Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 423
Filtrar
1.
J Environ Sci (China) ; 149: 374-385, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181650

RESUMO

Electrocatalytic reduction of nitrate to ammonia has been considered a promising and sustainable pathway for pollutant treatment and ammonia has significant potential as a clean energy. Therefore, the method has received much attention. In this work, Cu/Fe 2D bimetallic metal-organic frameworks were synthesized by a facile method applied as cathode materials without high-temperature carbonization. Bimetallic centers (Cu, Fe) with enhanced intrinsic activity demonstrated higher removal efficiency. Meanwhile, the 2D nanosheet reduced the mass transfer barrier between the catalyst and nitrate and increased the reaction kinetics. Therefore, the catalysts with a 2D structure showed much better removal efficiency than other structures (3D MOFs and Bulk MOFs). Under optimal conditions, Cu/Fe-2D MOF exhibited high nitrate removal efficiency (87.8%) and ammonium selectivity (89.3%) simultaneously. The ammonium yielded up to significantly 907.2 µg/(hr·mgcat) (7793.8 µg/(hr·mgmetal)) with Faradaic efficiency of 62.8% at an initial 100 mg N/L. The catalyst was proved to have good stability and was recycled 15 times with excellent effect. DFT simulations confirm the reduced Gibbs free energy of Cu/Fe-2D MOF. This study demonstrates the promising application of Cu/Fe-2D MOF in nitrate reduction to ammonia and provides new insights for the design of efficient electrode materials.


Assuntos
Amônia , Cobre , Ferro , Estruturas Metalorgânicas , Nitratos , Poluentes Químicos da Água , Amônia/química , Cobre/química , Nitratos/química , Estruturas Metalorgânicas/química , Ferro/química , Poluentes Químicos da Água/química , Catálise , Modelos Químicos , Oxirredução , Cinética
2.
PLoS One ; 19(10): e0311430, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39453971

RESUMO

Herein, Mg/Al-loaded sludge-based biochar was prepared via electro-assisted impregnation. The structure and chemical analysis of modified sludge-based biochar (MgSBC-0.5(@Al) showed that the material was loaded with MgO and Al2O3. The specific surface area of MgSBC-0.5(@Al) was 11.27 times higher than that of unmodified sludge-based biochar (SBC). The simultaneous adsorption performance of MgSBC-0.5(@Al for ammonia nitrogen (NH4+-N) and phosphate phosphorus (PO43--P) was studied. The maximum adsorption capacities of MgSBC-0.5(@Al for NH4+-N and PO43--P at 298 K were 65.19 and 92.10 mg·g-1, respectively, 4.45 and 6.28 times higher than those of SBC. The external and internal elemental compositions of the modified and unmodified biochar specimens were quantitatively characterized using inductively coupled plasma mass spectrometry, X-ray photoelectron spectroscopy, and X-ray fluorescence spectrometry. The results emphasized the importance of Mg-loading for NH4+-N and PO43--P capture. MgO was mainly loaded on the surface of biochar, enabling adsorption through chemical reactions. Analysis showed that the adsorption of NH4+-N and PO43--P on the modified biochar proceeded simultaneously through multiple mechanisms. Particularly, the adsorption of NH4+-N and PO43--P occurred through the precipitation of struvite and physical adsorption, with PO43--P also adsorbed through the formation of MgHPO4 and CaHPO4. Other data indicated that Al, Ca, and Fe had a trapping effect on the adsorbate. Importantly, the biochar after adsorption could be used as a soil amendment.


Assuntos
Amônia , Carvão Vegetal , Fertilizantes , Magnésio , Nitrogênio , Fosfatos , Esgotos , Carvão Vegetal/química , Fertilizantes/análise , Fosfatos/química , Adsorção , Magnésio/química , Amônia/química , Esgotos/química , Nitrogênio/química , Alumínio/química
3.
Sci Rep ; 14(1): 24161, 2024 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-39406753

RESUMO

The need to identify ammonia is necessary because of its harmful effects on the environment and humans. In this study, a colorimetric method was also developed for the detection of ammonia using silver nanoparticles (AgNPs) synthesized with the green approach. Biosynthesis of AgNPs was performed by silver nitrate as a silver precursor and Smyrnium cordifolium extract as a reducing and stabilizing agent. Plant extract was studied by FTIR and LC/Mass techniques. The optimization of the effective parameters was carried out with central composite design according to silver nitrate concentration, plant extract volume, pH, and temperature. Biosynthetic nano-silver was characterized with XRD, EDS/EDX, FE-SEM, FTIR, TGA, and DLS methods. The AgNPs was validated for ammonia colorimetric detection. Biosynthesis of AgNPs were increased in 20 mM AgNO3, 5 ml Smyrnium cordifolium extract, pH 10, and the temperature of 70 °C. Crystal form of AgNPs characterized with XRD at 2Ѳ value of 38.34°, 44.19°, 64.74°, and 77.59° and spherical shape highlighted in the range between 77.8 and 93 nm. Plant extract consisted of polyphenol (phenolic acid, flavonoid, and terpenoid), fatty acid, amino acid, sugar, purine, and organic acid. AgNPs were used for colorimetric detection of ammonia by shifting the λmax from 580 to 490 nm. A method for ammonia detection was set up, with linear range of 0.5-200 ppm, detection limit of 0.028 ppm and recovery level of 96.3 ± 6.5%. In conclusion, a new biosynthetic method by specified local plant was developed to propose a simple and sensitive colorimetric method for soluble ammonia detection.


Assuntos
Amônia , Colorimetria , Química Verde , Nanopartículas Metálicas , Extratos Vegetais , Prata , Nanopartículas Metálicas/química , Amônia/análise , Amônia/química , Prata/química , Colorimetria/métodos , Extratos Vegetais/química , Química Verde/métodos
4.
ACS Sens ; 9(9): 4851-4859, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39283999

RESUMO

Graphene transistor sensors, with advantages such as facile surface functionalization and high sensitivity, have gained extensive research interest in gas detection applications. This study fabricated back-gated graphene transistors and employed a hydroxylation scheme for the surface functionalization of graphene. On the basis of the interaction mechanisms between gas molecules and graphene's electrical properties, a compact electrical kinetics model considering the gas-solid surface reaction of graphene transistors is proposed. The model can accurately predict the electrical kinetic performance and can be used to optimize sensor characteristics. The bias condition of a higher response can be rapidly determined. In addition, the density of hydroxyl groups on graphene is revealed to be the direction of improvement and a key factor of response. Hence, the gas detection capacity of sensors with varying densities of hydroxyl groups was assessed concerning ammonia gas, and design technology co-optimization (DTCO) is realized. Measurement results show that the sensor with 70 s of hydroxylation time has a 7.7% response under 22 ppm ammonia gas.


Assuntos
Amônia , Grafite , Transistores Eletrônicos , Grafite/química , Cinética , Hidroxilação , Amônia/análise , Amônia/química , Gases/química , Gases/análise
5.
Chemosphere ; 365: 143344, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39278328

RESUMO

Oil sands process-affected water (OSPW), generated by surface mining in Canada's oil sands, require treatment of environmentally persistent dissolved organic compounds before release to the watershed. Conventional chemical and mechanical treatments have not proved suitable for treating the large quantities of stored OSPW, and the biological recalcitrance of some dissolved organics may not be adequately addressed by conventional passive treatment systems. Previous work has evaluated photocatalytic treatment as a passive advanced oxidation process (P-AOP) for OSPW remediation. This work expands upon this prior research to further characterize the effects of water chemistry on the treatment rate and detoxification threshold. Under artificial sunlight, buoyant photocatalysts (BPCs) detoxified all OSPW samples within 1 week of treatment time with simultaneous treatment of polycyclic aromatic hydrocarbons, naphthenic acid fraction components (NAFCs), and un-ionized ammonia. Overall, these results further demonstrate passive photocatalysis as an effective method for treatment of OSPW contaminants of potential concern (COPCs).


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Catálise , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Campos de Petróleo e Gás/química , Ácidos Carboxílicos/química , Ácidos Carboxílicos/análise , Recuperação e Remediação Ambiental/métodos , Areia/química , Canadá , Oxirredução , Mineração , Processos Fotoquímicos , Amônia/química , Amônia/análise
6.
ACS Sens ; 9(9): 4788-4802, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39174348

RESUMO

Continuous monitoring of ammonia (NH3) in humid environments poses a notable challenge for gas sensing applications because of its effect on sensor sensitivity. The present work investigates the detection of NH3 in a natural humid environment utilizing ReS2/Ti3C2Tx heterostructures as a sensing platform. ReS2 nanosheets were vertically grown on the surface of Ti3C2Tx sheets through a hydrothermal synthetic approach, resulting in the formation of ReS2/Ti3C2Tx heterostructures. The structural, morphological, and optical properties of ReS2/Ti3C2Tx were investigated using various state-of-the-art techniques, including scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, zeta potential, Brunauer-Emmett-Teller technique, and Raman spectroscopy. The heterostructures exhibited 1.3- and 8-fold increases in specific surface area compared with ReS2 and Ti3C2Tx, respectively, potentially enhancing the active gas adsorption sites. The electrical investigations of the ReS2/Ti3C2Tx-based sensor demonstrated enhanced selectivity and superior sensing response ranging from 7.8 to 12.4% toward 10 ppm of NH3 within a relative humidity range of 15-85% at room temperature. These findings highlight the synergistic effect of ReS2 and Ti3C2Tx, offering valuable insights for NH3 sensing in environments with high humidity, and are explained in the gas sensing mechanism.


Assuntos
Amônia , Umidade , Titânio , Amônia/análise , Amônia/química , Titânio/química , Gases/química , Gases/análise , Nanoestruturas/química
7.
Chemistry ; 30(57): e202401856, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39163007

RESUMO

This study explores the electrochemical properties of the carbonaceous Allende CV3 meteorite, focusing on its potential as a Fe-based catalyst derived from Mackinawite iron sulfide for electrocatalytic reactions facilitating nitrogen (N2) fixation into ammonia. Through comprehensive analysis, we not only monitored the evolution of key compounds such as CN-, sulfur/H2S, H2 and carbonyl compounds, but also identified potential reagent carriers, indicating significant implications for the Strecker synthesis of amino acids in space environments. Initial examination revealed the presence of polypeptides, notably sequences including dimer Ala-α-HO-Gly, pentamer Gly3-Ala2, and hexamer Gly4-(HO-Gly)2. These discoveries greatly enhance our understanding of astrobiological chemistry, offering valuable insights into prebiotic processes and the potential presence of life-building blocks throughout the universe.


Assuntos
Aminoácidos , Meteoroides , Peptídeos , Aminoácidos/química , Peptídeos/química , Catálise , Técnicas Eletroquímicas , Compostos Ferrosos/química , Amônia/química , Nitrogênio/química , Origem da Vida , Evolução Química
8.
ACS Sens ; 9(8): 4079-4088, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39057835

RESUMO

Ambient pressure X-ray photoelectron spectroscopy (APXPS) is combined with simultaneous electrical measurements and supported by density functional theory calculations to investigate the sensing mechanism of tungsten disulfide (WS2)-based gas sensors in an operando dynamic experiment. This approach allows for the direct correlation between changes in the surface potential and the resistivity of the WS2 sensing active layer under realistic operating conditions. Focusing on the toxic gases NO2 and NH3, we concurrently demonstrate the distinct chemical interactions between oxidizing or reducing agents and the WS2 active layer and their effect on the sensor response. The experimental setup mimics standard electrical measurements on chemiresistors, exposing the sample to dry air and introducing the target gas analyte at different concentrations. This methodology applied to NH3 concentrations of 100, 230, and 760 and 14 ppm of NO2 establishes a benchmark for future APXPS studies on sensing devices, providing fast acquisition times and a 1:1 correlation between electrical response and spectroscopy data in operando conditions. Our findings contribute to a deeper understanding of the sensing mechanism in 2D transition metal dichalcogenides, paving the way for optimizing chemiresistor sensors for various industrial applications and wireless platforms with low energy consumption.


Assuntos
Amônia , Espectroscopia Fotoeletrônica , Amônia/análise , Amônia/química , Dióxido de Nitrogênio/análise , Dióxido de Nitrogênio/química , Compostos de Tungstênio/química , Teoria da Densidade Funcional , Pressão , Gases/análise , Gases/química , Tungstênio/química
9.
ACS Sens ; 9(8): 3994-4006, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042863

RESUMO

Detecting and distinguishing between hazardous gases with similar odors by using conventional sensor technology for safeguarding human health and ensuring food safety are significant challenges. Bulky, costly, and power-hungry devices, such as that used for gas chromatography-mass spectrometry (GC-MS), are widely employed for gas sensing. Using a single chemiresistive semiconductor or electric nose (e-nose) gas sensor to achieve this objective is difficult, mainly because of its selectivity issue. Thus, there is a need to develop new materials with tunable and versatile sensing characteristics. Phase engineering of two-dimensional materials to better utilize their physiochemical properties has attracted considerable attention. Here, we show that MoSe2 phase-transition/CeO2 composites can be effectively used to distinguish ammonia (NH3) and triethylamine (TEA) at room temperature. The phase transition of nanocomposite samples from semimetallic (1T) to semiconducting (2H) prepared at different synthesis temperatures is confirmed via X-ray photoelectron spectroscopy (XPS). A composite sensor in which the 2H phase of MoSe2 is predominant lacks discrimination capability and is less responsive to NH3 and TEA. An MoSe2/CeO2 composite sensor with a higher 1T phase content exhibits high selectivity for NH3, whereas one with a higher 2H phase content (2H > 1T) shows more selective behavior toward TEA. For example, for 50% relative humidity, the MoSe2/CeO2 sensor's signal changes from the baseline by 45% and 58% for 1 ppm of NH3 and TEA, respectively, indicating a low limit of detection (LOD) of 70 and 160 ppb, respectively. The composites' superior sensing characteristics are mainly attributed to their large specific surface area, their numerous active sites, presence of defects, and the n-n type heterojunction between MoSe2 and CeO2. The sensing mechanism is elucidated using Raman spectroscopy, XPS, and GC-MS results. Their phase-transition characteristics render MoSe2/CeO2 sensors promising for use in distributed, low-cost, and room-temperature sensor networks, and they offer new opportunities for the development of integrated advanced smart sensing technologies for environmental and healthcare.


Assuntos
Amônia , Cério , Temperatura , Amônia/análise , Amônia/química , Cério/química , Etilaminas/química , Molibdênio/química , Nanocompostos/química , Gases/química , Gases/análise , Transição de Fase , Nariz Eletrônico
10.
Sci Rep ; 14(1): 16311, 2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009707

RESUMO

Currently, pathogenic microorganisms are becoming more active in public utility areas like parking lots and waste shelters due to the accumulation of organic waste. This uncontrolled waste leads to decay, altering its composition and presenting a microbiological risk to public health. Additionally, it emits unpleasant odors containing chemicals that irritate the mucous membranes, causing discomfort in the nose, throat, and eyes by stimulating the trigeminal nerve. These odors can have various negative effects on both quality of life and public health. The study investigated the physicochemical properties of oil composites enriched with natural additives and determined their effectiveness in reducing the intensity of nuisance odours. The research showed over 82% reduction in decaying meat odour and almost 65% reduction in ammonia odour. A higher impact of the given composites on reducing the odour from decaying meat than from ammonia was observed. This may be due to the biocidal properties of the additives used (turmeric, thymol, salicylic acid, hops and curly sorrel) and the higher intensity of ammonia odor compared to meat-derived odour. Despite the non-porous nature of the solids tested (with similar specific surface areas ranging from 0.66 to 0.88 m2/g), they were capable of sorbing NH3.


Assuntos
Odorantes , Odorantes/análise , Culinária , Amônia/química , Carne , Animais
11.
J Environ Manage ; 365: 121634, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38943752

RESUMO

The impact of NaOH-modified biochar on the release of NH3 and H2S from laying hens' manure was examined for 44 days, using a small-scale simulated aerobic composting system. The findings revealed that the NaOH-modified biochar reduced NH3 and H2S emissions by 40.63% and 77.78%, respectively, compared to the control group. Moreover, the emissions of H2S were significantly lower than those of the unmodified biochar group (p < 0.05). The increased specific surface area and microporous structure of the biochar, as well as the higher content of alkaline and oxygenated functional groups, were found to facilitate the adsorption of NH3 and H2S. This enhanced adsorption capability was the primary reason for the significant reduction in NH3 emissions. Furthermore, during the high-temperature phase of composting, there was a notable alteration in the microbial community. The abundance of Limnochordaceae, Savagea, and IMCC26207 increased significantly which aided in the conversion of H2S to stable sulfate. These microorganisms also influenced the abundance of functional genes involved in sulfur metabolism, thereby inhibiting cysteine synthesis, along with the decomposition and conversion of sulfate to sulfite. This led to a significant decrease in H2S emissions. This study provides valuable data for the selection of deodorizers in the composting process of egg-laying hens. The results have significant implications for the application of NaOH-modified biochar for odor reduction in aerobic composting processes.


Assuntos
Amônia , Carvão Vegetal , Galinhas , Compostagem , Sulfeto de Hidrogênio , Esterco , Sulfeto de Hidrogênio/química , Animais , Carvão Vegetal/química , Amônia/química , Hidróxido de Sódio/química , Feminino
12.
Chemosphere ; 362: 142585, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38866333

RESUMO

Manufacturing processes in semiconductor and photonics industries involve the use of a significant amount of organic solvents. Recycle and reuse of these solvents produce distillate residues and require treatment before being discharged. This study aimed to evaluate the performance of the biological treatment system in a full-scale wastewater treatment plant that treats wastewater containing distillate residues from the recycling of electronic chemicals. Batch experiments were conducted to investigate the optimal operational conditions for the full-scale wastewater treatment plant. To achieve good nitrogen removal efficiency with effluent ammonia and nitrate concentrations below 20 mg N/L and 50 mg N/L, respectively, it was suggested to control the ammonia concentration and pH of the influent below 500 mg N/L and 8.0, respectively. In addition, the biodegradability of N-methylpyrrolidone, diethylene glycol monobutyl ether, and cyclopentanone distillate residues from the electronic chemicals manufacturing process were evaluated under aerobic, anoxic, and anaerobic conditions. N-methylpyrrolidone and cyclopentanone distillate residues were suggested to be treated under anoxic condition. However, substrate inhibition occurred when using cyclopentanone distillate residue as a carbon source with chemical oxygen demand (COD) levels higher than 866 mg/L and nitrate levels higher than 415 mg N/L. Under aerobic condition, the COD from both N-methylpyrrolidone and cyclopentanone distillate residues could be easily degraded. Nevertheless, a negative effect on nitrification was observed, with a prolonged lag time for ammonia oxidation as the initial COD concentration increased. The specific ammonia oxidation rate and nitrate production rate decreased under high COD concentration contributed by N-methylpyrrolidone and cyclopentanone distillate residues. Furthermore, the biodegradability of diethylene glycol monobutyl ether distillate residue was found to be low under aerobic, anoxic, and anaerobic conditions. With respect to the abundance of nitrogen removal microorganisms in the wastewater treatment plant, results showed that Comammox may have an advantage over ammonia oxidizing bacteria under high pH conditions. In addition, Comammox may have higher resistance to environmental changes. Dominance of Comammox over ammonia oxidizing bacteria under high ammonia condition was first reported in this study.


Assuntos
Biodegradação Ambiental , Ciclopentanos , Etilenoglicóis , Nitrogênio , Pirrolidinonas , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Ciclopentanos/química , Pirrolidinonas/química , Etilenoglicóis/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Amônia/química , Amônia/análise , Solventes/química
13.
Chemistry ; 30(48): e202402055, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-38884181

RESUMO

Enzymes play a fundamental role in cellular metabolism. A wide range of enzymes require the presence of complementary coenzymes and cofactors to function properly. While coenzymes are believed to have been part of the last universal ancestor (LUCA) or have been present even earlier, the syntheses of crucial coenzymes like the redox-active coenzymes flavin adenine dinucleotide (FAD) or nicotinamide adenine dinucleotide (NAD+) remain challenging. Here, we present a pathway to NAD+ under prebiotic conditions starting with ammonia, cyanoacetaldehyde, prop-2-ynal and sugar-forming precursors, yielding in situ the nicotinamide riboside. Regioselective phosphorylation and water stable light activated adenosine monophosphate derivatives allow for topographically and irradiation-controlled formation of NAD+. Our findings indicate that NAD+, a coenzyme vital to life, can be formed non-enzymatically from simple organic feedstock molecules via photocatalytic activation under prebiotically plausible early Earth conditions in a continuous process under aqueous conditions.


Assuntos
NAD , NAD/química , NAD/metabolismo , Amônia/química , Niacinamida/química , Niacinamida/análogos & derivados , Fosforilação , Prebióticos , Monofosfato de Adenosina/química , Catálise , Acetaldeído/química , Oxirredução , Água/química , Compostos de Piridínio/química , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo
14.
Water Res ; 258: 121655, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38762914

RESUMO

Ammonia recovery from wastewater is of great significance for aquatic ecology safety, human health and carbon emissions reduction. Electrochemical methods have gained increasing attention since the authigenic base and acid of electrochemical systems can be used as stripper and absorbent for transmembrane chemisorption of ammonia, respectively. However, the separation of electrodes and gas permeable membrane (GPM) significantly restricts the ammonia transfer-transformation process and the authigenic acid-base utilization. To break the restrictions, this study developed a gas permeable membrane electrode assembly (GPMEA), which innovatively integrated anode and cathode on each side of GPM through easy phase inversion of polyvinylidene fluoride binder, respectively. With the GPMEA assembled in a stacked transmembrane electro-chemisorption (sTMECS) system, in situ utilization of authigenic acid and base for transmembrane electro-chemisorption of ammonia was achieved to enhance the ammonia recovery from wastewater. At current density of 60 A/m2, the transmembrane ammonia flux of the GPMEA was 693.0 ± 15.0 g N/(m2·d), which was 86 % and 28 % higher than those of separate GPM and membrane cathode, respectively. The specific energy consumption of the GPMEA was 9.7∼16.1 kWh/kg N, which were about 50 % and 25 % lower than that of separate GPM and membrane cathode, respectively. Moreover, the application of GPMEA in the ammonia recovery from wastewater is easy to scale up in the sTMECS system. Accordingly, with the features of excellent performance, energy saving and easy scale-up, the GPMEA showed good prospects in electrochemical ammonia recovery from wastewater.


Assuntos
Amônia , Eletrodos , Águas Residuárias , Amônia/química , Águas Residuárias/química , Membranas Artificiais , Eliminação de Resíduos Líquidos/métodos , Técnicas Eletroquímicas , Poluentes Químicos da Água/química
15.
Int J Biol Macromol ; 267(Pt 2): 131649, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636751

RESUMO

The colorless ammonia gas has been a significant intermediate in the industrial sector. However, prolonged exposure to ammonia causes harmful effects to organs or even death. Herein, an environmentally friendly solid-state ammonia sensor was developed utilizing colorimetric polycaprolactone-co-polylactic acid nanofibrous membrane. Pomegranate (Punica granatum L.) peel contains anthocyanin (ACN) as a naturally occurring spectroscopic probe. A mordant (potassium aluminum sulfate) is used to immobilize the anthocyanin direct dyestuff inside nanofibers, generating mordant/anthocyanin (M/ACN) coordinated complex nanoparticles. When exposed to ammonia, the color change of anthocyanin-encapsulated polycaprolactone-co-polylactic acid nanofibrous membrane from purple to transparent was examined by absorbance spectra and CIE Lab color parameters. With a quick colorimetric shift, the polycaprolactone-co-polylactic acid fabric exhibits a detection limit of 5-150 mg/L. The absorbance spectra showed a hypsochromic shift when exposed to ammonia, displaying an absorption shift from 559 nm to 391 nm with an isosbestic point of 448 nm. Scanning electron microscopy (SEM) images revealed that the polycaprolactone-co-polylactic acid nanofibers had a diameter of 75-125 nm, whereas transmission electron microscopy (TEM) images revealed that M/ACN nanoparticles exhibited diameters of 10-20 nm.


Assuntos
Amônia , Antocianinas , Nanofibras , Poliésteres , Nanofibras/química , Poliésteres/química , Antocianinas/química , Amônia/química , Amônia/análise , Gases/química , Colorimetria
16.
Int J Biol Macromol ; 268(Pt 2): 131883, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677702

RESUMO

The present study highlights the integration of lignin with graphene oxide (GO) and its reduced form (rGO) as a significant advancement within the bio-based products industry. Lignin-phenol-formaldehyde (LPF) resin is used as a carbon source in polyurethane foams, with the addition of 1 %, 2 %, and 4 % of GO and rGO to produce carbon structures thus producing carbon foams (CFs). Two conversion routes are assessed: (i) direct addition with rGO solution, and (ii) GO reduction by heat treatment. Carbon foams are characterized by thermal, structural, and morphological analysis, alongside an assessment of their electrochemical behavior. The thermal decomposition of samples with GO is like those having rGO, indicating the effective removal of oxygen groups in GO by carbonization. The addition of GO and rGO significantly improved the electrochemical properties of CF, with the GO2% sensors displaying 39 % and 62 % larger electroactive area than control and rGO2% sensors, respectively. Furthermore, there is a significant electron transfer improvement in GO sensors, demonstrating a promising potential for ammonia detection. Detailed structural and performance analysis highlights the significant enhancement in electrochemical properties, paving the way for the development of advanced sensors for gas detection, particularly ammonia, with the prospective market demands for durable, simple, cost-effective, and efficient devices.


Assuntos
Amônia , Grafite , Lignina , Grafite/química , Lignina/química , Amônia/análise , Amônia/química , Carbono/química , Formaldeído/análise , Formaldeído/química , Técnicas Eletroquímicas/métodos , Poliuretanos/química , Gases/análise , Gases/química , Fenóis , Polímeros
17.
J Mol Graph Model ; 127: 108701, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38194862

RESUMO

The detection of toxic gases (NH3 and NF3) in regulating and monitoring air quality in the atmosphere has drawn a lot of attention. Herein, we explored a novel material (C6N8) for the detection of the important but toxic gases (NH3 and NF3). We investigated the interactions of the NH3 and NF3 with C6N8 through DFT at B3LYP, ωB97XD, and non-DFT M06-2X. Counterpoise interaction energy values (Eint. cp.) of NH3@C6N8 and NF3@C6N8 are -0.45 eV and -3.51 eV (for B3LYP), -0.42 eV and 2.11 eV (for ωB97XD) and -0.44 eV and -3.41eV (for M06-2X), respectively. Complexes having the most stable configurations were then subjected to further analyses including frontier molecular orbitals, H-L gap, and conductivity of complexes. An increase in the H-L gap in complexes (NH3@C6N8 and NF3@C6N8) is observed. The conductivity of NH3@C6N8 and NF3@C6N8 decreases as compared to C6N8. A considerable change in dipole moment was seen in C6N8 before and after complex formation. This is because of the shifting of charge between C6N8 and gases (NH3 and NF3). CHELPG and NBO charge analysis were used to evaluate the amount of charge transfer between C6N8 and gases. These analyses demonstrate that NH3 and NF3 withdraw electron density from C6N8. It was found that NH3 tends to be physically adsorbed on C6N8 while NF3 adsorbs chemically on C6N8. NCI and QTAIM analyses were performed to investigate the kind of interactions between the surface (C6N8) and gases (NH3 and NF3). Furthermore, the recovery time of NH3@C6N8 and NF3@C6N8 shows that C6N8 can be a better choice for sensing NH3 and NF3 gases.


Assuntos
Amônia , Nitrogênio , Amônia/química , Gases/química
18.
Environ Sci Pollut Res Int ; 31(2): 2053-2066, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38049689

RESUMO

In cement industry, the selection of catalyst temperature window and the inhibition effect of dust composition in flue gas on catalyst are the key issues of flue gas denitrification. In this article, a pilot study with Ce doped V-W/Ti catalyst on the removal of NOx by selective catalytic reduction with ammonia (NH3-SCR) from the cement kiln flue gas was presented. Cement kiln dust loading on catalysts obviously decreased the NO conversion in the absence of SO2 and H2O, while the denitration efficiency restored from 75 to 98% at 280 ℃ after SO2 and H2O introduced into the reaction system, which mainly because the SO2 may enhance the acidic site on the catalyst surface, and prefer to be bonded with the coordinated Ca species, releasing the active sites poisoned by dust. The NH3-temperature programmed desorption (NH3-TPD), X-ray photoelectron spectroscopy (XPS), and H2-temperature programmed reduction (H2-TPR) detections were performed to reveal that the appropriate Ce and W ratios catalyst contributed better denitrification activity. The optimum ratio of Ce doped catalyst was amplified to form the standard honeycomb monomer catalyst, and then, the activity of catalyst was verified on the side line of cement kiln. The effect of temperature and space velocity on denitrification efficiency was investigated, and the denitration efficiency reached to 92.5% at 300℃ and 3000 h-1 space velocity. Moreover, the life of catalyst was verified and predicted by GM (1,1) grey model. The study realized the innovation from the laboratory data rules to the industrial pilot application, providing positive promoting value for the industrial large-scale demonstration application of the catalyst.


Assuntos
Amônia , Titânio , Oxirredução , Titânio/química , Projetos Piloto , Temperatura , Amônia/química , Catálise , Poeira
19.
Environ Sci Technol ; 57(25): 9405-9415, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37318093

RESUMO

Ammonia is considered a contaminant to be removed from wastewater. However, ammonia is a valuable commodity chemical used as the primary feedstock for fertilizer manufacturing. Here we describe a simple and low-cost ammonia gas stripping membrane capable of recovering ammonia from wastewater. The material is composed of an electrically conducting porous carbon cloth coupled to a porous hydrophobic polypropylene support, that together form an electrically conductive membrane (ECM). When a cathodic potential is applied to the ECM surface, hydroxide ions are produced at the water-ECM interface, which transforms ammonium ions into higher-volatility ammonia that is stripped across the hydrophobic membrane material using an acid-stripping solution. The simple structure, low cost, and easy fabrication process make the ECM an attractive material for ammonia recovery from dilute aqueous streams, such as wastewater. When paired with an anode and immersed into a reactor containing synthetic wastewater (with an acid-stripping solution providing the driving force for ammonia transport), the ECM achieved an ammonia flux of 141.3 ± 14.0 g.cm-2.day-1 at a current density of 6.25 mA.cm-2 (69.2 ± 5.3 kg(NH3-N)/kWh). It was found that the ammonia flux was sensitive to the current density and acid circulation rate.


Assuntos
Amônia , Compostos de Amônio , Amônia/análise , Amônia/química , Águas Residuárias , Compostos de Amônio/química , Eletricidade , Íons
20.
Environ Sci Pollut Res Int ; 30(17): 49577-49590, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36781672

RESUMO

The "trinitrogen" [ammonia nitrogen (NH4+ - N), nitrate nitrogen (NO3- - N), and nitrite nitrogen (NO2- - N)] from industrial or domestic wastewater can lead to eutrophication of water bodies. When ammonia nitrogen is converted into nitrate nitrogen, it will cause high nitrogen oxygen demand, which will also lead to hyperammonemia. High nitrite content in water bodies will increase the risk of human cancer. In this paper, Fe-Ce bimetallic-doped composites (Fe-Ce/SiO2 and Fe-Ce-SiO2/TiO2) were synthesized using SiO2 aerogel as a carrier for the adsorption and degradation of "three nitrogen."SiO2/TiO2 was prepared by dipping method, and Fe and Ce bimetals were loaded on the surface of SiO2/TiO2 material, and the effect of photo-Fenton oxidation on the degradation rate of three nitrogen under different materials was explored. The results showed that when the dosage of catalyst was 0.01 g, pH value was 11.0, and the concentration of H2O2 was 80 mmol/L, the photocatalytic efficiency was the best, and the degradation efficiency of three nitrogen remained above 70%.


Assuntos
Nitratos , Nitritos , Humanos , Nitritos/química , Nitratos/química , Amônia/química , Dióxido de Silício/química , Peróxido de Hidrogênio/química , Titânio/química , Água , Nitrogênio , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA