Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Medicine (Baltimore) ; 103(6): e37195, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335414

RESUMO

RATIONALE: Amebic colitis has been less prevalent in recent times in China, and the similarity of its symptoms to those of inflammatory bowel disease (IBD) results in the difficulty of early identification and diagnosis. PATIENT CONCERNS: A 31-year-old male who exhibited intermittent diarrhea and hematochezia was highly suspected as IBD initially. Despite the partial relief of symptoms following the administration of mesalamine, the endoscopic ulcers remained largely unchanged. DIAGNOSES: Two years after the onset of mesalamine therapy, amebic cysts were detected in stool microscopy and trophozoites were found on the surface of cecal ulcers. The patient was then diagnosed with amebic colitis. INTERVENTIONS: After 2 rounds of standardized metronidazole treatment, amebic colitis remained refractory until diloxanide was administered. OUTCOMES: The patient remained asymptomatic, and the mucosa of colon was normal during the annual follow-up. LESSONS: Individuals newly diagnosed with IBD should undergo essential screening for amebiasis. And the use of steroids should be taken with caution, especially in cases where the effect of mesalamine is limited. For symptomatic intestinal amebiasis, even after the administration of tissue amebicides, the continued use of luminal amebicides is necessary to prevent recurrence.


Assuntos
Amebicidas , Disenteria Amebiana , Doenças Inflamatórias Intestinais , Masculino , Humanos , Adulto , Disenteria Amebiana/diagnóstico , Disenteria Amebiana/tratamento farmacológico , Amebicidas/uso terapêutico , Mesalamina/uso terapêutico , Úlcera/tratamento farmacológico , Diagnóstico Diferencial , Doenças Inflamatórias Intestinais/diagnóstico
2.
Phytomedicine ; 125: 155389, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38306720

RESUMO

BACKGROUND: Acanthamoeba is an opportunistic pathogen that can cause human infections such as granulomatous amebic encephalitis and acanthamoeba keratitis. However, no specific drug to treat the diseases has been developed. Therefore, the discovery or development of novel drugs for treating Acanthamoeba infections is urgently needed. The anti-protozoan activity of (‒)-epicatechin (EC) has been reported, suggesting it is an attractive anti-protozoal drug candidate. In this study, the amoebicidal activity of EC against A. castellanii was assessed and its mechanism of action was unveiled. METHODS: The amoebicidal activity of EC against A. castellanii trophozoites and the cytotoxicity of EC in HCE-2 and C6 cells were determined with cell viability assay. The underlying amoebicidal mechanism of EC against A. castellanii was analyzed by the apoptosis/necrosis assay, TUNEL assay, mitochondrial dysfunction assay, caspase-3 assay, and quantitative reverse transcription polymerase chain reaction. The cysticidal activity of EC was also investigated. RESULTS: EC revealed amoebicidal activity against A. castellanii trophozoites with an IC50 of 37.01 ± 3.96 µM, but was not cytotoxic to HCE-2 or C6 cells. EC induced apoptotic events such as increases in DNA fragmentation and intracellular reactive oxygen species production in A. castellanii. EC also caused mitochondrial dysfunction in the amoebae, as evidenced by the loss of mitochondrial membrane potential and reductions in ATP production. Caspase-3 activity, autophagosome formation, and the expression levels of autophagy-related genes were also increased in EC-treated amoebae. EC led to the partial death of cysts and the inhibition of excystation. CONCLUSION: EC revealed promising amoebicidal activity against A. castellanii trophozoites via programmed cell death events. EC could be a candidate drug or supplemental compound for treating Acanthamoeba infections.


Assuntos
Acanthamoeba castellanii , Amebíase , Amebicidas , Catequina , Dieldrin/análogos & derivados , Doenças Mitocondriais , Animais , Humanos , Amebicidas/farmacologia , Amebicidas/uso terapêutico , Caspase 3 , Catequina/farmacologia , Amebíase/tratamento farmacológico , Trofozoítos , Apoptose , Doenças Mitocondriais/tratamento farmacológico
3.
PLoS One ; 18(2): e0281141, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36745609

RESUMO

As the number of contact lens users increases, contact lens induced corneal infection is becoming more common. Acanthamoeba keratitis (AK) is a type of those which is caused by Acanthamoeba species, and may cause severe ocular inflammation and visual loss. We evaluated whether Torreya nucifera (T. nucifera) extract has an anti-amoebic effect and studied its mechanism of action on Acanthamoeba lugdunensis (A. lugdunensis). Cell viability was tested using the alamarBlue™ method, and the cell death mechanism was confirmed using the Tali® Apoptosis Kit. The SYTOX® Green assay was performed to check the plasma membrane permeability. The JC-1 dye was used to measure the mitochondrial membrane potential. A CellTiter-Glo® Luminescent Assay was used to measure the adenosine-triphosphate (ATP) level. Morphological changes in the mitochondria were examined by transmission electron microscopy (TEM). Cystic changes and a decrease in cell viability after treatment with T. nucifera were observed. Both apoptotic and necrotic cells were found in the Tali® Apoptosis assay. There was no significant difference in plasma membrane permeability between the control and T. nucifera treated groups. The collapse of the mitochondrial membrane potential and reduced ATP level in A. lugdunensis was confirmed in the groups treated with T. nucifera. Structural damage to the mitochondria was observed on TEM in the groups treated with T. nucifera. T. nucifera showed an anti-amoebic effect on A. lugdunensis, by inducing the loss of mitochondrial membrane potential. Thus, it could be a future therapeutic agent for AK.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba , Amebicidas , Humanos , Amebicidas/farmacologia , Amebicidas/uso terapêutico , Ceratite por Acanthamoeba/tratamento farmacológico , Trifosfato de Adenosina/metabolismo , Extratos Vegetais/farmacologia
4.
Eur J Pharm Biopharm ; 180: 11-22, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36162636

RESUMO

Statins are effective sterol lowering agents with high amoebicidal activity. Nevertheless, due to their poor aqueous solubility, they remain underused especially in eye drop formulation. The aim of the present study is to develop Pitavastatin loaded nanoparticles suitable for ophthalmic administration and designed for the management of Acanthamoeba Keratitis. These nanocarriers are aimed to solve both the ophthalmic route-associated problems and the limited aqueous drug solubility issues of Pitavastatin. Nanoparticles were obtained by a nanoprecipitation-solvent displacement method and their amoebicidal activity was evaluated against four strains of Acanthamoeba: A. castellanii Neff, A. polyphaga, A. griffini and A. quina. In Acanthamoeba polyphaga, the effect of the present nanoparticles was investigated with respect to the microtubule distribution and several programmed cell death features. Nanoparticles were able to eliminate all the tested strains and Acanthamoeba polyphaga was determined to be the most resistance strain. Nanoparticles induced chromatin condensation, autophagic vacuoles and mitochondria dysfunction.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba , Amebicidas , Nanopartículas , Humanos , Ceratite por Acanthamoeba/tratamento farmacológico , Administração Oftálmica , Amebicidas/farmacologia , Amebicidas/uso terapêutico , Morte Celular , Autofagia
5.
Mol Biochem Parasitol ; 250: 111493, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35753525

RESUMO

Acanthamoeba castellanii is a protist pathogen that can cause sight-threatening keratitis and a fatal infection of the central nervous system, known as granulomatous amoebic encephalitis. In this study, effects of five malonic acid and salicylic acid-based deep eutectic solvents (DES) on A. castellanii were investigated. These are salicylic acid-trioctylphosphine (DES 1), salicylic acid- trihexylamine (DES 2), salicylic acid-trioctylamine (DES 3), malonic acid-trioctylphosphine (DES 4) and malonic acid-trihexylamine (DES 5). The experiments were done by performing amoebicidal, encystment, excystment, cytopathogenicity, and cytotoxicity assays. At micromolar dosage, the solvents DES 2 and DES 3 displayed significant amoebicidal effects (P < 0.05), inhibited encystment and excystment, undermined the cell-mediated cytopathogenicity of A. castellanii, and also displayed minimal cytotoxicity to human cells. Conversely, the chemical components of these solvents: salicylic acid, trihexylamine, and trioctylamine showed minimal effects when tested individually. These results are very promising and to the best of our knowledge, are reported for the first time on the effects of deep eutectic solvents on amoebae. These results can be applied in the development of new formulations of novel contact lens disinfectants against Acanthamoeba castellanii.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba castellanii , Amebicidas , Lentes de Contato , Ceratite por Acanthamoeba/tratamento farmacológico , Ceratite por Acanthamoeba/prevenção & controle , Amebicidas/química , Amebicidas/farmacologia , Amebicidas/uso terapêutico , Soluções para Lentes de Contato/farmacologia , Soluções para Lentes de Contato/uso terapêutico , Solventes Eutéticos Profundos , Humanos , Ácido Salicílico/farmacologia , Ácido Salicílico/uso terapêutico
6.
Microbiol Spectr ; 10(3): e0007722, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35467370

RESUMO

Traditional cysticidal assays for Acanthamoeba species revolve around treating cysts with compounds and manually observing the culture for evidence of excystation. This method is time-consuming, labor-intensive, and low throughput. We adapted and trained a YOLOv3 machine learning, object detection neural network to recognize Acanthamoeba castellanii trophozoites and cysts in microscopy images to develop an automated cysticidal assay. This trained neural network was used to count trophozoites in wells treated with compounds of interest to determine if a compound treatment was cysticidal. We validated this new assay with known cysticidal and noncysticidal compounds. In addition, we undertook a large-scale bioluminescence-based screen of 9,286 structurally unique marine microbial metabolite fractions against the trophozoites of A. castellanii and identified 29 trophocidal hits. These hits were then subjected to this machine learning-based automated cysticidal assay. One marine microbial metabolite fraction was identified as both trophocidal and cysticidal. IMPORTANCE The free-living Acanthamoeba can exist as a trophozoite or cyst and both stages can cause painful blinding keratitis. Infection recurrence occurs in approximately 10% of cases due to the lack of efficient drugs that can kill both trophozoites and cysts. Therefore, the discovery of therapeutics that are effective against both stages is a critical unmet need to avert blindness. Current efforts to identify new anti-Acanthamoeba compounds rely primarily upon assays that target the trophozoite stage of the parasite. We adapted and trained a machine learning, object detection neural network to recognize Acanthamoeba trophozoites and cysts in microscopy images. Our machine learning-based cysticidal assay improved throughput, demonstrated high specificity, and had an exquisite ability to identify noncysticidal compounds. We combined this cysticidal assay with our bioluminescence-based trophocidal assay to screen about 9,000 structurally unique marine microbial metabolites against A. castellanii. Our screen identified a marine metabolite that was both trophocidal and cysticidal.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba castellanii , Amebicidas , Ceratite por Acanthamoeba/tratamento farmacológico , Ceratite por Acanthamoeba/parasitologia , Amebicidas/farmacologia , Amebicidas/uso terapêutico , Animais , Aprendizado de Máquina , Trofozoítos
7.
Artigo em Inglês | MEDLINE | ID: mdl-33895610

RESUMO

The main corneal infections reported worldwide are caused by bacteria and viruses but, recently, the number of Acanthamoeba keratitis (AK) cases has increased. Acanthamoeba genus is an opportunistic free living protozoa widely distributed in environmental and clinical sources, with two life-cycle stages: the trophozoite and the cyst. AK presents as primary symptoms eye redness, epithelial defects, photophobia and intense pain. An early diagnosis and an effective treatment are crucial to avoid blindness or eye removal but, so far, there is no established treatment to this corneal infection. Diverse research studies have reported the efficacy of commercialized eye drops and ophthalmic solutions against the two life cycle stages of Acanthamoeba strains, that usually present preservatives such as Propylene Glycol of Benzalkonium chloride (BAK). These compounds present toxic effects in corneal cells, favouring the inflammatory response in the so sensitive eye tissue. In the present work we have evaluated the efficacy of nine proprietary ophthalmic solutions with and without preservatives (ASDA Dry Eyes Eyedrops, Miren®, ODM5®, Ectodol®, Systane® Complete, Ocudox®, Matrix Ocular®, Alins® and Coqun®) against the two life cycle stages of three Acanthamoeba strains. Our work has demonstrated the high anti-Acanthamoeba activity of Matrix Ocular®, which induces the programmed cell death mechanisms in Acanthamoeba spp. trophozoites. The high efficacy and the absence of ocular toxic effects of Matrix Ocular®, evidences the use of the Arabinogalactan derivatives as a new source of anti-AK compounds.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba , Amebicidas , Ceratite por Acanthamoeba/tratamento farmacológico , Amebicidas/farmacologia , Amebicidas/uso terapêutico , Galactanos , Humanos , Soluções Oftálmicas/uso terapêutico
8.
Expert Rev Anti Infect Ther ; 19(11): 1427-1441, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33929276

RESUMO

Introduction: Acanthamoeba encompasses several species of free-living ameba encountered commonly throughout the environment. Unfortunately, these species of ameba can cause opportunistic infections that result in Acanthamoeba keratitis, granulomatous amebic encephalitis, and occasionally systemic infection.Areas covered: This review discusses relevant literature found through PubMed and Google scholar published as of January 2021. The review summarizes current common Acanthamoeba keratitis treatments, drug discovery methodologies available for screening potential anti-Acanthamoeba compounds, and the anti-Acanthamoeba activity of various azole antifungal agents.Expert opinion: While several biguanide and diamidine antimicrobial agents are available to clinicians to effectively treat Acanthamoeba keratitis, no singular treatment can effectively treat every Acanthamoeba keratitis case.Efforts to identify new anti-Acanthamoeba agents include trophozoite cell viability assays, which are amenable to high-throughput screening. Cysticidal assays remain largely manual and would benefit from further automation development. Additionally, the existing literature on the effectiveness of various azole antifungal agents for treating Acanthamoeba keratitis is incomplete or contradictory, suggesting the need for a systematic review of all azoles against different pathogenic Acanthamoeba strains.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba , Amebicidas , Ceratite por Acanthamoeba/tratamento farmacológico , Amebicidas/farmacologia , Amebicidas/uso terapêutico , Azóis/farmacologia , Azóis/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Humanos
9.
Int J Parasitol Drugs Drug Resist ; 15: 144-151, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33684885

RESUMO

The validation of anti-Acanthamoeba activity of commercial eye drops has gained a great interest recently and a growing number of commercials eye drop were evaluated for their aptitude to inhibit Acanthamoeba as a second pharmacological effect. In the present study, three different eye drops, commercializing in Spain, including TobraDex, Cusimolol and Colircusi antiedema have been tested in vitro against trophozoites and cysts stage of the facultative pathogen Acanthamoeba. The alamarBlue™ method was used to evaluate both trophocidal and cysticidal properties. The most active eye drops were tested for their impact on some programmed cell death features. We found out that the cells inhibition was strain and eye drop dependent, and 5% eye drop was able to eliminate both trophozoite and cyst stage of Acanthamoeba spp. A treatment of 24 h with 5% of TobraDex or Cusimolol was able to show DNA condensation, collapse in the mitochondrial membrane potential and reduction of the ATP level production in Acanthamoeba. We could assume that the present eye drops could induce programed cell death like process in Acanthamoeba via mitochondrial pathway.


Assuntos
Acanthamoeba , Amebicidas , Soluções Oftálmicas , Acanthamoeba/efeitos dos fármacos , Amebicidas/farmacologia , Amebicidas/uso terapêutico , Soluções Oftálmicas/farmacologia , Soluções Oftálmicas/uso terapêutico , Trofozoítos
10.
Clin Transl Sci ; 14(3): 791-805, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33650319

RESUMO

Free-living amoebae (FLAs) are protozoa developing autonomously in diverse natural or artificial environments. The FLAs Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri represent a risk for human health as they can become pathogenic and cause severe cerebral infections, named granulomatous amoebic encephalitis (GAE), Balamuthia amoebic encephalitis (BAE), and primary amoebic meningoencephalitis (PAM), respectively. Additionally, Acanthamoeba sp. can also rarely disseminate to diverse organs, such as the skin, sinuses, or bones, and cause extracerebral disseminated acanthamebiasis (EDA). No consensus treatment has been established for cerebral FLA infections or EDA. The therapy of cerebral and disseminated FLA infections often empirically associates a large diversity of drugs, all exhibiting a high toxicity. Nevertheless, these pathologies lead to a high mortality, above 90% of the cases, even in the presence of a treatment. In the present work, a total of 474 clinical cases of FLA infections gathered from the literature allowed to determine the frequency of usage, as well as the efficacy of the main drugs and drug combinations used in the treatment of these pathologies. The efficacy of drug usage was determined based on the survival rate after drug administration. The most efficient drugs, drug combinations, and their mechanism of action were discussed in regard to the present recommendations for the treatment of GAE, EDA, BAE, and PAM. At the end, this review aims to provide a useful tool for physicians in their choice to optimize the treatment of FLA infections.


Assuntos
Amebíase/tratamento farmacológico , Amebicidas/uso terapêutico , Amoeba/efeitos dos fármacos , Infecções Protozoárias do Sistema Nervoso Central/tratamento farmacológico , Amebíase/mortalidade , Amebíase/parasitologia , Amebicidas/farmacologia , Amoeba/patogenicidade , Infecções Protozoárias do Sistema Nervoso Central/mortalidade , Infecções Protozoárias do Sistema Nervoso Central/parasitologia , Quimioterapia Combinada/métodos , Humanos , Taxa de Sobrevida , Resultado do Tratamento
11.
Exp Parasitol ; 218: 108008, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32979343

RESUMO

Acanthamoeba sp. is a free living amoeba that causes severe, painful and fatal infections, viz. Acanthamoeba keratitis and granulomatous amoebic encephalitis among humans. Antimicrobial chemotherapy used against Acanthamoeba is toxic to human cells and show side effects as well. Infections due to Acanthamoeba also pose challenges towards currently used antimicrobial treatment including resistance and transformation of trophozoites to resistant cyst forms that can lead to recurrence of infection. Therapeutic agents targeting central nervous system infections caused by Acanthamoeba should be able to cross blood-brain barrier. Nanoparticles based drug delivery put forth an effective therapeutic method to overcome the limitations of currently used antimicrobial chemotherapy. In recent years, various researchers investigated the effectiveness of nanoparticles conjugated drug and/or naturally occurring plant compounds against both trophozoites and cyst form of Acanthamoeba. In the current review, a reasonable effort has been made to provide a comprehensive overview of various nanoparticles tested for their efficacy against Acanthamoeba. This review summarizes the noteworthy details of research performed to elucidate the effect of nanoparticles conjugated drugs against Acanthamoeba.


Assuntos
Acanthamoeba/efeitos dos fármacos , Amebicidas/administração & dosagem , Nanopartículas/administração & dosagem , Acanthamoeba/crescimento & desenvolvimento , Ceratite por Acanthamoeba/tratamento farmacológico , Ceratite por Acanthamoeba/parasitologia , Amebíase/tratamento farmacológico , Amebíase/mortalidade , Amebíase/parasitologia , Amebicidas/farmacologia , Amebicidas/uso terapêutico , Biguanidas/administração & dosagem , Biguanidas/farmacologia , Biguanidas/uso terapêutico , Infecções Protozoárias do Sistema Nervoso Central/tratamento farmacológico , Infecções Protozoárias do Sistema Nervoso Central/mortalidade , Infecções Protozoárias do Sistema Nervoso Central/parasitologia , Clorexidina/administração & dosagem , Clorexidina/farmacologia , Clorexidina/uso terapêutico , Sistemas de Liberação de Medicamentos , Imunocompetência , Hospedeiro Imunocomprometido , Encefalite Infecciosa/tratamento farmacológico , Encefalite Infecciosa/mortalidade , Encefalite Infecciosa/parasitologia , Nanopartículas/classificação , Nanopartículas/uso terapêutico , Trofozoítos/efeitos dos fármacos
12.
Medicine (Baltimore) ; 99(27): e21112, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32629745

RESUMO

RATIONALE: Lupus miliaris disseminatus faciei (LMDF) is an inflammatory granulomatous skin disease without a clear etiology that frequently involves the middle area of the face and the upper eyelids. Pathological features of the disease include caseation necrosis and epithelioid granuloma. Consensus treatment for LMDF is currently unavailable. PATIENT CONCERNS: A 47-year-old Chinese female patient who presented with facial pruritic, erythematous papules 8 months before this study. She was diagnosed with skin tuberculosis at another hospital and given antituberculosis medication. However, the treatment was not efficacious. DIAGNOSES: In this study, the diagnosis of Demodex-induced LMDF was made by a dermatologist according to physical examination, skin biopsy pathology, and microscopic examination. INTERVENTIONS: The patient was given ornidazole tablets (500 mg twice a day) and recombinant bovine basic fibroblast growth factor gel (0.2 g/cm twice a day) for an 8-week period. OUTCOMES: Eight weeks after the treatment, the facial erythematous papules were improved, and no new skin lesions were observed. The patient showed no signs of recurrence during the 6-month follow-up. LESSONS SUBSECTIONS: This case showed that ornidazole combined with recombinant bovine basic fibroblast growth factor gel might be useful in treatment of Demodex-induced LMDF. In addition, the results suggested that pathological caseation necrosis was caused by a series of inflammatory and immune responses to Demodex infection.


Assuntos
Dermatoses Faciais/etiologia , Rosácea/parasitologia , Pele/parasitologia , Amebicidas/administração & dosagem , Amebicidas/uso terapêutico , Animais , Povo Asiático/etnologia , Erros de Diagnóstico , Dermatoses Faciais/patologia , Feminino , Fatores de Crescimento de Fibroblastos/administração & dosagem , Fatores de Crescimento de Fibroblastos/uso terapêutico , Granuloma/patologia , Humanos , Pessoa de Meia-Idade , Ácaros/parasitologia , Necrose/patologia , Ornidazol/administração & dosagem , Ornidazol/uso terapêutico , Rosácea/tratamento farmacológico , Pele/patologia , Pele/ultraestrutura , Resultado do Tratamento , Tuberculose Cutânea/diagnóstico , Tuberculose Cutânea/tratamento farmacológico
13.
Artigo em Inglês | MEDLINE | ID: mdl-32094126

RESUMO

Current treatments for Acanthamoeba keratitis rely on a combination of chlorhexidine gluconate, propamidine isethionate, and polyhexamethylene biguanide. These disinfectants are nonspecific and inherently toxic, which limits their effectiveness. Furthermore, in 10% of cases, recurrent infection ensues due to the difficulty in killing both trophozoites and double-walled cysts. Therefore, development of efficient, safe, and target-specific drugs which are capable of preventing recurrent Acanthamoeba infection is a critical unmet need for averting blindness. Since both trophozoites and cysts contain specific sets of membrane sterols, we hypothesized that antifungal drugs targeting sterol 14-demethylase (CYP51), known as conazoles, would have deleterious effects on A. castellanii trophozoites and cysts. To test this hypothesis, we first performed a systematic screen of the FDA-approved conazoles against A. castellanii trophozoites using a bioluminescence-based viability assay adapted and optimized for Acanthamoeba The most potent drugs were then evaluated against cysts. Isavuconazole and posaconazole demonstrated low nanomolar potency against trophozoites of three clinical strains of A. castellanii Furthermore, isavuconazole killed trophozoites within 24 h and suppressed excystment of preformed Acanthamoeba cysts into trophozoites. The rapid action of isavuconazole was also evident from the morphological changes at nanomolar drug concentrations causing rounding of trophozoites within 24 h of exposure. Given that isavuconazole has an excellent safety profile, is well tolerated in humans, and blocks A. castellanii excystation, this opens an opportunity for the cost-effective repurposing of isavuconazole for the treatment of primary and recurring Acanthamoeba keratitis.


Assuntos
Acanthamoeba castellanii/efeitos dos fármacos , Amebicidas/farmacologia , Antifúngicos/farmacologia , Nitrilas/farmacologia , Piridinas/farmacologia , Triazóis/farmacologia , Inibidores de 14-alfa Desmetilase/farmacologia , Inibidores de 14-alfa Desmetilase/uso terapêutico , Acanthamoeba castellanii/crescimento & desenvolvimento , Amebíase/tratamento farmacológico , Amebíase/parasitologia , Amebicidas/uso terapêutico , Animais , Antifúngicos/uso terapêutico , Reposicionamento de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Nitrilas/uso terapêutico , Piridinas/uso terapêutico , Triazóis/uso terapêutico , Trofozoítos/efeitos dos fármacos
14.
Gac Med Mex ; 155(Suppl 1): S22-S27, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31638607

RESUMO

INTRODUCTION: In Mexico, seroprevalence of Entamoeba histolytica is 8.4%. The intestinal amebiasis in patients with acute leukemia of novo, after the start of chemotherapy (CT) in the Hematology Service of the CMN 20 de Noviembre is 12%, even if patients show a negative baseline coprological test. OBJECTIVE: To find out if the administration of tinidazole, in patients with acute leukemia and negative coprological test, at the beginning of the CT, decreases the incidence of amoebic colitis during the induction to remission. METHOD: Prospective and not comparative study. Patients with de novo diagnosis of acute leukemia who initiate induction and initial coprological CT. Tinidazole was indicated, 2 g/day for 5 days in the first week of CT started. They were monitored until the induction was concluded and hematopoietic recovery started. RESULTS: 38 patients, 15 women and 23 men with a mean age of 44 years (16-72), with acute lymphoblastic leukemia 19, myeloblastic 16 and promyelocytic 3. Cases without and with intestinal amebiasis were 35 and 3, respectively. Patients with amebiasis only received tinidazole for 3 days and it was given 2 days after the CT started. CONCLUSION: Tinidazole, in patients with acute de novo leukemia who initiate induction CT, is effective in the prevention of intestinal amebiasis, during the induction stage, if administered at 2 g/day, for five days, starting on day 1 of the CT.


Assuntos
Amebicidas/uso terapêutico , Disenteria Amebiana/prevenção & controle , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Tinidazol/uso terapêutico , Adolescente , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Disenteria Amebiana/parasitologia , Feminino , Humanos , Quimioterapia de Indução/métodos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
15.
Sci Rep ; 9(1): 11651, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406269

RESUMO

Recently, the search for novel therapeutic agents against Acanthamoeba species has been focused on the evaluation of natural resources. Among them, marine microorganisms have risen as a source of bioactive compounds with the advantage of the ability to obtain unlimited and constant amounts of the compounds in contrast to other natural sources such as plants. Furthermore, marine actinomycetes have recently been reported as highly rich in bioactive agents including salinosporamides, xiamycines, indolocarbazoles, naphtyridines, phenols, dilactones such as antimycines and macrolides among others. In this study, staurosporine (STS) was isolated from a strain of Streptomyces sanyensis and tested against Acanthamoeba to characterize the therapeutic potential of STS against this protozoan parasite. We have established that STS is active against both stages of the Acanthamoeba life cycle, by the activation of Programmed Cell Death via the mitochondrial pathway of the trophozoite. We have also established that STS has relatively low toxicity towards a macrophage cell line. However, previous studies have highlighted higher toxicity levels induced on other vertebrate cell lines and future research to lower these toxicity issues should be developed.


Assuntos
Acanthamoeba castellanii/efeitos dos fármacos , Amebicidas/farmacologia , Organismos Aquáticos/química , Estaurosporina/farmacologia , Streptomyces/química , Acanthamoeba castellanii/citologia , Amebíase/tratamento farmacológico , Amebíase/parasitologia , Amebicidas/isolamento & purificação , Amebicidas/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Humanos , Macrófagos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Estaurosporina/isolamento & purificação , Estaurosporina/uso terapêutico , Testes de Toxicidade Aguda , Trofozoítos/citologia , Trofozoítos/efeitos dos fármacos
16.
Drug Resist Updat ; 44: 1-14, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31112766

RESUMO

Entamoeba histolytica is the etiological agent of amebiasis, which is an endemic parasitic disease in developing countries and is the cause of approximately 70,000 deaths annually. E. histolytica trophozoites usually reside in the colon as a non-pathogenic commensal in most infected individuals (90% of infected individuals are asymptomatic). For unknown reasons, these trophozoites can become virulent and invasive, cause amebic dysentery, and migrate to the liver where they cause hepatocellular damage. Amebiasis is usually treated either by amebicides which are classified as (a) luminal and are active against the luminal forms of the parasite, (b) tissue and are effective against those parasites that have invaded tissues, and (c) mixed and are effective against the luminal forms of the parasite and those forms which invaded the host's tissues. Of the amebicides, the luminal amebicide, metronidazole (MTZ), is the most widely used drug to treat amebiasis. Although well tolerated, concerns about its adverse effects and the possible emergence of MTZ-resistant strains of E. histolytica have led to the development of new therapeutic strategies against amebiasis. These strategies include improving the potency of existing amebicides, discovering new uses for approved drugs (repurposing of existing drugs), drug rediscovery, vaccination, drug targeting of essential E. histolytica components, and the use of probiotics and bioactive natural products. This review examines each of these strategies in the light of the current knowledge on the gut microbiota of patients with amebiasis.


Assuntos
Amebíase/tratamento farmacológico , Amebíase/prevenção & controle , Amebicidas/uso terapêutico , Entamoeba histolytica/efeitos dos fármacos , Terapia de Alvo Molecular/métodos , Vacinas Protozoárias/administração & dosagem , Amebíase/imunologia , Amebíase/parasitologia , Animais , Produtos Biológicos/uso terapêutico , Colo/efeitos dos fármacos , Colo/parasitologia , Colo/patologia , Reposicionamento de Medicamentos/métodos , Entamoeba histolytica/patogenicidade , Entamoeba histolytica/fisiologia , Microbioma Gastrointestinal/imunologia , Interações Hospedeiro-Parasita/imunologia , Humanos , Fígado/efeitos dos fármacos , Fígado/parasitologia , Fígado/patologia , Metronidazol/uso terapêutico , Interações Microbianas , Probióticos/uso terapêutico , Vacinas Protozoárias/biossíntese , Índice de Gravidade de Doença
19.
Cont Lens Anterior Eye ; 41(3): 245-251, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29273391

RESUMO

Acanthamoeba spp. is a free living protozoan in the environment, but can cause serious diseases. Acanthamoeba keratitis (AK), a severe and painful eye infection, must be treated as soon as possible to prevent ulceration of the cornea, loss of visual acuity, and eventually blindness or enucleation. Although the disease affects principally contact lens (CLs) wearers, it is recognized nowadays as a cause of keratitis also in non-CLs wearers. Although the number of infections caused by these amoebae is low, AK is an emerging disease presenting an extended number of cases each year worldwide mostly due to the increasing use of CLs, but also to better diagnostic methods and awareness. There are two principal causes that lead to severe outcomes: misdiagnosis or late diagnosis of the causal agent, and lack of a fully effective therapy due to the existence of a highly resistant cyst stage of Acanthamoeba. Recent studies have reported different genotypes that have not been previously associated with this disease. In addition, Acanthamoeba can act as a reservoir for phylogenetically diverse microorganisms. In this regard, recently giant viruses called Pandoravirus have been found within genotypes producing keratitis. What potential risk this poses is not yet known. This review focuses on an overview of the present status and future prospects of this re-emerging pathology, including features of the parasite, epidemiology, clinical aspects, diagnosis, and treatment.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba/isolamento & purificação , Amebicidas/uso terapêutico , Córnea/parasitologia , Infecções Oculares Parasitárias , Ceratite por Acanthamoeba/diagnóstico , Ceratite por Acanthamoeba/tratamento farmacológico , Ceratite por Acanthamoeba/parasitologia , Animais , Córnea/diagnóstico por imagem , Infecções Oculares Parasitárias/diagnóstico , Infecções Oculares Parasitárias/tratamento farmacológico , Infecções Oculares Parasitárias/parasitologia , Humanos , Microscopia Confocal
20.
Parasitol Int ; 66(6): 727-730, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28797593

RESUMO

Osteo-cutaneous form is a rare presentation of acanthamoebiasis. We present the first such case from India in an apparently healthy male who developed cutaneous lesion with bone involvement after traumatic inoculation of Acanthamoeba cysts. The diagnosis was established by routine microbiological techniques and confirmed by 18SrRNA gene sequencing. Aggressive therapy with terbinafine, chlorhexidine, rifampicin and co-trimoxazole was successful in clearing the lesion and preventing encephalitis.


Assuntos
Acanthamoeba/isolamento & purificação , Amebíase/diagnóstico , Amebicidas/uso terapêutico , Adolescente , Amebíase/tratamento farmacológico , Amebíase/patologia , Osso e Ossos/patologia , Humanos , Índia , Masculino , RNA de Protozoário/análise , RNA Ribossômico 18S/análise , Pele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA