Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Mol Cancer Res ; 20(2): 293-304, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34635505

RESUMO

FMS-like tyrosine kinase 3 (FLT3) is one of the most frequently mutated genes in acute myeloid leukemia (AML), with the most common mutation being internal tandem duplications (ITD). The presence of FLT3-ITD in AML carries a particularly poor prognosis and renders therapeutic resistance. New druggable targets are thus needed in this disease. In this study, we demonstrate the effects of de novo creatine biosynthesis upregulation by FLT3-ITD on AML sustainability. Our data show that FLT3-ITD constitutively activates the STAT5 signaling pathway, which upregulates the expression of glycine amidinotransferase (GATM), the first rate-limiting enzyme of de novo creatine biosynthesis. Pharmacologic FLT3-ITD inhibition reduces intracellular creatinine levels through transcriptional downregulation of genes in the de novo creatine biosynthesis pathway. The same reduction can be achieved by cyclocreatine or genetic GATM knockdown with shRNA and is reflected in significant decrease of cell proliferation and moderate increase of cell apoptosis in FLT3-ITD-mutant cell lines. Those effects are at least partially mediated through the AMPK/mTOR signaling pathway. This study uncovers a previously uncharacterized role of creatine metabolic pathway in the maintenance of FLT3-ITD-mutant AML and suggests that targeting this pathway may serve as a promising therapeutic strategy for FLT3-ITD-positive AML. IMPLICATIONS: FLT3-ITD mutation in AML upregulates de novo creatine biosynthesis that we show can be suppressed to diminish the proliferation and survival of blast cells.


Assuntos
Amidinotransferases/metabolismo , Creatina/metabolismo , Leucemia Mieloide Aguda/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Leucemia Mieloide Aguda/patologia , Mutação , Transdução de Sinais , Transfecção
2.
Brain Res ; 1770: 147627, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34418357

RESUMO

The enzymes glycine amidinotransferase, mitochondrial (GATM also known as AGAT) and guanidinoacetate N-methyltransferase (GAMT) function together to synthesize creatine from arginine, glycine, and S-Adenosyl methionine. Deficiency in either enzyme or the creatine transporter, CT1, results in a devastating neurological disorder, Cerebral Creatine Deficiency Syndrome (CCDS). To better understand the pathophysiology of CCDS, we mapped the distribution of GATM and GAMT at single cell resolution, leveraging RNA sequencing analysis combined with in vivo immunofluorescence (IF). Using the mouse as a model system, we find that GATM and GAMT are coexpressed in several tissues with distinct and overlapping cellular sources, implicating local synthesis as an important mechanism of creatine metabolism in numerous organs. Extending previous findings at the RNA level, our analysis demonstrates that oligodendrocytes express the highest level of Gatm and Gamt of any cell type in the body. We confirm this finding in the mouse brain by IF, where GATM localizes to the mitochondria of oligodendrocytes, whereas both oligodendrocytes and cerebral cortical neurons express GAMT. Interestingly, the latter is devoid of GATM. Single nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq) analysis of 4 brain regions highlights a similar primacy of oligodendrocytes in the expression of GATM and GAMT in the human central nervous system. Importantly, an active putative regulatory element within intron 2 of human GATM is detected in oligodendrocytes but not neurons.


Assuntos
Amidinotransferases/metabolismo , Encéfalo/metabolismo , Creatina/metabolismo , Guanidinoacetato N-Metiltransferase/metabolismo , Oligodendroglia/metabolismo , Animais , Camundongos , Mitocôndrias/metabolismo , Neurônios/metabolismo
3.
Cell Metab ; 33(3): 499-512.e6, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33596409

RESUMO

Obesity is a major risk factor for adverse outcomes in breast cancer; however, the underlying molecular mechanisms have not been elucidated. To investigate the role of crosstalk between mammary adipocytes and neoplastic cells in the tumor microenvironment (TME), we performed transcriptomic analysis of cancer cells and adjacent adipose tissue in a murine model of obesity-accelerated breast cancer and identified glycine amidinotransferase (Gatm) in adipocytes and Acsbg1 in cancer cells as required for obesity-driven tumor progression. Gatm is the rate-limiting enzyme in creatine biosynthesis, and deletion in adipocytes attenuated obesity-driven tumor growth. Similarly, genetic inhibition of creatine import into cancer cells reduced tumor growth in obesity. In parallel, breast cancer cells in obese animals upregulated the fatty acyl-CoA synthetase Acsbg1 to promote creatine-dependent tumor progression. These findings reveal key nodes in the crosstalk between adipocytes and cancer cells in the TME necessary for obesity-driven breast cancer progression.


Assuntos
Neoplasias da Mama/patologia , Comunicação Celular/fisiologia , Creatina/metabolismo , Obesidade/patologia , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Amidinotransferases/deficiência , Amidinotransferases/genética , Amidinotransferases/metabolismo , Animais , Linhagem Celular Tumoral , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Dieta Hiperlipídica , Feminino , Humanos , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Microambiente Tumoral
5.
Acta Pharmacol Sin ; 40(4): 492-499, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29950617

RESUMO

Myotoxicity is a significant factor contributing to the poor adherence and reduced effectiveness in the treatment of statins. Genetic variations and high drug plasma exposure are considered as critique causes for statin-induced myopathy (SIM). This study aims to explore the sequential influences of rosuvastatin (RST) pharmacokinetic and myopathy-related single-nucleotide polymorphisms (SNPs) on the plasma exposure to RST and its metabolites: rosuvastatin lactone (RSTL) and N-desmethyl rosuvastatin (DM-RST), and further on RST-induced myopathy. A total of 758 Chinese patients with coronary artery disease were enrolled and followed up SIM incidents for 2 years. The plasma concentrations of RST and its metabolites were determined through a validated ultra-performance liquid chromatography mass spectrometry method. Nine SNPs in six genes were genotyped by using the Sequenom MassArray iPlex platform. Results revealed that ABCG2 rs2231142 variations were highly associated with the plasma concentrations of RST, RSTL, and DM-RST (Padj < 0.01, FDR < 0.05). CYP2C9 rs1057910 significantly affected the DM-RST concentration (Padj < 0.01, FDR < 0.05). SLCO1B1 rs4149056 variant allele was significantly associated with high SIM risk (OR: 1.741, 95% CI: 1.180-2.568, P = 0.0052, FDR = 0.0468). Glycine amidinotransferase (GATM) rs9806699 was marginally associated with SIM incidents (OR: 0.617, 95% CI: 0.406-0.939, P = 0.0240, FDR = 0.0960). The plasma concentrations of RST and its metabolites were not significantly different between the SIM (n = 51) and control groups (n = 707) (all P > 0.05). In conclusion, SLCO1B1 and GATM genetic variants are potential biomarkers for predicting RST-induced myopathy, and their effects on SIM are unrelated to the high plasma exposure of RST and its metabolites.


Assuntos
Amidinotransferases/genética , Doença da Artéria Coronariana/tratamento farmacológico , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Doenças Musculares/induzido quimicamente , Rosuvastatina Cálcica/sangue , Amidinotransferases/sangue , Amidinotransferases/metabolismo , China , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/metabolismo , Variação Genética , Humanos , Transportador 1 de Ânion Orgânico Específico do Fígado/sangue , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Doenças Musculares/genética , Polimorfismo de Nucleotídeo Único/genética , Rosuvastatina Cálcica/metabolismo , Rosuvastatina Cálcica/farmacocinética
6.
J Am Soc Nephrol ; 29(7): 1849-1858, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29654216

RESUMO

Background For many patients with kidney failure, the cause and underlying defect remain unknown. Here, we describe a novel mechanism of a genetic order characterized by renal Fanconi syndrome and kidney failure.Methods We clinically and genetically characterized members of five families with autosomal dominant renal Fanconi syndrome and kidney failure. We performed genome-wide linkage analysis, sequencing, and expression studies in kidney biopsy specimens and renal cells along with knockout mouse studies and evaluations of mitochondrial morphology and function. Structural studies examined the effects of recognized mutations.Results The renal disease in these patients resulted from monoallelic mutations in the gene encoding glycine amidinotransferase (GATM), a renal proximal tubular enzyme in the creatine biosynthetic pathway that is otherwise associated with a recessive disorder of creatine deficiency. In silico analysis showed that the particular GATM mutations, identified in 28 members of the five families, create an additional interaction interface within the GATM protein and likely cause the linear aggregation of GATM observed in patient biopsy specimens and cultured proximal tubule cells. GATM aggregates-containing mitochondria were elongated and associated with increased ROS production, activation of the NLRP3 inflammasome, enhanced expression of the profibrotic cytokine IL-18, and increased cell death.Conclusions In this novel genetic disorder, fully penetrant heterozygous missense mutations in GATM trigger intramitochondrial fibrillary deposition of GATM and lead to elongated and abnormal mitochondria. We speculate that this renal proximal tubular mitochondrial pathology initiates a response from the inflammasome, with subsequent development of kidney fibrosis.


Assuntos
Amidinotransferases/genética , Síndrome de Fanconi/genética , Falência Renal Crônica/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Idoso , Amidinotransferases/metabolismo , Animais , Simulação por Computador , Síndrome de Fanconi/complicações , Síndrome de Fanconi/metabolismo , Síndrome de Fanconi/patologia , Feminino , Heterozigoto , Humanos , Lactente , Inflamassomos/metabolismo , Falência Renal Crônica/etiologia , Falência Renal Crônica/metabolismo , Falência Renal Crônica/patologia , Masculino , Camundongos , Camundongos Knockout , Conformação Molecular , Mutação , Mutação de Sentido Incorreto , Linhagem , Espécies Reativas de Oxigênio/metabolismo , Análise de Sequência de DNA , Adulto Jovem
7.
Cardiovasc Res ; 114(3): 417-430, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29236952

RESUMO

AIMS: Creatine buffers cellular adenosine triphosphate (ATP) via the creatine kinase reaction. Creatine levels are reduced in heart failure, but their contribution to pathophysiology is unclear. Arginine:glycine amidinotransferase (AGAT) in the kidney catalyses both the first step in creatine biosynthesis as well as homoarginine (HA) synthesis. AGAT-/- mice fed a creatine-free diet have a whole body creatine-deficiency. We hypothesized that AGAT-/- mice would develop cardiac dysfunction and rescue by dietary creatine would imply causality. METHODS AND RESULTS: Withdrawal of dietary creatine in AGAT-/- mice provided an estimate of myocardial creatine efflux of ∼2.7%/day; however, in vivo cardiac function was maintained despite low levels of myocardial creatine. Using AGAT-/- mice naïve to dietary creatine we confirmed absence of phosphocreatine in the heart, but crucially, ATP levels were unchanged. Potential compensatory adaptations were absent, AMPK was not activated and respiration in isolated mitochondria was normal. AGAT-/- mice had rescuable changes in body water and organ weights suggesting a role for creatine as a compatible osmolyte. Creatine-naïve AGAT-/- mice had haemodynamic impairment with low LV systolic pressure and reduced inotropy, lusitropy, and contractile reserve. Creatine supplementation only corrected systolic pressure despite normalization of myocardial creatine. AGAT-/- mice had low plasma HA and supplementation completely rescued all other haemodynamic parameters. Contractile dysfunction in AGAT-/- was confirmed in Langendorff perfused hearts and in creatine-replete isolated cardiomyocytes, indicating that HA is necessary for normal cardiac function. CONCLUSIONS: Our findings argue against low myocardial creatine per se as a major contributor to cardiac dysfunction. Conversely, we show that HA deficiency can impair cardiac function, which may explain why low HA is an independent risk factor for multiple cardiovascular diseases.


Assuntos
Amidinotransferases/metabolismo , Creatina/administração & dosagem , Homoarginina/administração & dosagem , Contração Miocárdica/efeitos dos fármacos , Miocárdio/enzimologia , Disfunção Ventricular Esquerda/tratamento farmacológico , Função Ventricular Esquerda/efeitos dos fármacos , Amidinotransferases/deficiência , Amidinotransferases/genética , Animais , Composição Corporal/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Genótipo , Preparação de Coração Isolado , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/patologia , Fenótipo , Disfunção Ventricular Esquerda/enzimologia , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/fisiopatologia
8.
Chemistry ; 23(45): 10714-10724, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28488371

RESUMO

Peptides are biologically occurring oligomers of amino acids linked by amide bonds and are indispensable for all living organisms. Many bioactive peptides are used as antibiotics, antivirus agents, insecticides, pheromones, and food preservatives. Nature employs several different strategies to form amide bonds. ATP-grasp enzymes that catalyze amide bond formation (ATP-dependent carboxylate-amine ligases) utilize a strategy of activating carboxylic acid as an acylphosphate intermediate to form amide bonds and are involved in many different biological processes in both primary and secondary metabolisms. The recent discovery of several new ATP-dependent carboxylate-amine ligases has expanded the diversity of this group of enzymes and showed their usefulness for generating oligopeptides. In this review, an overview of findings on amide bond formation catalyzed by ATP-grasp enzymes in the past decade is presented.


Assuntos
Carboxipeptidases/metabolismo , Oligopeptídeos/biossíntese , Trifosfato de Adenosina/metabolismo , Amidinotransferases/metabolismo , Cobalto/química , Ciclização , Combinação de Medicamentos , Metionina/biossíntese , Metionina/química , Oligopeptídeos/química , Peptídeo Sintases/metabolismo
9.
Proc Natl Acad Sci U S A ; 114(7): E1273-E1281, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28137860

RESUMO

Creatine, a nitrogenous organic acid, replenishes cytoplasmic ATP at the expense of mitochondrial ATP via the phosphocreatine shuttle. Creatine levels are maintained by diet and endogenous synthesis from arginine and glycine. Glycine amidinotransferase (GATM) catalyzes the rate-limiting step of creatine biosynthesis: the transfer of an amidino group from arginine to glycine to form ornithine and guanidinoacetate. We screened 36,530 third-generation germline mutant mice derived from N-ethyl-N-nitrosourea-mutagenized grandsires for intestinal homeostasis abnormalities after oral administration of dextran sodium sulfate (DSS). Among 27 colitis susceptibility phenotypes identified and mapped, one was strongly correlated with a missense mutation in Gatm in a recessive model of inheritance, and causation was confirmed by CRISPR/Cas9 gene targeting. Supplementation of homozygous Gatm mutants with exogenous creatine ameliorated the colitis phenotype. CRISPR/Cas9-targeted (Gatmc/c ) mice displayed a normal peripheral immune response and immune cell homeostasis. However, the intestinal epithelium of the Gatmc/c mice displayed increased cell death and decreased proliferation during DSS treatment. In addition, Gatmc/c colonocytes showed increased metabolic stress in response to DSS with higher levels of phospho-AMPK and lower levels of phosphorylation of mammalian target of rapamycin (phospho-mTOR). These findings establish an in vivo requirement for rapid replenishment of cytoplasmic ATP within colonic epithelial cells in the maintenance of the mucosal barrier after injury.


Assuntos
Colite/prevenção & controle , Creatina/farmacologia , Homeostase/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Amidinotransferases/genética , Amidinotransferases/metabolismo , Animais , Sistemas CRISPR-Cas , Colite/genética , Colite/metabolismo , Colo/efeitos dos fármacos , Colo/metabolismo , Creatina/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Mucosa Intestinal/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mutação de Sentido Incorreto , Substâncias Protetoras/metabolismo , Substâncias Protetoras/farmacologia
10.
Proteins ; 85(1): 103-116, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27802572

RESUMO

The tunneling-fold (T-fold) structural superfamily has emerged as a versatile protein scaffold of diverse catalytic activities. This is especially evident in the pathways to the 7-deazaguanosine modified nucleosides of tRNA queuosine and archaeosine. Four members of the T-fold superfamily have been confirmed in these pathways and here we report the crystal structure of a fifth enzyme; the recently discovered amidinotransferase QueF-Like (QueF-L), responsible for the final step in the biosynthesis of archaeosine in the D-loop of tRNA in a subset of Crenarchaeota. QueF-L catalyzes the conversion of the nitrile group of the 7-cyano-7-deazaguanine (preQ0 ) base of preQ0 -modified tRNA to a formamidino group. The structure, determined in the presence of preQ0 , reveals a symmetric T-fold homodecamer of two head-to-head facing pentameric subunits, with 10 active sites at the inter-monomer interfaces. Bound preQ0 forms a stable covalent thioimide bond with a conserved active site cysteine similar to the intermediate previously observed in the nitrile reductase QueF. Despite distinct catalytic functions, phylogenetic distributions, and only 19% sequence identity, the two enzymes share a common preQ0 binding pocket, and likely a common mechanism of thioimide formation. However, due to tight twisting of its decamer, QueF-L lacks the NADPH binding site present in QueF. A large positively charged molecular surface and a docking model suggest simultaneous binding of multiple tRNA molecules and structure-specific recognition of the D-loop by a surface groove. The structure sheds light on the mechanism of nitrile amidation, and the evolution of diverse chemistries in a common fold. Proteins 2016; 85:103-116. © 2016 Wiley Periodicals, Inc.


Assuntos
Amidinotransferases/química , Proteínas Arqueais/química , Guanosina/análogos & derivados , Pirimidinonas/química , Pyrobaculum/enzimologia , Pirróis/química , Processamento Pós-Transcricional do RNA , Amidinotransferases/genética , Amidinotransferases/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Guanosina/química , Guanosina/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Pirimidinonas/metabolismo , Pyrobaculum/genética , Pirróis/metabolismo , RNA Arqueal/química , RNA Arqueal/genética , RNA Arqueal/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
11.
World J Gastroenterol ; 22(38): 8497-8508, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27784962

RESUMO

AIM: To investigate the hypothesis that exposure to guanidinoacetate (GAA, a potent methyl-group consumer) either alone or combined with ethanol intake for a prolonged period of time would cause more advanced liver pathology thus identifying methylation defects as the initiator and stimulator for progressive liver damage. METHODS: Adult male Wistar rats were fed the control or ethanol Lieber DeCarli diet in the absence or presence of GAA supplementation. At the end of 6 wk of the feeding regimen, various biochemical and histological analyses were conducted. RESULTS: Contrary to our expectations, we observed that GAA treatment alone resulted in a histologically normal liver without evidence of hepatosteatosis despite persistence of some abnormal biochemical parameters. This protection could result from the generation of creatine from the ingested GAA. Ethanol treatment for 6 wk exhibited changes in liver methionine metabolism and persistence of histological and biochemical defects as reported before. Further, when the rats were fed the GAA-supplemented ethanol diet, similar histological and biochemical changes as observed after 2 wk of combined treatment, including inflammation, macro- and micro-vesicular steatosis and a marked decrease in the methylation index were noted. In addition, rats on the combined treatment exhibited increased liver toxicity and even early fibrotic changes in a subset of animals in this group. The worsening liver pathology could be related to the profound reduction in the hepatic methylation index, an increased accumulation of GAA and the inability of creatine generated to exert its hepato-protective effects in the setting of ethanol. CONCLUSION: To conclude, prolonged exposure to a methyl consumer superimposed on chronic ethanol consumption causes persistent and pronounced liver damage.


Assuntos
Etanol/efeitos adversos , Glicina/análogos & derivados , Hepatopatias/fisiopatologia , Alanina Transaminase/sangue , Amidinotransferases/metabolismo , Animais , Aspartato Aminotransferases/sangue , Peso Corporal , Proteínas de Ligação ao Cálcio/metabolismo , Colesterol/química , Proteínas de Ligação a DNA/metabolismo , Suplementos Nutricionais , Etanol/administração & dosagem , Ácidos Graxos/química , Fígado Gorduroso , Glicina/administração & dosagem , Guanidinoacetato N-Metiltransferase/metabolismo , Homocisteína/sangue , Inflamação , Insulina/química , Fígado/fisiopatologia , Masculino , Proteínas do Tecido Nervoso/metabolismo , Nucleobindinas , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos , Ratos Wistar , S-Adenosil-Homocisteína/química , S-Adenosilmetionina/química , Triglicerídeos/química
12.
Alcohol Clin Exp Res ; 40(11): 2312-2319, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27581622

RESUMO

BACKGROUND: Alcohol-induced reduction in the hepatocellular S-adenosylmethionine (SAM):S-adenosylhomocysteine (SAH) ratio impairs the activities of many SAM-dependent methyltransferases. These impairments ultimately lead to the generation of several hallmark features of alcoholic liver injury including steatosis. Guanidinoacetate methyltransferase (GAMT) is an important enzyme that catalyzes the final reaction in the creatine biosynthetic process. The liver is a major site for creatine synthesis which places a substantial methylation burden on this organ as GAMT-mediated reactions consume as much as 40% of all the SAM-derived methyl groups. We hypothesized that dietary creatine supplementation could potentially spare SAM, preserve the hepatocellular SAM:SAH ratio, and thereby prevent the development of alcoholic steatosis and other consequences of impaired methylation reactions. METHODS: For these studies, male Wistar rats were pair-fed the Lieber-DeCarli control or ethanol (EtOH) diet with or without 1% creatine supplementation. At the end of 4 to 5 weeks of feeding, relevant biochemical and histological analyses were performed. RESULTS: We observed that creatine supplementation neither prevented alcoholic steatosis nor attenuated the alcohol-induced impairments in proteasome activity. The lower hepatocellular SAM:SAH ratio seen in the EtOH-fed rats was also not normalized or SAM levels spared when these rats were fed the creatine-supplemented EtOH diet. However, a >10-fold increased level of creatine was observed in the liver, serum, and hearts of rats fed the creatine-supplemented diets. CONCLUSIONS: Overall, dietary creatine supplementation did not prevent alcoholic liver injury despite its known efficacy in preventing high-fat-diet-induced steatosis. Betaine, a promethylating agent that maintains the hepatocellular SAM:SAH, still remains our best option for treating alcoholic steatosis.


Assuntos
Creatina/uso terapêutico , Fígado Gorduroso Alcoólico/prevenção & controle , Amidinotransferases/metabolismo , Animais , Suplementos Nutricionais , Guanidinoacetato N-Metiltransferase/metabolismo , Rim/enzimologia , Fígado/enzimologia , Masculino , Miocárdio/metabolismo , Ratos Wistar , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo
13.
Georgian Med News ; (251): 70-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27001789

RESUMO

Stress represents one of the main problems of modern humanity. This study was done for understanding more clearly alterations in creatine content of the brain under psycho-emotional stress induced by long-term social isolation. It was shown that under 30 days social isolation creatine amount in the brain was arisen, while decreasing concentrations of synthesizing enzymes (AGAT, GAMT) and creatine transporter protein (CrT). Another important point was that such changes were accompanied by down-regulation of creatine kinase (CK), therefore the enzyme's concentration was lowered. In addition, it was observed that content of phosphocreatine (PCr) and ATP were also reduced, thus indicating down-regulation of energy metabolism of brain that is really a crucial point for its normal functioning. To sum up the results it can be underlined that long-term social isolation has negative influence on energy metabolism of brain; and as a result reduce ATP content, while increase of free creatine concentration, supposedly maintaining maximal balance for ATP amount, but here must be also noted that up-regulated oxidative pathways might have impact on blood brain barrier, resulting on its permeability.


Assuntos
Encéfalo/metabolismo , Creatina/metabolismo , Isolamento Social , Trifosfato de Adenosina/metabolismo , Amidinotransferases/metabolismo , Animais , Creatina Quinase/metabolismo , Metabolismo Energético , Guanidinoacetato N-Metiltransferase/metabolismo , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Fosfocreatina/metabolismo , Ratos
14.
Biochimie ; 119: 146-65, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26542286

RESUMO

Creatine is physiologically provided equally by diet and by endogenous synthesis from arginine and glycine with successive involvements of arginine glycine amidinotransferase [AGAT] and guanidinoacetate methyl transferase [GAMT]. A specific plasma membrane transporter, creatine transporter [CRTR] (SLC6A8), further enables cells to incorporate creatine and through uptake of its precursor, guanidinoacetate, also directly contributes to creatine biosynthesis. Breakthrough in the role of creatine has arisen from studies on creatine deficiency disorders. Primary creatine disorders are inherited as autosomal recessive (mutations affecting GATM [for glycine-amidinotransferase, mitochondrial]) and GAMT genes) or X-linked (SLC6A8 gene) traits. They have highlighted the role of creatine in brain functions altered in patients (global developmental delay, intellectual disability, behavioral disorders). Creatine modulates GABAergic and glutamatergic cerebral pathways, presynaptic CRTR (SLC6A8) ensuring re-uptake of synaptic creatine. Secondary creatine disorders, addressing other genes, have stressed the extraordinary imbrication of creatine metabolism with many other cellular pathways. This high dependence on multiple pathways supports creatine as a cellular sensor, to cell methylation and energy status. Creatine biosynthesis consumes 40% of methyl groups produced as S-adenosylmethionine, and creatine uptake is controlled by AMP activated protein kinase, a ubiquitous sensor of energy depletion. Today, creatine is considered as a potential sensor of cell methylation and energy status, a neurotransmitter influencing key (GABAergic and glutamatergic) CNS neurotransmission, therapeutic agent with anaplerotic properties (towards creatine kinases [creatine-creatine phosphate cycle] and creatine neurotransmission), energetic and antioxidant compound (benefits in degenerative diseases through protection against energy depletion and oxidant species) with osmolyte behavior (retention of water by muscle). This review encompasses all these aspects by providing an illustrated metabolic account for brain and body creatine in health and disease, an algorithm to diagnose metabolic and gene bases of primary and secondary creatine deficiencies, and a metabolic exploration by (1)H-MRS assessment of cerebral creatine levels and response to therapeutic measures.


Assuntos
Amidinotransferases/metabolismo , Creatina/metabolismo , Guanidinoacetato N-Metiltransferase/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Amidinotransferases/deficiência , Amidinotransferases/genética , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/enzimologia , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/deficiência , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Animais , Transporte Biológico Ativo , Encefalopatias Metabólicas Congênitas/diagnóstico , Encefalopatias Metabólicas Congênitas/enzimologia , Encefalopatias Metabólicas Congênitas/genética , Encefalopatias Metabólicas Congênitas/metabolismo , Creatina/biossíntese , Creatina/deficiência , Creatina/genética , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/enzimologia , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/metabolismo , Metabolismo Energético , Guanidinoacetato N-Metiltransferase/deficiência , Guanidinoacetato N-Metiltransferase/genética , Atrofia Girata/diagnóstico , Atrofia Girata/enzimologia , Atrofia Girata/genética , Atrofia Girata/metabolismo , Humanos , Hiperamonemia/diagnóstico , Hiperamonemia/enzimologia , Hiperamonemia/genética , Hiperamonemia/metabolismo , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/enzimologia , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Transtornos do Desenvolvimento da Linguagem/diagnóstico , Transtornos do Desenvolvimento da Linguagem/enzimologia , Transtornos do Desenvolvimento da Linguagem/genética , Transtornos do Desenvolvimento da Linguagem/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X/diagnóstico , Deficiência Intelectual Ligada ao Cromossomo X/enzimologia , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Metilação , Proteínas de Transporte da Membrana Mitocondrial , Transtornos dos Movimentos/congênito
15.
Amino Acids ; 47(9): 1893-908, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26031828

RESUMO

Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide (NO) synthesis, whereas L-arginine (Arg) and L-homoarginine (hArg) serve as substrates for NO synthesis. ADMA and other methylated arginines are generally believed to exclusively derive from guanidine (N (G))-methylated arginine residues in proteins by protein arginine methyltransferases (PRMTs) that use S-adenosylmethionine (SAM) as the methyl donor. L-Lysine is known for decades as a precursor for hArg, but only recent studies indicate that arginine:glycine amidinotransferase (AGAT) is responsible for the synthesis of hArg. AGAT catalyzes the formation of guanidinoacetate (GAA) that is methylated to creatine by guanidinoacetate methyltransferase (GAMT) which also uses SAM. The aim of the present study was to learn more about the mechanisms of ADMA and hArg formation in humans. Especially, we hypothesized that ADMA is produced by N (G)-methylation of free Arg in addition to the known PRMTs-involving mechanism. In knockout mouse models of AGAT- and GAMT-deficiency, we investigated the contribution of these enzymes to hArg synthesis. Arg infusion (0.5 g/kg, 30 min) in children (n = 11) and ingestion of high-fat protein meals by overweight men (n = 10) were used to study acute effects on ADMA and hArg synthesis. Daily Arg ingestion (10 g) or placebo for 3 or 6 months by patients suffering from peripheral arterial occlusive disease (PAOD, n = 20) or coronary artery disease (CAD, n = 30) was used to study chronic effects of Arg on ADMA synthesis. Mass spectrometric methods were used to measure all biochemical parameters in plasma and urine samples. In mice, AGAT but not GAMT was found to contribute to plasma hArg, while ADMA synthesis was independent of AGAT and GAMT. Arg infusion acutely increased plasma Arg, hArg and ADMA concentrations, but decreased the plasma hArg/ADMA ratio. High-fat protein meals acutely increased plasma Arg, hArg, ADMA concentrations, as well as the plasma hArg/ADMA ratio. In the PAOD and CAD studies, plasma Arg concentration increased in the verum compared to the placebo groups. Plasma ADMA concentration increased only in the PAOD patients who received Arg. Our study suggests that in humans a minor fraction of free Arg is rapidly metabolized to ADMA and hArg. In mice, GAMT and N (G)-methyltransferases contribute to ADMA and hArg synthesis from Arg, whereas AGAT is involved in the synthesis of hArg but not of ADMA. The underlying biochemical mechanisms remain still elusive.


Assuntos
Arginina/análogos & derivados , Arginina/administração & dosagem , Doença da Artéria Coronariana/sangue , Homoarginina/biossíntese , Doença Arterial Periférica/sangue , Adolescente , Adulto , Amidinotransferases/sangue , Amidinotransferases/deficiência , Amidinotransferases/genética , Amidinotransferases/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/sangue , Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Animais , Arginina/biossíntese , Criança , Doença da Artéria Coronariana/tratamento farmacológico , Doença da Artéria Coronariana/genética , Deficiências do Desenvolvimento/sangue , Deficiências do Desenvolvimento/tratamento farmacológico , Deficiências do Desenvolvimento/genética , Feminino , Guanidinoacetato N-Metiltransferase/sangue , Guanidinoacetato N-Metiltransferase/deficiência , Guanidinoacetato N-Metiltransferase/genética , Guanidinoacetato N-Metiltransferase/metabolismo , Humanos , Deficiência Intelectual/sangue , Deficiência Intelectual/tratamento farmacológico , Deficiência Intelectual/genética , Transtornos do Desenvolvimento da Linguagem/sangue , Transtornos do Desenvolvimento da Linguagem/tratamento farmacológico , Transtornos do Desenvolvimento da Linguagem/genética , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Transtornos dos Movimentos/sangue , Transtornos dos Movimentos/congênito , Transtornos dos Movimentos/tratamento farmacológico , Transtornos dos Movimentos/genética , Doença Arterial Periférica/tratamento farmacológico , Doença Arterial Periférica/genética , Distúrbios da Fala/sangue , Distúrbios da Fala/tratamento farmacológico , Distúrbios da Fala/genética
16.
BMC Genomics ; 16: 247, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25888189

RESUMO

BACKGROUND: Chimeric read-through RNAs are transcripts originating from two directly adjacent genes (<10 kb) on the same DNA strand. Although they are found in next-generation whole transcriptome sequencing (RNA-Seq) data on a regular basis, investigating them further has usually been refrained from. Therefore, their expression patterns or functions in general, and in oncogenesis in particular, are poorly understood. RESULTS: We used paired-end RNA-Seq and a specifically designed computational data analysis pipeline (FusionSeq) to nominate read-through events in a small discovery set of renal cell carcinomas (RCC) and confirmed them in a larger validation cohort. 324 read-through events were called overall; 22/27 (81%) selected nominees passed validation with conventional PCR and were sequenced at the junction region. We frequently identified various isoforms of a given read-through event. 2/22 read-throughs were up-regulated: BC039389-GATM was higher expressed in RCC compared to benign adjacent kidney; KLK4-KRSP1 was expressed in 46/169 (27%) RCCs, but rarely in normal tissue. KLK4-KRSP1 expression was associated with worse clinical outcome in the patient cohort. In cell lines, both read-throughs influenced molecular mechanisms (i.e. target gene expression or migration/invasion) in a way that counteracted the effect of the respective parent transcript GATM or KLK4. CONCLUSIONS: Our data suggests that the up-regulation of read-through RNA chimeras in tumors is not random but causes regulatory effects on cellular mechanisms and may impact patient survival.


Assuntos
Amidinotransferases/genética , Carcinoma de Células Renais/genética , Calicreínas/genética , Neoplasias Renais/genética , Proteínas de Fusão Oncogênica/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Amidinotransferases/antagonistas & inibidores , Amidinotransferases/metabolismo , Sequência de Bases , Carcinoma de Células Renais/mortalidade , Carcinoma de Células Renais/patologia , Linhagem Celular , Estudos de Coortes , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Calicreínas/antagonistas & inibidores , Calicreínas/metabolismo , Neoplasias Renais/mortalidade , Neoplasias Renais/patologia , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Proteínas de Fusão Oncogênica/antagonistas & inibidores , Proteínas de Fusão Oncogênica/metabolismo , Interferência de RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Análise de Sequência de RNA , Análise de Sobrevida , Regulação para Cima
17.
Mol Cell Proteomics ; 14(5): 1400-10, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25724911

RESUMO

The data-independent acquisition (DIA) approach has recently been introduced as a novel mass spectrometric method that promises to combine the high content aspect of shotgun proteomics with the reproducibility and precision of selected reaction monitoring. Here, we evaluate, whether SWATH-MS type DIA effectively translates into a better protein profiling as compared with the established shotgun proteomics. We implemented a novel DIA method on the widely used Orbitrap platform and used retention-time-normalized (iRT) spectral libraries for targeted data extraction using Spectronaut. We call this combination hyper reaction monitoring (HRM). Using a controlled sample set, we show that HRM outperformed shotgun proteomics both in the number of consistently identified peptides across multiple measurements and quantification of differentially abundant proteins. The reproducibility of HRM in peptide detection was above 98%, resulting in quasi complete data sets compared with 49% of shotgun proteomics. Utilizing HRM, we profiled acetaminophen (APAP)(1)-treated three-dimensional human liver microtissues. An early onset of relevant proteome changes was revealed at subtoxic doses of APAP. Further, we detected and quantified for the first time human NAPQI-protein adducts that might be relevant for the toxicity of APAP. The adducts were identified on four mitochondrial oxidative stress related proteins (GATM, PARK7, PRDX6, and VDAC2) and two other proteins (ANXA2 and FTCD). Our findings imply that DIA should be the preferred method for quantitative protein profiling.


Assuntos
Acetaminofen/farmacologia , Analgésicos não Narcóticos/farmacologia , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Peptídeos/análise , Proteoma/análise , Amidinotransferases/análise , Amidinotransferases/genética , Amidinotransferases/metabolismo , Amônia-Liases/análise , Amônia-Liases/genética , Amônia-Liases/metabolismo , Anexina A2/análise , Anexina A2/genética , Anexina A2/metabolismo , Expressão Gênica , Glutamato Formimidoiltransferase/análise , Glutamato Formimidoiltransferase/genética , Glutamato Formimidoiltransferase/metabolismo , Hepatócitos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/análise , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/metabolismo , Enzimas Multifuncionais , Proteínas Oncogênicas/análise , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Peroxirredoxina VI/análise , Peroxirredoxina VI/genética , Peroxirredoxina VI/metabolismo , Proteína Desglicase DJ-1 , Proteólise , Proteoma/genética , Proteoma/metabolismo , Proteômica/métodos , Técnicas de Cultura de Tecidos , Tripsina/química , Canal de Ânion 2 Dependente de Voltagem/análise , Canal de Ânion 2 Dependente de Voltagem/genética , Canal de Ânion 2 Dependente de Voltagem/metabolismo
18.
Exp Mol Pathol ; 97(1): 49-56, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24842317

RESUMO

We previously reported that chronic ethanol intake lowers hepatocellular S-adenosylmethionine to S-adenosylhomocysteine ratio and significantly impairs many liver methylation reactions. One such reaction, catalyzed by guanidinoacetate methyltransferase (GAMT), is a major consumer of methyl groups and utilizes as much as 40% of the SAM-derived groups to convert guanidinoacetate (GAA) to creatine. The exposure to methyl-group consuming compounds has substantially increased over the past decade that puts additional stresses on the cellular methylation potential. The purpose of our study was to investigate whether increased ingestion of a methyl-group consumer (GAA) either alone or combined with ethanol intake, plays a role in the pathogenesis of liver injury. Adult male Wistar rats were pair-fed the Lieber DeCarli control or ethanol diet in the presence or absence of GAA for 2weeks. At the end of the feeding regimen, biochemical and histological analyses were conducted. We observed that 2 weeks of GAA- or ethanol-alone treatment increases hepatic triglyceride accumulation by 4.5 and 7-fold, respectively as compared with the pair-fed controls. However, supplementing GAA in the ethanol diet produced panlobular macro- and micro-vesicular steatosis, a marked decrease in the methylation potential and a 28-fold increased triglyceride accumulation. These GAA-supplemented ethanol diet-fed rats displayed inflammatory changes and significantly increased liver toxicity compared to the other groups. In conclusion, increased methylation demand superimposed on chronic ethanol consumption causes more pronounced liver injury. Thus, alcoholic patients should be cautioned for increased dietary intake of methyl-group consuming compounds even for a short period of time.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Etanol/toxicidade , Glicina/análogos & derivados , Fígado/efeitos dos fármacos , Metilação/efeitos dos fármacos , Consumo de Bebidas Alcoólicas/metabolismo , Amidinotransferases/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas/patologia , Dieta , Fígado Gorduroso Alcoólico/metabolismo , Glicina/farmacologia , Guanidinoacetato N-Metiltransferase/metabolismo , Homocisteína/sangue , Fígado/metabolismo , Fígado/patologia , Masculino , Ratos , Ratos Wistar , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Triglicerídeos/metabolismo
19.
Br J Nutr ; 111(4): 571-7, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24103317

RESUMO

Creatine is an important molecule involved in cellular energy metabolism. Creatine is spontaneously converted to creatinine at a rate of 1·7% per d; creatinine is lost in the urine. Creatine can be obtained from the diet or synthesised from endogenous amino acids via the enzymes arginine:glycine amidinotransferase (AGAT) and guanidinoacetate N-methyltransferase (GAMT). The liver has high GAMT activity and the kidney has high AGAT activity. Although the pancreas has both AGAT and GAMT activities, its possible role in creatine synthesis has not been characterised. In the present study, we examined the enzymes involved in creatine synthesis in the pancreas as well as the synthesis of guanidinoacetate (GAA) and creatine by isolated pancreatic acini. We found significant AGAT activity and somewhat lower GAMT activity in the pancreas and that pancreatic acini had measurable activities of both AGAT and GAMT and the capacity to synthesise GAA and creatine from amino acids. Creatine supplementation led to a decrease in AGAT activity in the pancreas, though it did not affect its mRNA or protein abundance. This was in contrast with the reduction of AGAT activity and mRNA and protein abundance in the kidney, suggesting that the regulatory mechanisms that control the expression of this enzyme in the pancreas are different from those in the kidney. Dietary creatine increased the concentrations of GAA, creatine and phosphocreatine in the pancreas. Unexpectedly, creatine supplementation decreased the concentrations of S-adenosylmethionine, while those of S-adenosylhomocysteine were not altered significantly.


Assuntos
Amidinotransferases/metabolismo , Aminoácidos/metabolismo , Creatina/biossíntese , Glicina/análogos & derivados , Guanidinoacetato N-Metiltransferase/metabolismo , Pâncreas/metabolismo , Animais , Creatina/farmacologia , Creatinina/metabolismo , Dieta , Suplementos Nutricionais , Glicina/biossíntese , Rim/metabolismo , Fígado/metabolismo , Masculino , Pâncreas/enzimologia , Fosfocreatina/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo
20.
J Physiol ; 591(2): 571-92, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23129796

RESUMO

Creatine (Cr) plays an important role in muscle energy homeostasis by its participation in the ATP-phosphocreatine phosphoryl exchange reaction mediated by creatine kinase. Given that the consequences of Cr depletion are incompletely understood, we assessed the morphological, metabolic and functional consequences of systemic depletion on skeletal muscle in a mouse model with deficiency of l-arginine:glycine amidinotransferase (AGAT(-/-)), which catalyses the first step of Cr biosynthesis. In vivo magnetic resonance spectroscopy showed a near-complete absence of Cr and phosphocreatine in resting hindlimb muscle of AGAT(-/-) mice. Compared with wild-type, the inorganic phosphate/ß-ATP ratio was increased fourfold, while ATP levels were reduced by nearly half. Activities of proton-pumping respiratory chain enzymes were reduced, whereas F(1)F(0)-ATPase activity and overall mitochondrial content were increased. The Cr-deficient AGAT(-/-) mice had a reduced grip strength and suffered from severe muscle atrophy. Electron microscopy revealed increased amounts of intramyocellular lipid droplets and crystal formation within mitochondria of AGAT(-/-) muscle fibres. Ischaemia resulted in exacerbation of the decrease of pH and increased glycolytic ATP synthesis. Oral Cr administration led to rapid accumulation in skeletal muscle (faster than in brain) and reversed all the muscle abnormalities, revealing that the condition of the AGAT(-/-) mice can be switched between Cr deficient and normal simply by dietary manipulation. Systemic creatine depletion results in mitochondrial dysfunction and intracellular energy deficiency, as well as structural and physiological abnormalities. The consequences of AGAT deficiency are more pronounced than those of muscle-specific creatine kinase deficiency, which suggests a multifaceted involvement of creatine in muscle energy homeostasis in addition to its role in the phosphocreatine-creatine kinase system.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/fisiopatologia , Creatina/deficiência , Metabolismo Energético , Deficiência Intelectual/fisiopatologia , Atrofia Muscular/genética , Distúrbios da Fala/fisiopatologia , Trifosfato de Adenosina/metabolismo , Amidinotransferases/deficiência , Amidinotransferases/genética , Amidinotransferases/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/dietoterapia , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Animais , Creatina/uso terapêutico , Creatina Quinase/metabolismo , Deficiências do Desenvolvimento/dietoterapia , Deficiências do Desenvolvimento/metabolismo , Deficiências do Desenvolvimento/patologia , Deficiências do Desenvolvimento/fisiopatologia , Força da Mão , Membro Posterior/patologia , Concentração de Íons de Hidrogênio , Deficiência Intelectual/dietoterapia , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Isquemia/metabolismo , Metabolismo dos Lipídeos , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Fosfatos/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Distúrbios da Fala/dietoterapia , Distúrbios da Fala/metabolismo , Distúrbios da Fala/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA