgico/toxicidade , Dietilamida do Ácido Lisérgico/uso terapêutico , N,N-Dimetiltriptamina , Medição de Risco
3.
Naunyn Schmiedebergs Arch Pharmacol ; 396(2): 275-287, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36319858

RESUMO

The use of recreational drugs like ephedrine, norephedrine, 3,4-methylenedioxymethamphetamine (MDMA), and mescaline can lead to intoxication and, at worst, to death. One reason for a fatal course of intoxication with these drugs might lie in cardiac arrhythmias. To the best of our knowledge, their inotropic effects have not yet been studied in isolated human cardiac preparations. Therefore, we measured inotropic effects of the hallucinogenic drugs ephedrine, norephedrine, mescaline, and MDMA in isolated mouse left atrial (mLA) and right atrial (mRA) preparations as well as in human right atrial (hRA) preparations obtained during cardiac surgery. Under these experimental conditions, ephedrine, norephedrine, and MDMA increased force of contraction (mLA, hRA) and beating rate (mRA) in a time- and concentration-dependent way, starting at 1-3 µM but these drugs were less effective than isoprenaline. Mescaline alone or in the presence of phosphodiesterase inhibitors did not increase force in mLA or hRA. The positive inotropic effects of ephedrine, norephedrine, or MDMA were accompanied by increases in the rate of tension and relaxation and by shortening of time of relaxation and, moreover, by an augmented phosphorylation state of the inhibitory subunit of troponin in hRA. All effects were greatly attenuated by cocaine (10 µM) or propranolol (10 µM) treatment. In summary, the hallucinogenic drugs ephedrine, norephedrine, and MDMA, but not mescaline, increased force of contraction and increased protein phosphorylation presumably, in part, by a release of noradrenaline in isolated human atrial preparations and thus can be regarded as indirect sympathomimetic drugs in the human atrium.


Assuntos
Fibrilação Atrial , Alucinógenos , N-Metil-3,4-Metilenodioxianfetamina , Humanos , Camundongos , Animais , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Mescalina/farmacologia , Alucinógenos/toxicidade , Efedrina/farmacologia , Fenilpropanolamina/farmacologia , Átrios do Coração , Contração Miocárdica
4.
Drug Chem Toxicol ; 46(3): 430-440, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35296205

RESUMO

Two synthetic phenylethylamines, N-methyl-1-(naphthalen-2-yl)propan-2-amine (MNA) and 1-phenyl-2-pyrrolidinylpentane (prolintane), are being abused by people seeking hallucinogens for pleasure. These new psychotropic substances may provoke problems because there is no existing information about their toxicity and pharmacological behaviors. Therefore, we evaluated the safety of nerves and cardiovascular systems by determining toxicity after MNA and prolintane drugs administrations to mice and rat. Consequently, side effects such as increased spontaneous motion and body temperature were observed in oral administration of MNA. In addition, both substances reduced motor coordination levels. The IHC tests were conducted to see whether the immune response also shows abnormalities in brain tissue compared to the control group. It has been confirmed that the length of allograft inflammatory factor 1(IBA-1), an immune antibody known as microglia marker, has been shortened. We identified that a problem with the contact between synapses and neurons might be possibly produced. In the assessment of the cardiac toxicity harmfulness, no substances have been confirmed to be toxic to myocardial cells, but at certain concentrations, they have caused the QT prolongation, an indicator of ventricular arrhythmia. In addition, the hERG potassium channel, the biomarker of the QT prolongation, has been checked for inhibition. The results revealed that the possibility of QT prolongation through the hERG channel could not be excluded, and the two substances can be considered toxic that may cause ventricular arrhythmia. In sum, this study demonstrated that the possibility of toxicity in MNA and prolintane compounds might bring many harmful effects on nerves and hearts.


Assuntos
Cardiotoxicidade , Alucinógenos , Síndrome do QT Longo , Síndromes Neurotóxicas , Fenetilaminas , Animais , Camundongos , Ratos , Cardiotoxicidade/etiologia , Canais de Potássio Éter-A-Go-Go/efeitos dos fármacos , Alucinógenos/toxicidade , Síndrome do QT Longo/induzido quimicamente , Miócitos Cardíacos/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Fenetilaminas/toxicidade
5.
J Chem Neuroanat ; 116: 101986, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34119664

RESUMO

MDMA (3,4-Methylenedioxymethamphetamine) is a common recreational drug of abuse which causes neurodegeneration. Nicotine and modafinil provide antioxidant and neuroprotective properties and may be beneficial in the management of MDMA-induced neurotoxicity. The purpose of this study was to characterize how acute and chronic administration of nicotine and/or modafinil exert protective effects against the MDMA-induced impaired cognitive performance, oxidative stress, and neuronal loss. Adult male rats were divided into three groups, namely control, MDMA and treatment (modafinil and/or nicotine). MDMA (10 mg/kg) was administered intraperitoneally during a three-week schedule (two times/day for two consecutive days/week). The treated-groups were classified based on the acute or chronic status of treatment. In the groups which underwent acute treatments, nicotine (0.5 mg/kg) and/or modafinil (100 mg/kg) were injected just prior to the MDMA administration (acute nicotine (NA), acute modafinil (MA), and acute nicotine and modafinil (NMA)). In the rats which received chronic treatments, nicotine (0.5 mg/kg) and/or modafinil (100 mg/kg) were injected every day during the three week-schedule administration of MDMA (chronic nicotine (NC), chronic modafinil (MC), and chronic nicotine and modafinil (NMC)). Learning and memory performance, as well as avoidance response, were assessed by Morris water maze and Shuttle box, respectively. Our findings indicate enhanced learning and memory and avoidance response in the NMC group. By TUNEL test and Cresyl Violet staining we evaluated neuronal loss and apoptosis in the hippocampal CA1 and found increased neuronal viability in the NMC group. On the other hand, chronic administration of modafinil and nicotine significantly down-regulated the caspase 3 and up-regulated both BDNF and TrkB levels in the MDMA-received rats. The serum levels of glutathione peroxidase (GPx) and total antioxidant capacity (TAC) were evaluated and we found that the alterations of serum levels of GPx and TAC were considerably prevented in the NMC group. The overall results indicate that nicotine and modafinil co-administration rescued brain from MDMA-induced neurotoxicity. We suggest that nicotine and modafinil combination therapy could be considered as a possible treatment to reduce the neurological disorders induced by MDMA.


Assuntos
Hipocampo/efeitos dos fármacos , Modafinila/administração & dosagem , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Neurônios/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Nicotina/administração & dosagem , Animais , Antioxidantes/administração & dosagem , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Quimioterapia Combinada , Alucinógenos/toxicidade , Hipocampo/patologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Neurônios/patologia , Neuroproteção/fisiologia , Ratos
6.
Exp Clin Psychopharmacol ; 29(1): 1-13, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32297788

RESUMO

An inhalation system based on e-cigarette technology produces hypothermic and antinociceptive effects of Δ9-tetrahydrocannabinol (THC) in rats. Indirect comparison of some prior investigations suggested differential impact of inhaled THC between Wistar (WI) and Sprague-Dawley (SD) rats; thus, this study was conducted to directly compare the strains across inhaled and injected routes of administration. Groups (N = 8 per strain) of age-matched male SD and WI rats were prepared with radiotelemetry devices to measure temperature and then exposed to vapor from the propylene glycol (PG) vehicle or THC (25-200 mg/mL of PG) for 30 or 40 min. Additional studies evaluated effects of THC inhalation on plasma THC (50-200 mg/mL) and nociception (100-200 mg/mL) as well as the thermoregulatory effect of intraperitoneal injection of THC (5-30 mg/kg). Hypothermic effects of THC were more pronounced in SD rats, where plasma levels of THC were identical across strains, under either fixed inhalation conditions or injection of a mg/kg equivalent dose. Strain differences in hypothermia were largest after i.p. injection of THC, with SD rats exhibiting dose-dependent temperature reduction after 5 or 10 mg/kg, i.p. and the WI rats only exhibiting significant hypothermia after 20 mg/kg, i.p. The antinociceptive effects of inhaled THC (100, 200 mg/mL) did not differ significantly across the strains. These studies confirm an insensitivity of WI rats, compared with SD rats, to hypothermia induced by THC following inhalation conditions that produced identical plasma THC and antinociception. Thus, quantitative, albeit not qualitative, strain differences may be obtained when studying thermoregulatory effects of THC. (PsycInfo Database Record (c) 2021 APA, all rights reserved).


Assuntos
Regulação da Temperatura Corporal/efeitos dos fármacos , Dronabinol/administração & dosagem , Sistemas Eletrônicos de Liberação de Nicotina , Alucinógenos/administração & dosagem , Hipotermia/induzido quimicamente , Locomoção/efeitos dos fármacos , Administração por Inalação , Animais , Regulação da Temperatura Corporal/fisiologia , Dronabinol/toxicidade , Alucinógenos/toxicidade , Hipotermia/fisiopatologia , Injeções Intraperitoneais , Locomoção/fisiologia , Masculino , Nociceptividade/efeitos dos fármacos , Nociceptividade/fisiologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Especificidade da Espécie
7.
J Neurosci ; 41(4): 739-750, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33268546

RESUMO

Chronic adolescent exposure to Δ-9-tetrahydrocannabinol (THC) is linked to elevated neuropsychiatric risk and induces neuronal, molecular and behavioral abnormalities resembling neuropsychiatric endophenotypes. Previous evidence has revealed that the mesocorticolimbic circuitry, including the prefrontal cortex (PFC) and mesolimbic dopamine (DA) pathway are particularly susceptible to THC-induced pathologic alterations, including dysregulation of DAergic activity states, loss of PFC GABAergic inhibitory control and affective and cognitive abnormalities. There are currently limited pharmacological intervention strategies capable of preventing THC-induced neuropathological adaptations. l-Theanine is an amino acid analog of l-glutamate and l-glutamine derived from various plant sources, including green tea leaves. l-Theanine has previously been shown to modulate levels of GABA, DA, and glutamate in various neural regions and to possess neuroprotective properties. Using a preclinical model of adolescent THC exposure in male rats, we report that l-theanine pretreatment before adolescent THC exposure is capable of preventing long-term, THC-induced dysregulation of both PFC and VTA DAergic activity states, a neuroprotective effect that persists into adulthood. In addition, pretreatment with l-theanine blocked THC-induced downregulation of local GSK-3 (glycogen synthase kinase 3) and Akt signaling pathways directly in the PFC, two biomarkers previously associated with cannabis-related psychiatric risk and subcortical DAergic dysregulation. Finally, l-theanine powerfully blocked the development of both affective and cognitive abnormalities commonly associated with adolescent THC exposure, further demonstrating functional and long-term neuroprotective effects of l-theanine in the mesocorticolimbic system.SIGNIFICANCE STATEMENT With the increasing trend of cannabis legalization and consumption during adolescence, it is essential to expand knowledge on the potential effects of adolescent cannabis exposure on brain development and identify potential pharmacological strategies to minimize Δ-9-tetrahydrocannabinol (THC)-induced neuropathology. Previous evidence demonstrates that adolescent THC exposure induces long-lasting affective and cognitive abnormalities, mesocorticolimbic dysregulation, and schizophrenia-like molecular biomarkers that persist into adulthood. We demonstrate for the first time that l-theanine, an amino acid analog of l-glutamate and l-glutamine, is capable of preventing long-term THC side effects. l-Theanine prevented the development of THC-induced behavioral aberrations, blocked cortical downregulation of local GSK-3 (glycogen synthase kinase 3) and Akt signaling pathways, and normalized dysregulation of both PFC and VTA DAergic activity, demonstrating powerful and functional neuroprotective effects against THC-induced developmental neuropathology.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/prevenção & controle , Dronabinol/toxicidade , Glutamatos/farmacologia , Alucinógenos/toxicidade , Transtornos do Humor/induzido quimicamente , Transtornos do Humor/prevenção & controle , Rede Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Ansiedade/prevenção & controle , Ansiedade/psicologia , Transtornos Cognitivos/psicologia , Quinase 3 da Glicogênio Sintase/efeitos dos fármacos , Masculino , Transtornos do Humor/psicologia , Proteína Oncogênica v-akt/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Comportamento Social , Área Tegmentar Ventral/efeitos dos fármacos
8.
Br J Pharmacol ; 177(1): 188-203, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31478558

RESUMO

BACKGROUND AND PURPOSE: Adolescents are regularly exposed to ∆9 -tetrahydrocannabinol (THC) via smoking and, more recently, vaping cannabis extracts. Growing legalization of cannabis for medical and recreational purposes, combined with decreasing perceptions of harm, makes it increasingly important to determine the consequences of frequent adolescent exposure for motivated behaviour and lasting tolerance in response to THC. EXPERIMENTAL APPROACHES: Male and female rats inhaled THC vapour, or that from the propylene glycol (PG) vehicle, twice daily for 30 min from postnatal day (PND) 35-39 and PND 42-46 using an e-cigarette system. Thermoregulatory responses to vapour inhalation were assessed by radio-telemetry during adolescence and from PND 86-94. Chow intake was assessed in adulthood. Blood samples were obtained from additional adolescent groups following initial THC inhalation and after 4 days of twice daily exposure. Additional groups exposed repeatedly to THC or PG during adolescence were evaluated for intravenous self-administration of oxycodone as adults. KEY RESULTS: Female, not male, adolescents developed tolerance to the hypothermic effects of THC inhalation in the first week of repeated exposure despite similar plasma THC levels. Each sex exhibited tolerance to THC hypothermia in adulthood after repeated adolescent THC. However, enhanced potency was found in females. Repeated THC male rats consumed more food than their PG-treated control group, without significant bodyweight differences. Adolescent THC did not alter oxycodone self-administration in either sex but increased fentanyl self-administration in females. CONCLUSIONS AND IMPLICATIONS: Repeated THC vapour inhalation in adolescent rats has lasting consequences observable in adulthood.


Assuntos
Dronabinol/administração & dosagem , Sistemas Eletrônicos de Liberação de Nicotina , Alucinógenos/administração & dosagem , Hipotermia/induzido quimicamente , Caracteres Sexuais , Administração por Inalação , Fatores Etários , Analgésicos Opioides/administração & dosagem , Animais , Agonistas de Receptores de Canabinoides/administração & dosagem , Agonistas de Receptores de Canabinoides/sangue , Agonistas de Receptores de Canabinoides/toxicidade , Relação Dose-Resposta a Droga , Dronabinol/sangue , Dronabinol/toxicidade , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Feminino , Alucinógenos/sangue , Alucinógenos/toxicidade , Hipotermia/fisiopatologia , Masculino , Oxicodona/administração & dosagem , Ratos , Ratos Wistar , Autoadministração
9.
Reprod Toxicol ; 87: 21-31, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31054322

RESUMO

While studies have demonstrated that the main psychoactive component of cannabis, Δ9-tetrahydrocannabinol (Δ9-THC) alone induces placental insufficiency and fetal growth restriction, the underlying mechanisms remain elusive. Given that both (i) endoplasmic reticulum (ER) stress in pregnancy and (ii) gestational exposure to Δ9-THC leads to placental deficiency, we hypothesized that Δ9-THC may directly induce placental ER stress, influencing trophoblast gene expression and mitochondrial function. BeWo human trophoblast cells treated with Δ9-THC (3-30 µM) led to a dose-dependent increase in all ER stress markers and CHOP; these effects could be blocked with CB1R/CB2R antagonists. Moreover, expression of ER stress-sensitive genes ERRγ, VEGFA, and FLT-1 were increased by Δ9-THC, and abrogated with the ER stress inhibitor TUDCA. Δ9-THC also diminished mitochondrial respiration and ATP-coupling due to decreased abundance of mitochondrial chain complex proteins. Collectively, these findings indicate that Δ9-THC can directly augment ER stress resulting in aberrant placental gene expression and impaired mitochondrial function.


Assuntos
Dronabinol/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Alucinógenos/toxicidade , Mitocôndrias/efeitos dos fármacos , Trofoblastos/efeitos dos fármacos , Antagonistas de Receptores de Canabinoides/farmacologia , Linhagem Celular Tumoral , Humanos , Mitocôndrias/metabolismo , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/antagonistas & inibidores , Trofoblastos/metabolismo
10.
Neurotox Res ; 35(4): 993-998, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30806983

RESUMO

25C-NBOMe is a designer substituted phenethylamine and a high-potency psychedelic that acts on the 5-HT2A receptor. Although 25C-NBOMe overdoses have been related to several deaths in the USA and Europe, very limited data exists on the in vitro neurotoxicity of 25C-NBOMe. In this study, we found that 25C-NBOMe potently reduced cell viability of SH-SY5Y, PC12, and SN4741 cells, with IC50 values of 89, 78, and 62 µM, respectively. Methamphetamine decreased the cell viability of these cells with IC50 values at millimolar range in the same tests, indicating that 25C-NBOMe is > 50 times more potent than methamphetamine in its ability to reduce viability of SH-SY5Y cells. The neurotoxicity of 25C-NBOMe on SH-SY5Y cells was further confirmed by using fluorescein diacetate/propidium iodide double staining. 25C-NBOMe elevated the expression of phosphorylated extracellular signal-regulated kinase (pERK), but decreased the expression of phosphorylated Akt and phosphorylated Ser9- glycogen synthase kinase 3ß (GSK3ß) in time- and concentration-dependent manners. Interestingly, either specific GSK3ß inhibitors or specific mitogen-activated protein kinase kinase (MEK) inhibitors significantly prevented 25C-NBOMe-induced neurotoxicity in SH-SY5Y cells. These results suggest that 25C-NBOMe unexpectedly produced more potent neurotoxicity than methamphetamine and that the inhibition of the Akt pathway and activation of the ERK cascade might be involved in 25C-NBOMe-induced neurotoxicity. Most importantly, these findings further inform the toxicity of 25C-NBOMe abuse to the central nervous system for public health.


Assuntos
Benzilaminas/toxicidade , Drogas Desenhadas/toxicidade , Alucinógenos/toxicidade , Metanfetamina/toxicidade , Neurônios/efeitos dos fármacos , Fenetilaminas/toxicidade , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Neurônios/metabolismo , Células PC12 , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
11.
Cutan Ocul Toxicol ; 37(3): 233-239, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29298533

RESUMO

Lysergic acid diethylamide (LSD), a classical hallucinogen, was used as a popular and notorious substance of abuse in various parts of the world. Its abuse could result in long-lasting abnormalities in retina and little is known about the exact mechanism. This study was to investigate the effect of LSD on macrophage activation state at non-toxic concentration and its resultant toxicity to photoreceptor cells. Results showed that cytotoxicity was caused by LSD on 661 W cells after co-culturing with RAW264.7 cells. Treatment with LSD-induced RAW264.7 cells to the M1 phenotype, releasing more pro-inflammatory cytokines, and increasing the M1-related gene expression. Moreover, after co-culturing with RAW264.7 cells, significant oxidative stress in 661 W cells treated with LSD was observed, by increasing the level of malondialdehyde (MDA) and reactive oxygen species (ROS), and decreasing the level of glutathione (GSH) and the activity of superoxide dismutase (SOD). Our study demonstrated that LSD caused photoreceptor cell damage by inducing inflammatory response and resultant oxidative stress, providing the scientific rationale for the toxicity of LSD to retina.


Assuntos
Alucinógenos/toxicidade , Dietilamida do Ácido Lisérgico/toxicidade , Macrófagos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Animais , Técnicas de Cocultura , Citocinas/metabolismo , Macrófagos/imunologia , Camundongos , Células Fotorreceptoras de Vertebrados/metabolismo , Células RAW 264.7
12.
Cutan Ocul Toxicol ; 37(2): 143-150, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28743199

RESUMO

The abuse of 3,4-methylenedioxymethamphetamine (MDMA), a psychedelic drug, can lead to a variety of disorders in neural system, including the death of retinal neural cells. MDMA at lower doses does not cause obvious cytotoxicity to photoreceptor cells, indicating potential indirect mechanisms which have not yet been elucidated. This study investigated the effect of MDMA at nontoxic concentration on macrophage activation state and its resultant toxicity to photoreceptor cells. Using a co-culture system, cytotoxicity was caused by MDMA on 661W cells after co-culturing with RAW264.7 macrophage. Results showed that MDMA induced the macrophages to M1 polarization, releasing more pro-inflammatory cytokines, upregulating the M1-related gene and protein expression. The phenotype, secretion pattern, and cytotoxicity of the macrophages treated by MDMA are comparable to those of the ones stimulated by IFNγ and LPS. Our study demonstrated that MDMA promoted macrophage polarization to M1 and induced inflammatory response, providing the scientific rationale for the photoreceptor cell damage caused by the MDMA abuse.


Assuntos
Alucinógenos/toxicidade , Macrófagos/efeitos dos fármacos , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Citocromos c/metabolismo , Citocinas/genética , Citocinas/metabolismo , Dano ao DNA , Macrófagos/fisiologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo
13.
Toxicol Mech Methods ; 28(3): 177-186, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28874085

RESUMO

Benzylpiperazine has been designated as Schedule I substance under the Controlled Substances Act by Drug Enforcement Administration. Benzylpiperazine is a piperazine derivative, elevates both dopamine and serotonin extracellular levels producing stimulatory and hallucinogenic effects, respectively, similar to methylenedioxymethamphetamine (MDMA). However, the comparative neurotoxic effects of Piperazine derivatives (benzylpiperazine and benzoylpiperazine) have not been elucidated. Here, piperazine derivatives (benzylpiperazine and benzoylpiperazine) were synthesized in our lab and the mechanisms of cellular-based neurotoxicity were elucidated in a dopaminergic human neuroblastoma cell line (SH-SY5Y). We evaluated the in vitro effects of benzylpiperazine and benzoylpiperazine on the generation of reactive oxygen species, lipid peroxidation, mitochondrial complex-I activity, catalase activity, superoxide dismutase activity, glutathione content, Bax, caspase-3, Bcl-2 and tyrosine hydroxylase expression. Benzylpiperazine and benzoylpiperazine induced oxidative stress, inhibited mitochondrial functions and stimulated apoptosis. This study provides a germinal assessment of the neurotoxic mechanisms induced by piperazine derivatives that lead to neuronal cell death.


Assuntos
Apoptose/efeitos dos fármacos , Agonistas de Dopamina/toxicidade , Neurônios Dopaminérgicos/efeitos dos fármacos , Alucinógenos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Piperazinas/toxicidade , Proteínas Reguladoras de Apoptose/agonistas , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/metabolismo , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Drogas Desenhadas/química , Drogas Desenhadas/toxicidade , Agonistas de Dopamina/química , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/metabolismo , Alucinógenos/química , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Estrutura Molecular , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Concentração Osmolar , Piperazinas/química , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo
14.
PLoS One ; 12(7): e0179199, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28678861

RESUMO

BACKGROUND: Ecstasy (Ec) use produces hyperthermia, excessive sweating, intense thirst, an inappropriate antidiuretic hormone secretion (SIADH) and a multisystemic toxicity due to oxidative stress (OS). Intense thirst induces high intake of pure water, which associated with SIADH, usually develops into acute hyponatremia (Hn). As Hn is induced rapidly, experiments to check if Ec acted directly on the Inner Medullary Collecting Ducts (IMCD) of rats were conducted. Rhabdomyolysis and OS were also studied because Ec is known to induce Reactive Oxygen Species (ROS) and tissue damage. To decrease OS, the antioxidant inhibitors N-acetylcysteine (NAC) and Allopurinol (Allo) were used. METHODS: Rats were maintained on a lithium (Li) diet to block the Vasopressin action before Ec innoculation. AQP2 (Aquaporin 2), ENaC (Epitheliun Sodium Channel) and NKCC2 (Sodium, Potassium, 2 Chloride) expression were determined by Western Blot in isolated IMCDs. The TBARS (thiobarbituric acid reactive substances) and GSH (reduced form of Glutathione) were determined in the Ec group (6 rats injected with Ec-10mg/kg), in Ec+NAC groups (NAC 100mg/Kg/bw i.p.) and in Allo+Ec groups (Allo 50mg/Kg/i.p.). RESULTS: Enhanced AQP2 expression revealed that Ec increased water transporter expression, decreased by Li diet, but the expression of the tubular transporters did not change. The Ec, Ec+NAC and Allo+Ec results showed that Ec increased TBARS and decreased GSH, showing evidence of ROS occurrence, which was protected by NAC and Allo. Rhabdomyolysis was only protected by Allo. CONCLUSION: Results showed that Ec induced an increase in AQP2 expression, evidencing another mechanism that might contribute to cause rapid hyponatremia. In addition, they showed that NAC and Allo protected against OS, but only Allo decreased rhabdomyolysis and hyperthermia.


Assuntos
Sequestradores de Radicais Livres/farmacologia , Rim/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Rabdomiólise/induzido quimicamente , Acetilcisteína/farmacologia , Alopurinol/farmacologia , Animais , Aquaporina 2/metabolismo , Western Blotting , Canais Epiteliais de Sódio/metabolismo , Glutationa/metabolismo , Alucinógenos/toxicidade , Rim/metabolismo , Túbulos Renais Coletores/efeitos dos fármacos , Túbulos Renais Coletores/metabolismo , Masculino , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Ratos Wistar , Rabdomiólise/prevenção & controle , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Água/metabolismo
15.
J Psychoactive Drugs ; 48(5): 351-354, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27636207

RESUMO

We present a case of "ecstasy" ingestion revealing 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-dimethoxyamphetamine (3,4-DMA) and absence of cytochrome P450 (CYP)-2D6 MDMA metabolites. CASE REPORT: A 19-year-old presented following a seizure. Initial vital signs were normal. Laboratories were normal with the exception of sodium 127 mEq/L and urine drugs of abuse screen positive for amphetamines. Twelve hours later, serum sodium was 114 mEq/L and a second seizure occurred. After receiving hypertonic saline (3%), the patient had improvement in mental status and admitted to taking "ecstasy" at a rave prior to her initial presentation. Liquid chromatography-time-of-flight mass spectrometry (LC-TOF/MS) of serum and urine revealed MDMA, 3,4-DMA, and the CYP-2B6 MDMA metabolites 3,4-methylendioxyamphetamine (MDA) and 4-hydroxy-3-methoxyamphetamine (HMA). The CYP2D6 metabolites of MDMA, 3,4-dihydromethamphetamine (HHMA) and 4-hydroxy-3-methoxymethamphetamine (HMMA), were detected at very low levels. CONCLUSION: This case highlights the polypharmacy which may exist among users of psychoactive illicit substances and demonstrates that concurrent use of MDMA and 3,4-DMA may predispose patients to severe toxicity. Toxicologists and other healthcare providers should be aware of this potential toxicity.


Assuntos
Anfetaminas/toxicidade , Alucinógenos/toxicidade , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Convulsões/induzido quimicamente , 3,4-Metilenodioxianfetamina/metabolismo , Anfetaminas/administração & dosagem , Anfetaminas/farmacocinética , Cromatografia Líquida/métodos , Dopamina/análogos & derivados , Dopamina/metabolismo , Interações Medicamentosas , Feminino , Alucinógenos/administração & dosagem , Alucinógenos/farmacocinética , Humanos , Espectrometria de Massas/métodos , Metanfetamina/análogos & derivados , Metanfetamina/metabolismo , N-Metil-3,4-Metilenodioxianfetamina/administração & dosagem , N-Metil-3,4-Metilenodioxianfetamina/farmacocinética , Detecção do Abuso de Substâncias/métodos , Adulto Jovem
16.
BMC Pharmacol Toxicol ; 17(1): 28, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27349892

RESUMO

BACKGROUND: 3,4-Methylenedioxymethamphetamine (MDMA or "ecstasy") is a worldwide drug of abuse commonly used by adolescents. Most reports focus on MDMA's neurotoxicity and use high doses in adult animals, meanwhile studies in adolescents are scarce. We aimed to assess in rats the acute MDMA toxicity to the brain and peripheral organs using a binge dose scheme that tries to simulate human adolescent abuse. METHODS: Adolescent rats (postnatal day 40) received three 5 mg/kg doses of MDMA (estimated equivalent to two/three pills in a 50 kg adolescent), intraperitoneally, every 2 h, while controls received saline. After 24 h animal sacrifice took place and collection of brain areas (cerebellum, hippocampus, frontal cortex and striatum) and peripheral organs (liver, heart and kidneys) occurred. RESULTS: Significant hyperthermia was observed after the second and third MDMA doses, with mean increases of 1 °C as it occurs in the human scenario. MDMA promoted ATP levels fall in the frontal cortex. No brain oxidative stress-related changes were observed after MDMA. MDMA-treated rat organs revealed significant histological tissue alterations including vascular congestion, but no signs of apoptosis or necrosis were found, which was corroborated by the lack of changes in plasma biomarkers and tissue caspases. In peripheral organs, MDMA did not affect significantly protein carbonylation, glutathione, or ATP levels, but liver presented a higher vulnerability as MDMA promoted an increase in quinoprotein levels. CONCLUSIONS: Adolescent rats exposed to a moderate MDMA dose, presented hyperthermia and acute tissue damage to peripheral organs without signs of brain oxidative stress.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , N-Metil-3,4-Metilenodioxianfetamina/administração & dosagem , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Trifosfato de Adenosina/sangue , Trifosfato de Adenosina/metabolismo , Fatores Etários , Animais , Relação Dose-Resposta a Droga , Febre/sangue , Febre/induzido quimicamente , Alucinógenos/administração & dosagem , Alucinógenos/toxicidade , Masculino , Distribuição Aleatória , Ratos , Ratos Wistar
17.
Metab Brain Dis ; 31(1): 93-107, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26088184

RESUMO

The interaction between MDMA and Nicotine affects multiple brain centres and neurotransmitter systems (serotonin, dopamine and glutamate) involved in motor coordination and cognition. In this study, we have elucidated the effect of prolonged (10 days) MDMA, Nicotine and a combined Nicotine-MDMA treatment on motor-cognitive neural functions. In addition, we have shown the correlation between the observed behavioural change and neural structural changes induced by these treatments in BALB/c mice. We observed that MDMA (2 mg/Kg body weight; subcutaneous) induced a decline in motor function, while Nicotine (2 mg/Kg body weight; subcutaneous) improved motor function in male periadolescent mice. In combined treatment, Nicotine reduced the motor function decline observed in MDMA treatment, thus no significant change in motor function for the combined treatment versus the control. Nicotine or MDMA treatment reduced memory function and altered hippocampal structure. Similarly, a combined Nicotine-MDMA treatment reduced memory function when compared with the control. Ultimately, the metabolic and structural changes in these neural systems were seen to vary for the various forms of treatment. It is noteworthy to mention that a combined treatment increased the rate of lipid peroxidation in brain tissue.


Assuntos
Comportamento Animal/efeitos dos fármacos , Alucinógenos/toxicidade , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Nicotina/toxicidade , Agonistas Nicotínicos/toxicidade , Animais , Peso Corporal/efeitos dos fármacos , Interações Medicamentosas , Hipocampo/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/psicologia , Camundongos , Camundongos Endogâmicos BALB C , Córtex Motor/efeitos dos fármacos , Córtex Motor/patologia , Destreza Motora/efeitos dos fármacos , Neostriado/efeitos dos fármacos , Neostriado/patologia , Equilíbrio Postural/efeitos dos fármacos , Reconhecimento Psicológico/efeitos dos fármacos
18.
Toxicology ; 334: 94-103, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26070387

RESUMO

The noxious effects of cannabis consumption for fertility and pregnancy outcome are recognized for years. Its consumption during gestation is associated with alterations in foetal growth, low birth weight and preterm labor. The main psychoactive molecule of cannabis, Δ(9)-tetrahydrocannabinol (THC) impairs the production of reproductive hormones and is also able to cross the placenta barrier. However, its effect on the main placental cells, the trophoblasts, are unknown. Actually, the role of THC in cell survival/death of primary human cytotrophoblasts (CTs) and syncytiotrophoblasts (STs) and in the syncytialization process remains to be explored. Here, we show that THC has a dual effect, enhancing MTT metabolism at low concentrations, whereas higher doses decreased cell viability, on both trophoblast phenotypes, though the effects on STs were more evident. THC also diminished the generation of oxidative and nitrative stress and the oxidized form of glutathione, whereas the reduced form of this tripeptide was increased, suggesting that THC prevents ST cell death due to an antioxidant effect. Moreover, this compound enhanced the mitochondrial function of STs, as observed by the increased MTT metabolism and intracellular ATP levels. These effects were independent of cannabinoid receptors activation. Besides, THC impaired CT differentiation into STs, since it decreased the expression of biochemical and morphological biomarkers of syncytialization, through a cannabinoid receptor-dependent mechanism. Together, these results suggest that THC interferes with trophoblast turnover, preventing trophoblast cell death and differentiation, and contribute to disclose the cellular mechanisms that lead to pregnancy complications in women that consume cannabis-derived drugs during gestation.


Assuntos
Dronabinol/toxicidade , Alucinógenos/toxicidade , Trofoblastos/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Metabolismo Energético/efeitos dos fármacos , Feminino , Glutationa/metabolismo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Cultura Primária de Células , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Medição de Risco , Trofoblastos/metabolismo , Trofoblastos/patologia
19.
Neuropharmacology ; 81: 215-23, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24534112

RESUMO

N-acetylcysteine (NAC) has been reported to reverse the psychotomimetic effects in the rodent phencyclidine model of psychosis and shown beneficial effects in treating patients with schizophrenia. The effect of NAC has been associated with facilitating the activity of cystine-glutamate antiporters on glial cells concomitant with the release of non-vesicular glutamate, which mainly stimulates the presynaptic metabotropic glutamate receptor subtype 2 receptors (mGluR2). Recent evidence demonstrated that functional interactions between serotonin 5-HT2A receptor (5-HT(2A)R) and mGluR2 are responsible to unique cellular responses when targeted by hallucinogenic drugs. The present study determined the effects of NAC on hallucinogenic 5-HT(2A)R agonist (±)1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI)-elicited behavioral and molecular responses in mice and DOI-evoked field potentials in the mouse cortical slices. NAC significantly attenuated DOI-induced head twitch response and expression of c-Fos and Egr-2 in the infralimbic and motor cortex and suppressed the increase in the frequency of excitatory field potentials elicited by DOI in the medial prefrontal cortex. In addition, the cystine-glutamate antiporter inhibitor (S)-4-carboxyphenylglycine (CPG) and the mGluR2 antagonist LY341495 reversed the suppressing effects of NAC on DOI-induced head twitch and molecular responses and increased frequency of excitatory field potentials, supporting that NAC attenuates the 5-HT(2A)R-mediated hallucinogenic effects via increased activity of cystine-glutamate antiporter followed by activation of mGluR2 receptors. These findings implicate NAC as a potential therapeutic agent for hallucinations and psychosis associated with hallucinogen use and schizophrenia.


Assuntos
Acetilcisteína/uso terapêutico , Potenciais de Ação/efeitos dos fármacos , Sequestradores de Radicais Livres/uso terapêutico , Alucinações/tratamento farmacológico , Receptores de Glutamato Metabotrópico/metabolismo , Aminoácidos/farmacologia , Anfetaminas/toxicidade , Animais , Benzoatos/farmacologia , Bicuculina/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Interações Medicamentosas , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Glicina/análogos & derivados , Glicina/farmacologia , Alucinações/induzido quimicamente , Alucinógenos/toxicidade , Masculino , Camundongos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Xantenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA