Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 502
Filtrar
1.
Aging (Albany NY) ; 14(3): 1233-1252, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35166693

RESUMO

The protein kinase R (PKR)-like endoplasmic reticulum (ER) kinase (PERK), a key ER stress sensor of the unfolded protein response (UPR), can confer beneficial effects by facilitating the removal of cytosolic aggregates through the autophagy-lysosome pathway (ALP). In neurodegenerative diseases, the ALP ameliorates the accumulation of intracellular protein aggregates in the brain. Transcription factor-EB (TFEB), a master regulator of the ALP, positively regulates key genes involved in the cellular degradative pathway. However, in neurons, the role of PERK activation in mitigating amyloidogenesis by ALP remains unclear. In this study, we found that SB202190 selectively activates PERK independently of its inhibition of p38 mitogen-activated protein kinase, but not inositol-requiring transmembrane kinase/endoribonuclease-1α (IRE1α) or activating transcription factor 6 (ATF6), in human neuroblastoma cells. PERK activation by SB202190 was dependent on mitochondrial ROS production and promoted Ca2+-calcineurin activation. The activation of the PERK-Ca2+-calcineurin axis by SB202190 positively affects TFEB activity to increase ALP in neuroblastoma cells. Collectively, our study reveals a novel physiological mechanism underlying ALP activation, dependent on PERK activation, for ameliorating amyloidogenesis in neurodegenerative diseases.


Assuntos
Amiloide , Endorribonucleases , Imidazóis , Neuroblastoma , Piridinas , eIF-2 Quinase , Amiloide/biossíntese , Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Calcineurina/metabolismo , Estresse do Retículo Endoplasmático , Endorribonucleases/metabolismo , Humanos , Imidazóis/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Neuroblastoma/metabolismo , Proteínas Serina-Treonina Quinases , Piridinas/farmacologia , Resposta a Proteínas não Dobradas , eIF-2 Quinase/metabolismo
2.
Int J Biol Macromol ; 201: 182-192, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34998884

RESUMO

Human γD-crystallin protein is abundant in the lens and is essential for preserving lens transparency. With age the protein may lose its native structure resulting in the formation of cataract. We recently reported an aggregative peptide, 41Gly-Cys-Trp-Met-Leu-Tyr46 from the human γD-crystallin, termed GDC6, exhibiting amyloidogenic properties in vitro. Here, we aimed to determine the contribution of each residue of the GDC6 to its amyloidogenicity. Molecular dynamic (MD) simulations revealed that the residues Trp, Leu, and Tyr played an important role in the amyloidogenicity of GDC6 by facilitating inter-peptide main-chain hydrogen bonds, and π-π interactions. MD predictions were further validated using single-, double- and triple-alanine-substituted GDC6 peptides in which their amyloidogenic propensity was individually evaluated using complementary biophysical techniques including Thioflavin T assay, turbidity assay, CD spectroscopy, and TEM imaging. Results revealed that the substitution of Trp, Leu, and Tyr together by Ala completely abolished aggregation of GDC6 in vitro, highlighting their importance in the amyloidogenicity of GDC6.


Assuntos
Catarata , Cristalino , gama-Cristalinas , Amiloide/biossíntese , Amiloide/metabolismo , Catarata/metabolismo , Humanos , Cristalino/metabolismo , Simulação de Dinâmica Molecular , Peptídeos/metabolismo , gama-Cristalinas/química
3.
Arch Biochem Biophys ; 714: 109077, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34728171

RESUMO

Neurodegenerative diseases are a group of debilitating maladies involving protein aggregation. To this day, all advances in neurodegenerative disease therapeutics have helped symptomatically but have not prevented the root cause of the disease, i.e., the aggregation of involved proteins. Antibiotics are becoming increasingly obsolete due to the rising multidrug resistance strains of bacteria. Thus, antibiotics, if put to different use as therapeutics against other diseases, could pave a new direction to the world of antibiotics. Hence, we studied the antibiotic levofloxacin for its potential anti-amyloidogenic behavior using human lysozyme, a protein involved in non-systemic amyloidosis, as a model system. At the sub-stoichiometric level, levofloxacin was able to inhibit amyloid formation in human lysozyme as observed by various spectroscopic and microscopic methods, with IC50 values as low as 8.8 ± 0.1 µM. Levofloxacin also displayed a retarding effect on seeding phenomena by elongating the lag-phase (from 0 to 88 h) at lower concentration, and arresting lysozyme fibrillation at the lag stage in sub-stoichiometric concentrations. Structural and computational analyses provided mechanistic insight showing that levofloxacin stabilizes the lysozyme in the native state by binding to the aggregation-prone residues, and thereby inhibiting amyloid fibrillation. Levofloxacin also showed the property of disrupting amyloid fibrils into a smaller polymeric form of proteins which were less cytotoxic as confirmed by hemolytic assay. Therefore, we throw new light on levofloxacin as an amyloid inhibitor and disruptor which could pave way to utilization of levofloxacin as a potential therapeutic against non-systemic amyloidosis and neurodegenerative diseases.


Assuntos
Amiloide/efeitos dos fármacos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Levofloxacino/farmacologia , Amiloide/biossíntese , Dicroísmo Circular , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação Puntual , Espectrometria de Fluorescência
4.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34452994

RESUMO

The generation of α-synuclein (α-syn) truncations from incomplete proteolysis plays a significant role in the pathogenesis of Parkinson's disease. It is well established that C-terminal truncations exhibit accelerated aggregation and serve as potent seeds in fibril propagation. In contrast, mechanistic understanding of N-terminal truncations remains ill defined. Previously, we found that disease-related C-terminal truncations resulted in increased fibrillar twist, accompanied by modest conformational changes in a more compact core, suggesting that the N-terminal region could be dictating fibril structure. Here, we examined three N-terminal truncations, in which deletions of 13-, 35-, and 40-residues in the N terminus modulated both aggregation kinetics and fibril morphologies. Cross-seeding experiments showed that out of the three variants, only ΔN13-α-syn (14‒140) fibrils were capable of accelerating full-length fibril formation, albeit slower than self-seeding. Interestingly, the reversed cross-seeding reactions with full-length seeds efficiently promoted all but ΔN40-α-syn (41-140). This behavior can be explained by the unique fibril structure that is adopted by 41-140 with two asymmetric protofilaments, which was determined by cryogenic electron microscopy. One protofilament resembles the previously characterized bent ß-arch kernel, comprised of residues E46‒K96, whereas in the other protofilament, fewer residues (E61‒D98) are found, adopting an extended ß-hairpin conformation that does not resemble other reported structures. An interfilament interface exists between residues K60‒F94 and Q62‒I88 with an intermolecular salt bridge between K80 and E83. Together, these results demonstrate a vital role for the N-terminal residues in α-syn fibril formation and structure, offering insights into the interplay of α-syn and its truncations.


Assuntos
Amiloide/biossíntese , alfa-Sinucleína/fisiologia , Acetilação , Amiloide/ultraestrutura , Domínio Catalítico , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Proteólise , alfa-Sinucleína/química
5.
J Biol Chem ; 296: 100510, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33676889

RESUMO

Polyphosphates (polyPs), chains of phosphate residues found in species across nature from bacteria to mammals, were recently reported to accelerate the amyloid fibril formation of many proteins. How polyPs facilitate this process, however, remains unknown. To gain insight into their mechanisms, we used various physicochemical approaches to examine the effects of polyPs of varying chain lengths on ultrasonication-dependent α-synuclein (α-syn) amyloid formation. Although orthophosphate and diphosphate exhibited a single optimal concentration of amyloid formation, triphosphate and longer-chain phosphates exhibited two optima, with the second at a concentration lower than that of orthophosphate or diphosphate. The second optimum decreased markedly as the polyP length increased. This suggested that although the optima at lower polyP concentrations were caused by interactions between negatively charged phosphate groups and the positive charges of α-syn, the optima at higher polyP concentrations were caused by the Hofmeister salting-out effects of phosphate groups, where the effects do not depend on the net charge. NMR titration experiments of α-syn with tetraphosphate combined with principal component analysis revealed that, at low tetraphosphate concentrations, negatively charged tetraphosphates interacted with positively charged "KTK" segments in four KTKEGV repeats located at the N-terminal region. At high concentrations, hydrated tetraphosphates affected the surface-exposed hydrophilic groups of compact α-syn. Taken together, our results suggest that long-chain polyPs consisting of 60 to 70 phosphates induce amyloid formation at sub-µM concentrations, which are comparable with the concentrations of polyPs in the blood or tissues. Thus, these findings may identify a role for polyPs in the pathogenesis of amyloid-related diseases.


Assuntos
Amiloide/biossíntese , Polifosfatos/farmacologia , Agregados Proteicos/efeitos dos fármacos , alfa-Sinucleína/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , alfa-Sinucleína/metabolismo
6.
J Neurochem ; 156(6): 957-966, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32852783

RESUMO

Patients with transthyretin (TTR)-type familial amyloid polyneuropathy (FAP) typically exhibit sensory dominant polyneuropathy and autonomic neuropathy. However, the molecular pathogenesis of the neuropathy remains unclear. In this study, we characterize the features of FAP TTR the substitution of lysine for glutamic acid at position 61 (E61K). This FAP was late-onset, with sensory dominant polyneuropathy, autonomic neuropathy, and cardiac amyloidosis. Interestingly, no amyloid deposits were found in the endoneurium of the four nerve specimens examined. Therefore, we examined the amyloidogenic properties of E61K TTR in vitro. Recombinant wild-type TTR, the substitution of methionine for valine at position 30 (V30M) TTR, and E61K TTR proteins were incubated at 37°C for 72 hr, and amyloid fibril formation was assessed using the thioflavin-T binding assay. Amyloid fibril formation by E61K TTR was less than that by V30M TTR, and similar to that by wild-type TTR. E61K TTR did not have an inhibitory effect on neurite outgrowth from adult rat dorsal root ganglion (DRG) neurons, but V30M TTR did. Furthermore, we studied the sural nerve of our patient by terminal deoxynucleotidyl transferase dUTP nick end labeling and electron microscopy. A number of apoptotic cells were observed in the endoneurium of the nerve by transferase dUTP nick end labeling. Chromatin condensation was confirmed in the nucleus of non-myelinating Schwann cells by electron microscopy. These findings suggest that E61K TTR is low amyloidogenic, in vitro and in vivo. However, TTR aggregates and amyloid fibrils in the DRG may cause sensory impairments in FAP because the DRG has no blood-nerve barrier. Moreover, Schwann cell apoptosis may contribute to the neurodegeneration.


Assuntos
Neuropatias Amiloides Familiares/genética , Amiloide/biossíntese , Pré-Albumina/genética , Substituição de Aminoácidos , Amiloide/genética , Amiloidose/patologia , Animais , Apoptose , Cristalografia por Raios X , Humanos , Mutação , Nervos Periféricos/patologia , Placa Amiloide/patologia , Pré-Albumina/química , Ratos , Ratos Wistar , Proteínas Recombinantes/farmacologia , Células de Schwann/metabolismo , Nervo Sural/patologia
7.
J Gerontol A Biol Sci Med Sci ; 76(1): 23-31, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32154567

RESUMO

The accumulation of amyloid-ß (Aß) is a characteristic event in the pathogenesis of Alzheimer's disease (AD). Aquaporin 1 (AQP1) is a membrane water channel protein belonging to the AQP family. AQP1 levels are elevated in the cerebral cortex during the early stages of AD, but the role of AQP1 in AD pathogenesis is unclear. We first determined the expression and distribution of AQP1 in brain tissue samples of AD patients and two AD mouse models (3xTg-AD and 5xFAD). AQP1 accumulation was observed in vulnerable neurons in the cerebral cortex of AD patients, and in neurons affected by the Aß or tau pathology in the 3xTg-AD and 5xFAD mice. AQP1 levels increased in neurons as aging progressed in the AD mouse models. Stress stimuli increased AQP1 in primary cortical neurons. In response to cellular stress, AQP1 appeared to translocate to endocytic compartments of ß- and γ-secretase activities. Ectopic expression of AQP1 in human neuroblastoma cells overexpressing amyloid precussir protein (APP) with the Swedish mutations reduced ß-secretase (BACE1)-mediated cleavage of APP and reduced Aß production without altering the nonamyloidogenic pathway. Conversely, knockdown of AQP1 enhanced BACE1 activity and Aß production. Immunoprecipitation experiments showed that AQP1 decreased the association of BACE1 with APP. Analysis of a human database showed that the amount of Aß decreases as the expression of AQP1 increases. These results suggest that the upregulation of AQP1 is an adaptive response of neurons to stress that reduces Aß production by inhibiting the binding between BACE1 and APP.


Assuntos
Secretases da Proteína Precursora do Amiloide/fisiologia , Precursor de Proteína beta-Amiloide/fisiologia , Amiloide/biossíntese , Aquaporina 1/fisiologia , Doença de Alzheimer/metabolismo , Animais , Aquaporina 1/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Neurônios/metabolismo
8.
J Neuroimmune Pharmacol ; 16(1): 159-168, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-31338753

RESUMO

Antiretroviral therapeutics (ART) have effectively increased the long-term survival of HIV-1 infected individuals. However, the prevalence of HIV-1 associated neurocognitive disorders (HAND) has increased and so too have clinical manifestations and pathological features of Alzheimer's disease (AD) in people living with HIV-1/AIDS. Although underlying mechanisms are not clear, chronic exposure to ART drugs has been implicated in the development of AD-like symptoms and pathology. ART drugs are categorized according to their mechanism of action in controlling HIV-1 levels. All ART drugs are organic compounds that can be classified as being either weak acids or weak bases, and these physicochemical properties may be of central importance to ART drug-induced AD-like pathology because weak bases accumulate in endolysosomes, weak bases can de-acidify endolysosomes where amyloidogenesis occurs, and endolysosome de-acidification increases amyloid beta (Aß) protein production and decreases Aß degradation. Here, we investigated the effects of ART drugs on endolysosome pH and Aß levels in rat primary cultured neurons. ART drugs that de-acidified endolysosomes increased Aß levels, whereas those that acidified endolysosomes decreased Aß levels. Acidification of endolysosomes with the mucolipin transient receptor potential (TRPML) channel agonist ML-SA1 blocked ART drug-induced increases in Aß levels. Further, ART drug-induced endolysosome de-acidification increased endolysosome sizes; effects that were blocked by ML-SA1-induced endolysosome acidification. These results suggest that ART drug-induced endolysosome de-acidification plays an important role in ART drug-induced amyloidogenesis and that endolysosome acidification might attenuate AD-like pathology in HIV-1 positive people taking ART drugs that de-acidify endolysosomes. Graphical Abstract.


Assuntos
Amiloide/biossíntese , Amiloidose/induzido quimicamente , Fármacos Anti-HIV/farmacologia , Endossomos/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Amiloide/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Fármacos Anti-HIV/uso terapêutico , Linhagem Celular Tumoral , Células Cultivadas , Cloroquina/farmacologia , Endossomos/química , Hipocampo/citologia , Humanos , Concentração de Íons de Hidrogênio , Microscopia Intravital , Lisossomos/química , Neuroblastoma/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteólise/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
9.
J Neurochem ; 156(6): 802-818, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33155274

RESUMO

The liver-derived, circulating transport protein transthyretin (TTR) is the cause of systemic hereditary (ATTRv) and wild-type (ATTRwt) amyloidosis. TTR stabilization and knockdown are approved therapies to mitigate the otherwise lethal disease course. To date, the variety in phenotypic penetrance is not fully understood. This systematic review summarizes the current literature on TTR pathophysiology with its therapeutic implications. Tetramer dissociation is the rate-limiting step of amyloidogenesis. Besides destabilizing TTR mutations, other genetic (RBP4, APCS, AR, ATX2, C1q, C3) and external (extracellular matrix, Schwann cell interaction) factors influence the type of onset and organ tropism. The approved small molecule tafamidis stabilizes the tetramer and significantly decelerates the clinical course. By sequence-specific mRNA knockdown, the approved small interfering RNA (siRNA) patisiran and antisense oligonucleotide (ASO) inotersen both significantly reduce plasma TTR levels and improve neuropathy and quality of life compared to placebo. With enhanced hepatic targeting capabilities, GalNac-conjugated siRNA and ASOs have recently entered phase III clinical trials. Bivalent TTR stabilizers occupy both binding groves in vitro, but have not been tested in trials so far. Tolcapone is another stabilizer with the potential to cross the blood-brain barrier, but its half-life is short and liver failure a potential side effect. Amyloid-directed antibodies and substances like doxycycline aim at reducing the amyloid load, however, none of the yet developed antibodies has successfully passed clinical trials. ATTR-amyloidosis has become a model disease for pathophysiology-based treatment. Further understanding of disease mechanisms will help to overcome the remaining limitations, including application burden, side effects, and blood-brain barrier permeability.


Assuntos
Amiloidose Familiar/tratamento farmacológico , Amiloidose Familiar/genética , Pré-Albumina/efeitos dos fármacos , Amiloide/antagonistas & inibidores , Amiloide/biossíntese , Amiloide/genética , Amiloidose Familiar/fisiopatologia , Animais , Técnicas de Silenciamento de Genes , Humanos , Pré-Albumina/genética
10.
J Med Chem ; 63(23): 14228-14242, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32914975

RESUMO

Transthyretin (TTR) is a homotetrameric protein in human plasma. The dissociation of the TTR tetramer and misfolding of the TTR monomer result in the formation of amyloid fibrils. Hereditary TTR amyloidosis is characterized by the extracellular deposition of amyloid fibrils containing TTR variants. The development of small molecules that kinetically stabilize the TTR tetramer is one of the effective strategies for the treatment of hereditary TTR amyloidosis. So far, several stabilizers have been discovered. Tafamidis is the only approved stabilizer for treatment of hereditary TTR amyloidosis, although two nucleic acid medicines that inhibit TTR synthesis, inotersen and patisiran, were recently approved for treatment of this disorder. In this Perspective, we seek to describe the representative kinetic stabilizers from discovery to development, interweaving the crystallographic study of the complex structures.


Assuntos
Amiloide/antagonistas & inibidores , Pré-Albumina/antagonistas & inibidores , Amiloide/biossíntese , Cristalografia por Raios X , Descoberta de Drogas , Humanos , Estrutura Molecular
11.
Biochimie ; 177: 153-163, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32860895

RESUMO

The aggregation of islet amyloid polypeptide (IAPP) is implicated in the pathogenesis of type 2 diabetes (T2D). In T2D, this peptide aggregates to form amyloid fibrils; the mechanism responsible for islet amyloid formation is unclear. However, it is known that the aggregation propensity of IAPP is highly related to its primary sequence. Several residues have been suggested to be critical in modulating IAPP amyloid formation, but role of the sole lysine residue at position 1 (Lys-1) in IAPP has not been discussed. In our previous study, we found that glycated IAPP can form amyloid faster than normal IAPP and induce normal IAPP to expedite the aggregation process. To gain more insight into the contribution of Lys-1 in the kinetics of fibril formation, we synthesized another two IAPP variants, K1E-IAPP and K1Nle-IAPP, in which the Lys residue was mutated to glutamate and norleucine, respectively. Interestingly, we observed that the negative or neutral charged side chain at this position was preferred for amyloid formation. The findings suggested this residue may take part in the inter- or intra-molecular interaction during IAPP aggregation, even though it was proposed not to be in part of fibril core structure. Our data also revealed that the inhibitory mechanism of some inhibitors for IAPP aggregation require reaction with Lys-1. Modifications of Lys-1, such as protein glycation, may affect the effectiveness of the inhibitory action of some potential drugs in the treatment of amyloidosis.


Assuntos
Amiloide/biossíntese , Amiloidose/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Lisina/química , Lisina/metabolismo , Sequência de Aminoácidos , Amiloide/antagonistas & inibidores , Amiloide/ultraestrutura , Membrana Celular/metabolismo , Análise Mutacional de DNA , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/antagonistas & inibidores , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Cinética , Lipídeos de Membrana/metabolismo , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Polifenóis/farmacologia , Agregados Proteicos/efeitos dos fármacos , Ligação Proteica
12.
Biophys Chem ; 263: 106391, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32413599

RESUMO

The misfolding of protein and its assembly into amyloid fibrils with a characteristic ß-sheet-rich secondary structure, cause a lot of illnesses. Polyphenols have been extensively studied as a class of amyloid inhibitors, whose effect depends on the position and number of hydroxyl groups around the flavone backbone. In this study, we used bovine serum albumin (BSA) as an amyloid model to test the anti-amyloid effects of Avenanthramide-C (Avn-C), a molecule with a long aliphatic linker between two aromatic rings. We used spectroscopy techniques like thioflavin T fluorescence and circular dichroism, to follow the ß-sheet-rich aggregates of BSA upon incubation at 68 °C. Our results demonstrated that Avn-C shows higher inhibitory effect on BSA oligomerization at micromolar concentrations, than Epigallocatechin gallate (EGCG) and Curcumin, proving for the first time, that Avn-C can serve as potential molecule in preventing protein aggregation.


Assuntos
Amiloide/biossíntese , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/prevenção & controle , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , ortoaminobenzoatos/farmacologia , Animais , Bovinos , Estrutura Molecular , ortoaminobenzoatos/química
13.
Arch Pathol Lab Med ; 144(3): 379-387, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31697170

RESUMO

CONTEXT.­: Amyloidosis is an uncommon but important entity. A protein-based classification of amyloidosis defines the underlying disease process, directing clinical management and providing prognostic information. However, in routine surgical pathology there often is no attempt to classify amyloid other than staining to determine light chain-associated amyloidosis. Systemic and localized amyloidosis vary with respect to frequency of organ involvement by different amyloid types, and most amyloid proteins have commercial antibodies available for identification. OBJECTIVE.­: To provide a guide for the likelihood of amyloid type by organ system. DATA SOURCES.­: Literature review based on PubMed searches containing the word amyloid, specifically addressing the prevalence and significance of amyloid proteins in each organ system other than the brain, and the authors' practice experience. CONCLUSIONS.­: In patients with amyloidosis, determination of the responsible protein is critical for appropriate patient care. In large subspecialty practices and reference laboratories with experience in using and analyzing relevant immunohistochemistry, most amyloid proteins can be identified with an organ-specific algorithm. Referring to an organ-based algorithm may be helpful in providing clinicians with a more specific differential diagnosis regarding amyloid type to help guide clinical evaluation and treatment. When the protein cannot be characterized, mass spectrometry can be performed to definitively classify the amyloid type.


Assuntos
Amiloide/biossíntese , Amiloidose/metabolismo , Trato Gastrointestinal/metabolismo , Imuno-Histoquímica/métodos , Patologia Cirúrgica/métodos , Amiloide/classificação , Amiloidose/diagnóstico , Osso e Ossos/metabolismo , Diagnóstico Diferencial , Humanos , Rim/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Miocárdio/metabolismo , Especificidade de Órgãos , Sistema Nervoso Periférico/metabolismo
14.
Arch Biochem Biophys ; 675: 108113, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31568752

RESUMO

Transactive Response DNA-Binding Protein of 43 kDa (TDP-43) is an essential human protein implicated in Amyotrophic Lateral Sclerosis (ALS) and common dementias. Its C-terminal disordered region, composed of residues 264-414 includes a hydrophobic segment (residues 320-340), which drives physiological liquid/liquid phase separation and a Q/N-rich segment (residues 341-357), which is essential for pathological amyloid formation. Due to TDP-43's relevance for pathology, identifying inhibitors and characterizing their mechanism of action are important pharmacological goals. The Polyglutamine Binding Peptide 1 (QBP1), whose minimal active core is the octapeptide WGWWPGIF, strongly inhibits the aggregation of polyQ-containing amyloidogenic proteins such as Huntingtin. Rather promiscuous, this inhibitor also blocks the aggregation of other glutamine containing amyloidogenic proteins, but not Aß, and its mechanism of action remains unknown. Using a series of spectroscopic assays and biochemical tests, we establish that QBP1 binds and inhibits amyloid formation by TDP-43's Q/N-rich region. NMR spectroscopic data evince that the aromatic rings of QBP1 accept hydrogen bonds from the HN groups of the Asn and Gln to block amyloidogenesis. This mechanism of blockage may be general to polyphenol amyloid inhibitors.


Assuntos
Amiloide/biossíntese , Proteínas de Ligação a DNA/antagonistas & inibidores , Oligopeptídeos/fisiologia , Sequência de Aminoácidos , Proteínas de Ligação a DNA/metabolismo , Fluorescência , Humanos , Oligopeptídeos/química
15.
Protein Eng Des Sel ; 32(2): 67-76, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31504890

RESUMO

Aggregation of islet amyloid polypeptide (IAPP) into islet amyloid results in ß-cell toxicity in human type 2 diabetes. To determine the effect of islet amyloid formation on gene expression, we performed ribonucleic acid (RNA) sequencing (RNA-seq) analysis using cultured islets from either wild-type mice (mIAPP), which are not amyloid prone, or mice that express human IAPP (hIAPP), which develop amyloid. Comparing mIAPP and hIAPP islets, 5025 genes were differentially regulated (2439 upregulated and 2586 downregulated). When considering gene sets (reactomes), 248 and 52 pathways were up- and downregulated, respectively. Of the top 100 genes upregulated under two conditions of amyloid formation, seven were common. Of these seven genes, only steroidogenic acute regulatory protein (Star) demonstrated no effect of glucose per se to modify its expression. We confirmed this differential gene expression using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and also demonstrated the presence of STAR protein in islets containing amyloid. Furthermore, Star is a part of reactomes representing metabolism, metabolism of lipids, metabolism of steroid hormones, metabolism of steroids and pregnenolone biosynthesis. Thus, examining gene expression that is differentially regulated by islet amyloid has the ability to identify new molecules involved in islet physiology and pathology applicable to type 2 diabetes.


Assuntos
Amiloide/biossíntese , Ilhotas Pancreáticas/metabolismo , Fosfoproteínas/genética , RNA-Seq , Regulação para Cima , Animais , Relação Dose-Resposta a Droga , Glucose/farmacologia , Humanos , Ilhotas Pancreáticas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Regulação para Cima/efeitos dos fármacos
16.
J Comp Pathol ; 166: 54-58, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30691607

RESUMO

A 13-year-old female miniature dachshund was presented with a centrally-located sublingual mass in the rostral mandibular region. The focally ulcerated growth completely covered the left (305) and right (405) premolar teeth and partially covered the right canine teeth (404). A punch biopsy sample revealed neoplastic proliferation of odontogenic epithelium arranged in irregular cords with frequent comedo-like necrosis. Following the initial diagnosis of ameloblastic carcinoma, a bilateral rostral hemimandibulectomy was performed. Although the detailed examination of the resected mass was consistent with the initial diagnosis, it also contained birefringent congophilic, amelogenin-labelled amyloid deposits similar to an amyloid-producing odontogenic tumour (APOT) in 30-40% of the mass, in continuity with the ameloblastic carcinoma. All neoplastic cells had diffuse moderate expression of cytokeratin (CK) AE1/AE3 and CK5, diffuse mild expression of CK14 and multifocal moderate expression of CK19. Because the APOT-like growth in the mass was histologically benign, the tumour was diagnosed as an ameloblastic carcinoma arising from an APOT.


Assuntos
Ameloblastoma/veterinária , Amiloide/biossíntese , Doenças do Cão/patologia , Neoplasias Mandibulares/veterinária , Neoplasias Primárias Múltiplas/veterinária , Tumores Odontogênicos/veterinária , Animais , Cães , Feminino , Imuno-Histoquímica
17.
Aging Cell ; 18(1): e12864, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30411846

RESUMO

Amyloid-ß (Aß) peptides, the major constituent of plaques, are generated by sequential proteolytic cleavage of the amyloid precursor protein (APP) via ß-secretase (BACE1) and the γ-secretase complex. It has been proposed that the abnormal secretion and accumulation of Aß are the initial causative events in the development of Alzheimer's disease (AD). Drugs modulating this pathway could be used for AD treatment. Previous studies indicated that carbon monoxide (CO), a product of heme oxygenase (HO)-1, protects against Aß-induced toxicity and promotes neuroprotection. However, the mechanism underlying the mitigative effect of CO on Aß levels and BACE1 expression is unclear. Here, we show that CO modulates cleavage of APP and Aß production by decreasing BACE1 expression in vivo and in vitro. CO reduces Aß levels and improves memory deficits in AD transgenic mice. The regulation of BACE1 expression by CO is dependent on nuclear factor-kappa B (NF-κB). Consistent with the negative role of SIRT1 in the NF-κB activity, CO fails to evoke significant decrease in BACE1 expression in the presence of the SIRT1 inhibitor. Furthermore, CO attenuates elevation of BACE1 level in brains of 3xTg-AD mouse model as well as mice fed high-fat, high-cholesterol diets. CO reduces the NF-κB-mediated transcription of BACE1 induced by the cholesterol oxidation product 27-hydroxycholesterol or hydrogen peroxide. These data suggest that CO reduces the NF-κB-mediated BACE1 transcription and consequently decreases Aß production. Our study provides novel mechanisms by which CO reduces BACE1 expression and Aß production and may be an effective agent for AD treatment.


Assuntos
Secretases da Proteína Precursora do Amiloide/genética , Amiloide/biossíntese , Ácido Aspártico Endopeptidases/genética , Monóxido de Carbono/farmacologia , Regulação para Baixo/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , NF-kappa B/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Linhagem Celular Tumoral , Colesterol na Dieta , Dieta Hiperlipídica , Humanos , Hidroxicolesteróis/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estresse Oxidativo/efeitos dos fármacos , Sirtuína 1/metabolismo , Transcrição Gênica/efeitos dos fármacos
18.
Basic Clin Pharmacol Toxicol ; 124(2): 211-227, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30168672

RESUMO

Multi-walled carbon nanotubes (MWCNT) are widely used nanomaterials that cause pulmonary toxicity upon inhalation. The physicochemical properties of MWCNT vary greatly, which makes general safety evaluation challenging to conduct. Identification of the toxicity-inducing physicochemical properties of MWCNT is therefore of great importance. We have evaluated histological changes in lung tissue 1 year after a single intratracheal instillation of 11 well-characterized MWCNT in female C57BL/6N BomTac mice. Genotoxicity in liver and spleen was evaluated by the comet assay. The dose of 54 µg MWCNT corresponds to three times the estimated dose accumulated during a work life at a NIOSH recommended exposure limit (0.001 mg/m3 ). Short and thin MWCNT were observed as agglomerates in lung tissue 1 year after exposure, whereas thicker and longer MWCNT were detected as single fibres, suggesting biopersistence of both types of MWCNT. The thin and entangled MWCNT induced varying degree of pulmonary inflammation, in terms of lymphocytic aggregates, granulomas and macrophage infiltration, whereas two thick and straight MWCNT did not. By multiple regression analysis, larger diameter and higher content of iron predicted less histopathological changes, whereas higher cobalt content significantly predicted more histopathological changes. No MWCNT-related fibrosis or tumours in the lungs or pleura was found. One thin and entangled MWCNT induced increased levels of DNA strand breaks in liver; however, no physicochemical properties could be related to genotoxicity. This study reveals physicochemical-dependent difference in MWCNT-induced long-term, pulmonary histopathological changes. Identification of diameter size and cobalt content as important for MWCNT toxicity provides clues for designing MWCNT, which cause reduced human health effects following pulmonary exposure.


Assuntos
Pulmão/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Pneumonia/induzido quimicamente , Amiloide/biossíntese , Animais , Comportamento Animal/efeitos dos fármacos , DNA/genética , Dano ao DNA , Feminino , Granuloma/sangue , Granuloma/induzido quimicamente , Granuloma/genética , Granuloma/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Testes de Mutagenicidade , Pneumonia/sangue , Pneumonia/genética , Pneumonia/patologia , Baço/efeitos dos fármacos , Baço/patologia
19.
Sci Rep ; 8(1): 17283, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30470780

RESUMO

Amyloids are highly organized fibril aggregates arise from inappropriately folded form of the protein or polypeptide precursors under both physiological as well as simulated ambience. Amyloid synthesis is a multistep process that involves formation of several metastable intermediates. Among various intermediate species, the as-formed soluble oligomers are extremely toxic to the neuronal cells. In the present study, we evaluated cyclosporine A (CsA), an undecapeptide, for its potential to prevent aggregation of model protein ovalbumin (OVA). In an attempt to elucidate involved operative mechanism, the preliminary studies delineate that CsA affects both primary nucleation as well as other secondary pathways involved in OVA fibrillation process. By its specific interaction with amyloid intermediates, the cyclic peptide CsA seems to regulate the lag phase of the fibrillation process in concentration dependent manner. The present study further suggests that exposure to CsA during lag phase ensues in reversal of OVA fibrillation process. On the contrary, mature OVA fibril remained impervious to the CsA treatment. The cyclic undecapeptide CsA was also found to successfully alleviate amyloid induced toxicity in neuroblastoma cells.


Assuntos
Amiloide/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Ciclosporina/farmacologia , Neuroblastoma/tratamento farmacológico , Ovalbumina/química , Peptídeos Cíclicos/farmacologia , Agregação Patológica de Proteínas/prevenção & controle , Amiloide/efeitos adversos , Amiloide/biossíntese , Ciclosporina/química , Humanos , Imunossupressores/química , Imunossupressores/farmacologia , Neuroblastoma/etiologia , Neuroblastoma/patologia , Células Tumorais Cultivadas
20.
J Biol Chem ; 293(38): 14775-14785, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30077972

RESUMO

Several serious diseases are associated with crystal-like amyloid fibrils or glass-like amorphous aggregates of denatured proteins. However, protein aggregation involving both types of aggregates has not yet been elucidated in much detail. Using a protein associated with dialysis-related amyloidosis, ß2-microglobulin (ß2m), we previously demonstrated that amyloid fibrils and amorphous aggregates form competitively depending on salt (NaCl) concentration. To examine the generality of the underlying competitive mechanisms, we herein investigated the effects of heat on acid-denatured ß2m at pH 2. Using thioflavin fluorescence, CD, and light scattering analysis along with atomic force microscopy imaging, we found that the temperature-dependent aggregation of ß2m markedly depends on NaCl concentration. Stepwise transitions from monomers to amyloids and then back to monomers were observed at low NaCl concentrations. Amorphous aggregates formed rapidly at ambient temperatures at high NaCl concentrations, but the transition from amorphous aggregates to amyloids occurred only as the temperature increased. Combining the data from the temperature- and NaCl-dependent transitions, we constructed a unified phase diagram of conformational states, indicating a parabolic solubility curve with a minimum NaCl concentration at ambient temperatures. Although amyloid fibrils formed above this solubility boundary, amorphous aggregates dominated in regions distant from this boundary. Kinetic competition between supersaturation-limited slow amyloid fibrillation and supersaturation-unlimited fast amorphous aggregation deformed the phase diagram, with amyloid regions disappearing with fast titration rates. We conclude that phase diagrams combining thermodynamics and kinetics data provide a comprehensive view of ß2m aggregation exhibiting severe hysteresis depending on the heat- or salt-titration rates.


Assuntos
Amiloide/biossíntese , Cloreto de Sódio/química , Temperatura , Microglobulina beta-2/metabolismo , Amiloide/química , Animais , Células Cultivadas , Dicroísmo Circular , Feminino , Fluorescência , Cinética , Masculino , Camundongos Endogâmicos C57BL , Microscopia de Força Atômica , Transição de Fase , Ligação Proteica , Solubilidade , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA