Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Neurophysiol ; 131(1): 124-136, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38116604

RESUMO

Previous work has shown that activation of tiger salamander retinal radial glial cells by extracellular ATP induces a pronounced extracellular acidification, which has been proposed to be a potent modulator of neurotransmitter release. This study demonstrates that low micromolar concentrations of extracellular ATP similarly induce significant H+ effluxes from Müller cells isolated from the axolotl retina. Müller cells were enzymatically isolated from axolotl retina and H+ fluxes were measured from individual cells using self-referencing H+-selective microelectrodes. The increased H+ efflux from axolotl Müller cells induced by extracellular ATP required activation of metabotropic purinergic receptors and was dependent upon calcium released from internal stores. We further found that the ATP-evoked increase in H+ efflux from Müller cells of both tiger salamander and axolotl were sensitive to pharmacological agents known to interrupt calmodulin and protein kinase C (PKC) activity: chlorpromazine (CLP), trifluoperazine (TFP), and W-7 (all calmodulin inhibitors) and chelerythrine, a PKC inhibitor, all attenuated ATP-elicited increases in H+ efflux. ATP-initiated H+ fluxes of axolotl Müller cells were also significantly reduced by amiloride, suggesting a significant contribution by sodium-hydrogen exchangers (NHEs). In addition, α-cyano-4-hydroxycinnamate (4-cin), a monocarboxylate transport (MCT) inhibitor, also reduced the ATP-induced increase in H+ efflux in both axolotl and tiger salamander Müller cells, and when combined with amiloride, abolished ATP-evoked increase in H+ efflux. These data suggest that axolotl Müller cells are likely to be an excellent model system to understand the cell-signaling pathways regulating H+ release from glia and the role this may play in modulating neuronal signaling.NEW & NOTEWORTHY Glial cells are a key structural part of the tripartite synapse and have been suggested to regulate synaptic transmission, but the regulatory mechanisms remain unclear. We show that extracellular ATP, a potent glial cell activator, induces H+ efflux from axolotl retinal Müller (glial) cells through a calcium-dependent pathway that is likely to involve calmodulin, PKC, Na+/H+ exchange, and monocarboxylate transport, and suggest that such H+ release may play a key role in modulating neuronal transmission.


Assuntos
Ambystoma mexicanum , Células Ependimogliais , Animais , Células Ependimogliais/metabolismo , Ambystoma mexicanum/metabolismo , Calmodulina/metabolismo , Cálcio/metabolismo , Amilorida/metabolismo , Trifosfato de Adenosina/metabolismo , Neuroglia/metabolismo , Retina
2.
Biochem Biophys Res Commun ; 687: 149187, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37944472

RESUMO

Sodium influx carried out by ion channels is one of the main regulators of water-salt and volume balance in cells of blood origin. Previously, we described amiloride-insensitive ENaC-like channels in human myeloid leukemia K562 cells; the intracellular regulatory mechanisms of the channels are associated with actin cytoskeleton dynamics. Recently, an extracellular mechanism of ENaC-like channels activation in K562 cells by the action of serine protease trypsin has been revealed. The other extracellular pathways that modulate ENaC (epithelial Na+ channel) activity and sodium permeability in transformed blood cells are not yet fully investigated. Here, we study the action of capsazepine (CPZ), as δ-ENaC activator, on single channel activity in K562 cells in whole-cell patch clamp experiments. Addition of CPZ (2 µM) to the extracellular solution caused an activation of sodium channels with typical features; unitary conductance was 15.1 ± 0.8 pS. Amiloride derivative benzamil (50 µM) did not inhibit their activity. Unitary currents and conductance of CPZ-activated channels were higher in Na+-containing extracellular solution than in Li+, that is one of the main fingerprints of δ-ENaC. The results of RT-PCR analysis and immunofluorescence staining also confirmed the expression of δ-hENaC (as well as α-, ß-, γ-ENaC) at the mRNA and protein level. These findings allow us to speculate that CPZ activates amiloride-insensitive ENaC-like channels that contain δ-ENaC in К562 cells. Our data reveal a novel extracellular mechanism for ENaC-like activation in human leukemia cells.


Assuntos
Amilorida , Leucemia Mieloide , Humanos , Amilorida/farmacologia , Amilorida/metabolismo , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Leucemia Mieloide/metabolismo , Sódio/metabolismo , Oócitos/metabolismo
3.
J Med Chem ; 65(3): 1933-1945, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34898192

RESUMO

The urokinase plasminogen activator (uPA) plays a critical role in tumor cell invasion and migration and is a promising antimetastasis target. 6-Substituted analogues of 5-N,N-(hexamethylene)amiloride (HMA) are potent and selective uPA inhibitors that lack the diuretic and antikaliuretic properties of the parent drug amiloride. However, the compounds display pronounced selectivity for human over mouse uPA, thus confounding interpretation of data from human xenograft mouse models of cancer. Here, computational and experimental findings reveal that residue 99 is a key contributor to the observed species selectivity, whereby enthalpically unfavorable expulsion of a water molecule by the 5-N,N-hexamethylene ring occurs when residue 99 is Tyr (as in mouse uPA). Analogue 7 lacking the 5-N,N-hexamethylene ring maintained similar water networks when bound to human and mouse uPA and displayed reduced selectivity, thus supporting this conclusion. The study will guide further optimization of dual-potent human/mouse uPA inhibitors from the amiloride class as antimetastasis drugs.


Assuntos
Amilorida/análogos & derivados , Inibidores Enzimáticos/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Água/química , Amilorida/química , Amilorida/metabolismo , Animais , Inibidores Enzimáticos/química , Humanos , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Mutação , Ligação Proteica , Especificidade da Espécie , Termodinâmica , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
4.
Chem Senses ; 45(4): 235-248, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32006019

RESUMO

Salt taste is one of the 5 basic taste qualities. Depending on the concentration, table salt is perceived either as appetitive or aversive, suggesting the contribution of several mechanisms to salt taste, distinguishable by their sensitivity to the epithelial sodium channel (ENaC) blocker amiloride. A taste-specific knockout of the α-subunit of the ENaC revealed the relevance of this polypeptide for low-salt transduction, whereas the response to other taste qualities remained normal. The fully functional ENaC is composed of α-, ß-, and γ-subunits. In taste tissue, however, the precise constitution of the channel and the cell population responsible for detecting table salt remain uncertain. In order to examine the cells and subunits building the ENaC, we generated mice carrying modified alleles allowing the synthesis of green and red fluorescent proteins in cells expressing the α- and ß-subunit, respectively. Fluorescence signals were detected in all types of taste papillae and in taste buds of the soft palate and naso-incisor duct. However, the lingual expression patterns of the reporters differed depending on tongue topography. Additionally, immunohistochemistry for the γ-subunit of the ENaC revealed a lack of overlap between all potential subunits. The data suggest that amiloride-sensitive recognition of table salt is unlikely to depend on the classical ENaCs formed by α-, ß-, and γ-subunits and ask for a careful investigation of the channel composition.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Papilas Gustativas/metabolismo , Amilorida/metabolismo , Animais , Clonagem Molecular , Técnicas de Introdução de Genes , Técnicas de Genotipagem , Humanos , Rim , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Conformação Proteica , Paladar , Papilas Gustativas/citologia , Percepção Gustatória , Distribuição Tecidual
5.
J Med Chem ; 59(10): 4769-77, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27124340

RESUMO

The sodium ion site is an allosteric site conserved among many G protein-coupled receptors (GPCRs). Amiloride 1 and 5-(N,N-hexamethylene)amiloride 2 (HMA) supposedly bind in this sodium ion site and can influence orthosteric ligand binding. The availability of a high-resolution X-ray crystal structure of the human adenosine A2A receptor (hA2AAR), in which the allosteric sodium ion site was elucidated, makes it an appropriate model receptor for investigating the allosteric site. In this study, we report the synthesis and evaluation of novel 5'-substituted amiloride derivatives as hA2AAR allosteric antagonists. The potency of the amiloride derivatives was assessed by their ability to displace orthosteric radioligand [(3)H]4-(2-((7-amino-2-(furan-2-yl)-[1,2,4]triazolo[1,5-a]-[1,3,5]triazin-5-yl)amino)ethyl)phenol ([(3)H]ZM-241,385) from both the wild-type and sodium ion site W246A mutant hA2AAR. 4-Ethoxyphenethyl-substituted amiloride 12l was found to be more potent than both amiloride and HMA, and the shift in potency between the wild-type and mutated receptor confirmed its likely binding to the sodium ion site.


Assuntos
Antagonistas do Receptor A2 de Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/farmacologia , Regulação Alostérica/efeitos dos fármacos , Amilorida/metabolismo , Amilorida/farmacologia , Receptor A2A de Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/síntese química , Antagonistas do Receptor A2 de Adenosina/química , Sítio Alostérico/efeitos dos fármacos , Amilorida/síntese química , Amilorida/química , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
6.
Chem Senses ; 39(6): 515-28, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24846212

RESUMO

Genetic ablation of calcium homeostasis modulator 1 (CALHM1), which releases adenosine triphosphate from Type 2 taste cells, severely compromises the behavioral and electrophysiological responses to tastes detected by G protein-coupled receptors, such as sweet and bitter. However, the contribution of CALHM1 to salty taste perception is less clear. Here, we evaluated several salty taste-related phenotypes of CALHM1 knockout (KO) mice and their wild-type (WT) controls: 1) In a conditioned aversion test, CALHM1 WT and KO mice had similar NaCl avoidance thresholds. 2) In two-bottle choice tests, CALHM1 WT mice showed the classic inverted U-shaped NaCl concentration-preference function but CALHM1 KO mice had a blunted peak response. 3) In brief-access tests, CALHM1 KO mice showed less avoidance than did WT mice of high concentrations of NaCl, KCl, NH(4)Cl, and sodium lactate (NaLac). Amiloride further ameliorated the NaCl avoidance of CALHM1 KO mice, so that lick rates to a mixture of 1000 mM NaCl + 10 µM amiloride were statistically indistinguishable from those to water. 4) Relative to WT mice, CALHM1 KO mice had reduced chorda tympani nerve activity elicited by oral application of NaCl, NaLac, and sucrose but normal responses to HCl and NH(4)Cl. Chorda tympani responses to NaCl and NaLac were amiloride sensitive in WT but not KO mice. These results reinforce others demonstrating that multiple transduction pathways make complex, concentration-dependent contributions to salty taste perception. One of these pathways depends on CALHM1 to detect hypertonic NaCl in the mouth and signal the aversive taste of concentrated salt.


Assuntos
Canais de Cálcio/genética , Sais/metabolismo , Paladar , Amilorida/metabolismo , Animais , Canais de Cálcio/metabolismo , Nervo da Corda do Tímpano/fisiologia , Feminino , Preferências Alimentares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Cloreto de Potássio/metabolismo , Cloreto de Sódio/metabolismo , Lactato de Sódio/metabolismo , Papilas Gustativas/fisiologia , Percepção Gustatória
7.
Neurogastroenterol Motil ; 23(11): 1007-12, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21848627

RESUMO

BACKGROUND: Disturbance in fluid secretion, driven by chloride secretion, might play a role in constipation. However, disturbed chloride secretion in those patients has yet to be evaluated. Therefore, the aim of this study was to compare chloride secretion in rectal biopsies of children with functional constipation (FC) to those without constipation. METHODS: To measure changes in short circuit current (I(sc) in µA cm(-2)) reflecting chloride secretion, intestinal biopsies from children with constipation, to either exclude or diagnose Hirschsprung's disease, and from children without constipation (controls) undergoing colonoscopy for screening of familial adenomatous polyposis, juvenile polyps or inflammatory bowel disease (IBD), were compared and studied in Ussing chambers. Following electrogenic sodium absorption blockade by amiloride, chloride secretory responses to calcium-linked (histamine, carbachol) and cAMP-linked (IBMX/forskolin) secretagogues were assessed. KEY RESULTS: Ninety-six patients (46 FC) participated; nine FC patients (n = 1 congenital syndrome and n = 8 technical problems) and 13 controls (n = 6 IBD; n = 7 technical problems) were excluded. No significant difference was found in mean (±SE) basal chloride currents between children with FC and controls (9.6 ± 1.1 vs 9.2 ± 0.8; P = 0.75, respectively). Responses to calcium-linked chloride secretagogues (histamine and carbachol) were significantly higher in controls (33.0 ± 3.0 vs 24.5 ± 2.3; P = 0.03 and 33.6 ± 3.4 vs 26.4 ± 2.7; P = 0.05 following histamine and carbachol, respectively). CONCLUSIONS & INFERENCES: Calcium-linked chloride secretion is disturbed in children with FC. Whether this defect occurs at the level of histamine receptors, components of receptor-linked signal transduction pathways or basolateral Ca(2+) -sensitive K(+) channels enhancing the electrical driving force for apical chloride secretion, remains to be explored.


Assuntos
Cloretos/metabolismo , Constipação Intestinal/metabolismo , Reto/metabolismo , 1-Metil-3-Isobutilxantina/metabolismo , Amilorida/metabolismo , Biópsia , Carbacol/metabolismo , Criança , Agonistas Colinérgicos/metabolismo , Colforsina/metabolismo , Constipação Intestinal/diagnóstico , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Defecação , Feminino , Doença de Hirschsprung/diagnóstico , Doença de Hirschsprung/fisiopatologia , Histamina/metabolismo , Agonistas dos Receptores Histamínicos/metabolismo , Humanos , Masculino , Inibidores de Fosfodiesterase/metabolismo , Reto/cirurgia , Bloqueadores dos Canais de Sódio/metabolismo
8.
Proc Natl Acad Sci U S A ; 108(25): 10260-5, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21646513

RESUMO

Loss of cystic fibrosis transmembrane conductance regulator (CFTR) anion channel function causes cystic fibrosis (CF) lung disease. CFTR is expressed in airway epithelia, but how CF alters electrolyte transport across airway epithelia has remained uncertain. Recent studies of a porcine model showed that in vivo, excised, and cultured CFTR(-/-) and CFTR(ΔF508/ΔF508) airway epithelia lacked anion conductance, and they did not hyperabsorb Na(+). Therefore, we asked whether Cl(-) and Na(+) conductances were altered in human CF airway epithelia. We studied differentiated primary cultures of tracheal/bronchial epithelia and found that transepithelial conductance (Gt) under basal conditions and the cAMP-stimulated increase in Gt were markedly attenuated in CF epithelia compared with non-CF epithelia. These data reflect loss of the CFTR anion conductance. In CF and non-CF epithelia, the Na(+) channel inhibitor amiloride produced similar reductions in Gt and Na(+) absorption, indicating that Na(+) conductance in CF epithelia did not exceed that in non-CF epithelia. Consistent with previous reports, adding amiloride caused greater reductions in transepithelial voltage and short-circuit current in CF epithelia than in non-CF epithelia; these changes are attributed to loss of a Cl(-) conductance. These results indicate that Na(+) conductance was not increased in these cultured CF tracheal/bronchial epithelia and point to loss of anion transport as key to airway epithelial dysfunction in CF.


Assuntos
Cloretos/metabolismo , Fibrose Cística/fisiopatologia , Epitélio/metabolismo , Mucosa Respiratória/metabolismo , Sódio/metabolismo , Amilorida/metabolismo , Animais , Ânions/metabolismo , Células Cultivadas , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Transporte de Íons/fisiologia , Mucosa Respiratória/anatomia & histologia , Bloqueadores dos Canais de Sódio/metabolismo , Canais de Sódio/metabolismo , Suínos
9.
Pflugers Arch ; 462(2): 267-79, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21559843

RESUMO

Impairment of lung liquid absorption can lead to severe respiratory symptoms, such as those observed in pulmonary oedema. In the adult lung, liquid absorption is driven by cation transport through two pathways: a well-established amiloride-sensitive Na(+) channel (ENaC) and, more controversially, an amiloride-insensitive channel that may belong to the cyclic nucleotide-gated (CNG) channel family. Here, we show robust CNGA1 (but not CNGA2 or CNGA3) channel expression principally in rat alveolar type I cells; CNGA3 was expressed in ciliated airway epithelial cells. Using a rat in situ lung liquid clearance assay, CNG channel activation with 1 mM 8Br-cGMP resulted in an approximate 1.8-fold stimulation of lung liquid absorption. There was no stimulation by 8Br-cGMP when applied in the presence of either 100 µM L: -cis-diltiazem or 100 nM pseudechetoxin (PsTx), a specific inhibitor of CNGA1 channels. Channel specificity of PsTx and amiloride was confirmed by patch clamp experiments showing that CNGA1 channels in HEK 293 cells were not inhibited by 100 µM amiloride and that recombinant αßγ-ENaC were not inhibited by 100 nM PsTx. Importantly, 8Br-cGMP stimulated lung liquid absorption in situ, even in the presence of 50 µM amiloride. Furthermore, neither L: -cis-diltiazem nor PsTx affected the ß(2)-adrenoceptor agonist-stimulated lung liquid absorption, but, as expected, amiloride completely ablated it. Thus, transport through alveolar CNGA1 channels, located in type I cells, underlies the amiloride-insensitive component of lung liquid reabsorption. Furthermore, our in situ data highlight the potential of CNGA1 as a novel therapeutic target for the treatment of diseases characterised by lung liquid overload.


Assuntos
GMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Células Epiteliais/metabolismo , Pulmão/metabolismo , Isoformas de Proteínas/metabolismo , Alvéolos Pulmonares/metabolismo , Absorção , Amilorida/metabolismo , Animais , Aquaporina 5/metabolismo , Transporte Biológico/fisiologia , GMP Cíclico/análogos & derivados , Canais de Cátion Regulados por Nucleotídeos Cíclicos/antagonistas & inibidores , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Diuréticos/metabolismo , Venenos Elapídicos/metabolismo , Feminino , Células HEK293 , Humanos , Ativação do Canal Iônico/fisiologia , Pulmão/citologia , Masculino , Técnicas de Patch-Clamp , Isoformas de Proteínas/genética , Ratos , Ratos Wistar
10.
Acta Physiol (Oxf) ; 201(1): 97-107, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20969730

RESUMO

AIMS: As little is currently known about acid-sensing ion channels (ASICs) in intestinal epithelial cells, the aims of the present study were to investigate the expression and function of ASICs in intestinal epithelial cells, particularly their physiological role in the acid-stimulated duodenal mucosal bicarbonate secretion (DMBS). METHODS: RT-PCR and digital Ca²(+) imaging were used to determine the expression and function of ASICs in HT29 cells and SCBN cells, intestinal epithelial crypt cell lines. The acid-stimulated DMBS was measured in C57 black mice in vivo to study the role of ASICs in this physiological process. RESULTS: ASIC1a mRNA expression was detected in the duodenal mucosa stripped from mice and epithelial cell lines, in which cytoplasmic free Ca²(+) ([Ca²(+) ](cyt)) in response to extracellular acidosis was also increased. In Ca²(+) -containing solutions, acidosis (pH 6.0-5.0) raised [Ca²(+) ](cyt) in both HT29 cells and SCBN cells in a similar pH-dependent manner. Acidosis-induced increase in [Ca²(+) ](cyt) was markedly inhibited by amiloride (an ASICs blocker), SK&F96365 (a blocker for non-selective cation channels), or in Ca²(+) -free solutions; but was abolished by amiloride in Ca²(+) -free solutions. However, acidosis-induced increase in [Ca²(+) ](cyt) was slightly affected by U73122 (a PLC inhibitor), or nifedipine (a voltage-gated Ca²(+) channel blocker). After acidosis raised [Ca²(+) ](cyt) , stimulation of purinergic receptors with ATP further increased [Ca²(+) ](cyt) , but acidosis-induced increase in [Ca²(+) ](cyt) was not altered by suramin. Moreover, acid-stimulated murine DMBS was significantly attenuated by amiloride. CONCLUSION: Therefore, ASICs are functionally expressed in intestinal epithelial cells, and may play a role in acid-stimulated DMBS through a Ca²(+) signalling pathway.


Assuntos
Bicarbonatos/metabolismo , Duodeno/metabolismo , Células Epiteliais/metabolismo , Mucosa Intestinal/citologia , Proteínas do Tecido Nervoso/metabolismo , Canais de Sódio/metabolismo , Canais Iônicos Sensíveis a Ácido , Amilorida/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Células Epiteliais/citologia , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Transdução de Sinais/fisiologia , Bloqueadores dos Canais de Sódio/metabolismo , Canais de Sódio/genética , Suramina/metabolismo
11.
Endocrinology ; 151(10): 5007-16, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20668027

RESUMO

Embryo implantation is an intricate interaction between receptive uterus and active blastocyst. The mechanism underlying embryo implantation is still unknown. Although histamine and putrescine are important for embryo implantation and decidualization, excess amount of histamine and putrescine is harmful. Amiloride binding protein 1 (Abp1) is a membrane-associated amine oxidase and mainly metabolizes histamine and putrescine. In this study, we first showed that Abp1 is strongly expressed in the decidua on d 5-8 of pregnancy. Abp1 expression is not detected during pseudopregnancy and under delayed implantation but is detected after estrogen activation. Because Abp1 is mainly localized in the decidua and also strongly expressed during in vitro decidualization, Abp1 might play a role during mouse decidualization. The regulation of estrogen on Abp1 is mediated by transcription factor CCAAT/enhancer-binding protein-ß. Abp1 expression is also regulated by cAMP, bone morphogenetic protein 2, and ERK1/2. Abp1 may be essential for mouse embryo implantation and decidualization.


Assuntos
Amina Oxidase (contendo Cobre)/genética , Proteína beta Intensificadora de Ligação a CCAAT/fisiologia , D-Aminoácido Oxidase/genética , Decídua/efeitos dos fármacos , Implantação do Embrião/efeitos dos fármacos , Estrogênios/farmacologia , Útero/efeitos dos fármacos , Amilorida/metabolismo , Amina Oxidase (contendo Cobre)/metabolismo , Amina Oxidase (contendo Cobre)/fisiologia , Animais , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Células Cultivadas , D-Aminoácido Oxidase/metabolismo , D-Aminoácido Oxidase/fisiologia , Decídua/metabolismo , Implantação do Embrião/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Idade Gestacional , Hormônios Esteroides Gonadais/farmacologia , Masculino , Camundongos , Gravidez/genética , Gravidez/metabolismo , Útero/metabolismo
12.
Biochem Pharmacol ; 80(7): 1012-20, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20599786

RESUMO

During brain or cardiac ischemia/reperfusion neutrophils are recruited and activated contributing to inflammation and tissue damage. Neutrophils are removed from inflamed tissues by phosphatidylserine-dependent phagocytosis. Production of reactive oxygen species by the neutrophil NADPH-oxidase is known to affect phosphatidylserine externalization. Amiloride derivatives are inhibitors of the sodium-proton exchanger providing substantial protection in animal models of brain and cardiac ischemia/reperfusion injury; however their effects on neutrophils remain incompletely known. We investigated the effect of 5-(N,N-hexomethylene)amiloride (HMA) on phosphatidylserine externalization in wild type and NADPH-oxidase deficient PLB-985 cells differentiated into neutrophils. We show that HMA had a dual effect: (1) 60 microM HMA induced phosphatidylserine externalization in at least 40% of the cells; (2) 20 microM HMA had no direct effect but enhanced phosphatidylserine externalization induced by cell activation with PMA or calcium ionophore A23187. Both effects were independent of the NADPH-oxidase and were not due to changes in intracellular pH. 60 microM HMA induced a capacitative calcium entry which was necessary for phosphatidylserine externalization. The HMA-induced PS externalization was inhibited by salubrinal, an inhibitor of ER-stress-linked apoptosis. Lower HMA concentration enhanced PMA or A23187 effects through PKC and calcium dependent pathways. The caspase inhibitor Z-VAD-FMK weakly diminished phosphatidylserine externalization, suggesting that activation of caspases 7, 8, 9 and 3 was not involved. Increasing phosphatidylserine externalization by low concentrations of HMA improved the engulfment of PMA-activated PLB-985 cells by macrophages, providing a novel therapeutic strategy to limit the accumulation of neutrophils in injured tissues.


Assuntos
Neutrófilos/metabolismo , Neutrófilos/fisiologia , Amilorida/metabolismo , Amilorida/farmacologia , Clorometilcetonas de Aminoácidos , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Caspase 7/metabolismo , Células/metabolismo , Humanos , Macrófagos/metabolismo , Macrófagos/fisiologia , NADPH Oxidases/metabolismo , NADPH Oxidases/farmacologia , Neutrófilos/efeitos dos fármacos , Fagocitose , Fosfatidilserinas/metabolismo , Fosfatidilserinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Acetato de Tetradecanoilforbol/metabolismo , Acetato de Tetradecanoilforbol/farmacologia
13.
PLoS Pathog ; 5(7): e1000511, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19593379

RESUMO

The envelope (E) protein from coronaviruses is a small polypeptide that contains at least one alpha-helical transmembrane domain. Absence, or inactivation, of E protein results in attenuated viruses, due to alterations in either virion morphology or tropism. Apart from its morphogenetic properties, protein E has been reported to have membrane permeabilizing activity. Further, the drug hexamethylene amiloride (HMA), but not amiloride, inhibited in vitro ion channel activity of some synthetic coronavirus E proteins, and also viral replication. We have previously shown for the coronavirus species responsible for severe acute respiratory syndrome (SARS-CoV) that the transmembrane domain of E protein (ETM) forms pentameric alpha-helical bundles that are likely responsible for the observed channel activity. Herein, using solution NMR in dodecylphosphatidylcholine micelles and energy minimization, we have obtained a model of this channel which features regular alpha-helices that form a pentameric left-handed parallel bundle. The drug HMA was found to bind inside the lumen of the channel, at both the C-terminal and the N-terminal openings, and, in contrast to amiloride, induced additional chemical shifts in ETM. Full length SARS-CoV E displayed channel activity when transiently expressed in human embryonic kidney 293 (HEK-293) cells in a whole-cell patch clamp set-up. This activity was significantly reduced by hexamethylene amiloride (HMA), but not by amiloride. The channel structure presented herein provides a possible rationale for inhibition, and a platform for future structure-based drug design of this potential pharmacological target.


Assuntos
Canais Iônicos/antagonistas & inibidores , Canais Iônicos/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Proteínas do Envelope Viral/antagonistas & inibidores , Proteínas do Envelope Viral/química , Amilorida/análogos & derivados , Amilorida/metabolismo , Amilorida/farmacologia , Linhagem Celular , Humanos , Canais Iônicos/metabolismo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Técnicas de Patch-Clamp , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Reprodutibilidade dos Testes , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Proteínas do Envelope Viral/metabolismo
14.
Am J Respir Cell Mol Biol ; 41(6): 639-50, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19251942

RESUMO

Carbon monoxide (CO) is currently being evaluated as a therapeutic modality in the treatment of patients with acute lung injury and acute respiratory distress syndrome. No study has assessed the effects of CO on transepithelial ion transport and alveolar fluid reabsorption, two key aspects of alveolocapillary barrier function that are perturbed in acute lung injury/acute respiratory distress syndrome. Both CO gas (250 ppm) and CO donated by the CO donor, CO-releasing molecule (CORM)-3 (100 microM in epithelial lining fluid), applied to healthy, isolated, ventilated, and perfused rabbit lungs, significantly blocked (22)Na(+) clearance from the alveolar compartment, and blocked alveolar fluid reabsorption after fluid challenge. Apical application of two CO donors, CORM-3 or CORM-A1 (100 microM), irreversibly inhibited amiloride-sensitive short-circuit currents in H441 human bronchiolar epithelial cells and primary rat alveolar type II cells by up to 40%. Using a nystatin permabilization approach, the CO effect was localized to amiloride-sensitive channels on the apical surface. This effect was abolished by hemoglobin, a scavenger of CO, and was not observed when inactive forms of CO donors were employed. The effects of CO were not blocked by 8-bromoguanosine-3',5'-cyclic guanosine monophosphate, soluble guanylate cyclase inhibitors (methylene blue and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one), or inhibitors of trafficking events (phalloidin oleate, MG-132, and brefeldin A), but the amiloride affinity of H441 cells was reduced after CO exposure. These data indicate that CO rapidly inhibits sodium absorption across the airway epithelium by cyclic guanosine monophosphate- and trafficking-independent mechanisms, which may rely on critical histidine residues in amiloride-sensitive channels or associated regulatory proteins on the apical surface of lung epithelial cells.


Assuntos
Monóxido de Carbono/farmacologia , Bloqueadores do Canal de Sódio Epitelial , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Amilorida/metabolismo , Amilorida/farmacologia , Animais , Líquidos Corporais/efeitos dos fármacos , Líquidos Corporais/metabolismo , Boranos/farmacologia , Monóxido de Carbono/metabolismo , Monóxido de Carbono/toxicidade , Carbonatos/farmacologia , Linhagem Celular , GMP Cíclico/metabolismo , Metabolismo Energético/efeitos dos fármacos , Canais Epiteliais de Sódio/química , Canais Epiteliais de Sódio/metabolismo , Guanilato Ciclase/metabolismo , Heme Oxigenase-1/metabolismo , Histidina/química , Humanos , Técnicas In Vitro , Transporte de Íons/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Coelhos , Ratos , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/metabolismo , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/metabolismo
15.
J Membr Biol ; 227(1): 49-55, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19050954

RESUMO

Sertoli cells are responsible for regulating a wide range of processes that lead to the differentiation of male germ cells into spermatozoa. Cytoplasmic pH (pHi) has been shown to be an important parameter in cell physiology, regulating namely cell metabolism and differentiation. However, membrane transport mechanisms involved in pHi regulation mechanisms of Sertoli cells have not yet been elucidated. In this work, pHi was determined using the pH-sensitive fluorescent probe 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF). Addition of weak acids resulted in rapid acidification of the intracellular milieu. Sertoli cells then recovered pHi by a mechanism that was shown to be sensitive to external Na+. pHi recovery was also greatly reduced in the presence of 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) and amiloride. These results point toward the action of an Na+-driven HCO3-/Cl- exchanger and/or an Na+/HCO3- cotransporter and the action of the Na+/H+ exchanger on pHi regulation in the experimental conditions used. pHi recovery was only slightly affected by ouabain, suggesting that the inhibition of Na+/K+-ATPase affects recovery indirectly, possibly via the shift on the Na+ gradient. On the other hand, recovery from the acid load was independent of the presence of concanamycin A, a specific inhibitor of the V-type ATPases, suggesting that these pumps do not have a relevant action on pHi regulation in bovine Sertoli cells.


Assuntos
Citoplasma/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Células de Sertoli/metabolismo , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/metabolismo , Ácidos/metabolismo , Amilorida/metabolismo , Animais , Bicarbonatos/metabolismo , Bovinos , Células Cultivadas , Cloretos/metabolismo , Fluoresceínas , Corantes Fluorescentes , Concentração de Íons de Hidrogênio , Masculino , Proteínas de Membrana Transportadoras/química , ATPase Trocadora de Sódio-Potássio/metabolismo
16.
Pflugers Arch ; 456(5): 801-12, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18214525

RESUMO

Transport activities involved in intracellular pH (pH(i)) recovery after acid or alkali challenge were investigated in cultured rat brain microvascular endothelial cells by monitoring pH(i) using a pH-sensitive dye. Following relatively small acid loads with pH(i) approximately 6.5, HCO(-)(3) influx accounted for most of the acid extrusion from the cell with both Cl(-)-independent and Cl(-)-dependent, Na(+)-dependent transporters involved. The Cl(-)-independent component has the same properties as the NBC-like transporter previously shown to account for most of the acid extrusion near the resting pH(i). Following large acid loads with pH(i) < 6.5, most of the acid extrusion was mediated by Na(+)/H(+) exchange, the rate of which was steeply dependent on pH(i). Concanamycin A, an inhibitor of V-type ATPase, had no effect on the rates of acid extrusion. Following an alkali challenge, the major component of the acid loading leading to recovery of pH(i) occurred by Cl(-)/HCO(-)(3) exchange. This exchange had the same properties as the AE-like transporter previously identified as a major acid loader near resting pH(i). These acid-loading and acid-extruding transport mechanisms together with the Na(+), K(+), ATPase may be sufficient to account not only for pH(i) regulation in brain endothelial cells but also for the net secretion of HCO(-)(3) across the blood-brain barrier.


Assuntos
Ácidos/metabolismo , Álcalis/metabolismo , Transporte Biológico/fisiologia , Encéfalo/irrigação sanguínea , Células Endoteliais/metabolismo , Concentração de Íons de Hidrogênio , Microcirculação , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/metabolismo , Trifosfato de Adenosina/metabolismo , Amilorida/análogos & derivados , Amilorida/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Carbonatos/metabolismo , Células Cultivadas , Cloretos/metabolismo , Desoxiglucose/metabolismo , Células Endoteliais/citologia , Fármacos Neuroprotetores/metabolismo , Ratos , Ratos Wistar , Sódio/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo
17.
J Clin Invest ; 116(6): 1696-702, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16691295

RESUMO

Functional and biochemical data have suggested a role for the cytochrome P450 arachidonate monooxygenases in the pathophysiology of hypertension, a leading cause of cardiovascular, cerebral, and renal morbidity and mortality. We show here that disruption of the murine cytochrome P450, family 4, subfamily a, polypeptide 10 (Cyp4a10) gene causes a type of hypertension that is, like most human hypertension, dietary salt sensitive. Cyp4a10-/- mice fed low-salt diets were normotensive but became hypertensive when fed normal or high-salt diets. Hypertensive Cyp4a10-/- mice had a dysfunctional kidney epithelial sodium channel and became normotensive when administered amiloride, a selective inhibitor of this sodium channel. These studies (a) establish a physiological role for the arachidonate monooxygenases in renal sodium reabsorption and blood pressure regulation, (b) demonstrate that a dysfunctional Cyp4a10 gene causes alterations in the gating activity of the kidney epithelial sodium channel, and (c) identify a conceptually novel approach for studies of the molecular basis of human hypertension. It is expected that these results could lead to new strategies for the early diagnosis and clinical management of this devastating disease.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Hipertensão , Rim/metabolismo , Canais de Sódio/metabolismo , Sódio na Dieta , Amilorida/metabolismo , Animais , Ácidos Araquidônicos/química , Ácidos Araquidônicos/metabolismo , Pressão Sanguínea/fisiologia , Família 2 do Citocromo P450 , Eletrofisiologia , Canais Epiteliais de Sódio , Feminino , Humanos , Hipertensão/genética , Hipertensão/metabolismo , Masculino , Camundongos , Camundongos Knockout , Pirimidinas/metabolismo , Sódio/metabolismo , Bloqueadores dos Canais de Sódio/metabolismo , Canais de Sódio/genética
18.
J Biol Chem ; 281(11): 7392-8, 2006 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-16410244

RESUMO

Human airways and glands express the anion channel cystic fibrosis transmembrane conductance regulator, CFTR, and the epithelial Na(+) channel, ENaC. Cystic fibrosis (CF) airway glands fail to secrete mucus in response to vasoactive intestinal peptide or forskolin; the failure was attributed to loss of CFTR-mediated anion and fluid secretion. Alternatively, CF glands might secrete acinar fluid via CFTR-independent pathways, but the exit of mucus from the glands could be blocked by hyperabsorption of fluid in the gland ducts. This could occur because CFTR loss can disinhibit ENaC, and ENaC activity can drive absorption. To test these two hypotheses, we measured single gland mucus secretion optically and applied ENaC inhibitors to determine whether they augmented secretion. Human CF glands were pretreated with benzamil and then stimulated with forskolin in the continued presence of benzamil. Benzamil did not rescue the lack of secretion to forskolin (50 glands, 6 CF subjects) nor did it increase the rate of cholinergically mediated mucus secretion from CF glands. Finally, neither benzamil nor amiloride increased forskolin-stimulated mucus secretion from porcine submucosal glands (75 glands, 7 pigs). One possible explanation for these results is that ENaC within the gland ducts was not active in our experiments. Consistent with that possibility, we discovered that human airway glands express Kunitz-type and non-Kunitz serine protease inhibitors, which might prevent proteolytic activation of ENaC. Our results suggest that CF glands do not display excessive, ENaC-mediated fluid absorption, leaving defective, anion-mediated fluid secretion as the most likely mechanism for defective mucus secretion from CF glands.


Assuntos
Fibrose Cística/patologia , Traqueia/metabolismo , Traqueia/patologia , Amilorida/análogos & derivados , Amilorida/metabolismo , Animais , Cloretos/metabolismo , Colforsina/metabolismo , Colforsina/farmacologia , AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Primers do DNA/química , Glândulas Exócrinas , Humanos , Transporte de Íons , Pulmão/metabolismo , Reação em Cadeia da Polimerase , Mucosa Respiratória/patologia , Suínos , Fatores de Tempo , Distribuição Tecidual
19.
FASEB J ; 20(3): 545-6, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16410345

RESUMO

Pseudomonas aeruginosa causes severe life-threatening airway infections that are a frequent cause for hospitalization of cystic fibrosis (CF) patients. These Gram-negative pathogens possess flagella that contain the protein flagellin as a major structural component. Flagellin binds to the host cell glycolipid asialoGM1 (ASGM1), which appears enriched in luminal membranes of respiratory epithelial cells. We demonstrate that in mouse airways, luminal exposure to flagellin leads to inhibition of Na+ absorption by the epithelial Na+ channel ENaC, but does not directly induce a secretory response. Inhibition of ENaC was observed in tracheas of wild-type mice and was attenuated in mice homozygous for the frequent cystic fibrosis conductance regulator (CFTR) mutation G551D. Similar to flagellin, anti-ASGM1 antibody also inhibited ENaC. The inhibitory effects of flagellin on ENaC were attenuated by blockers of the purinergic signaling pathway, although an increase in the intracellular Ca2+ concentration by recombinant or purified flagellin or whole flagella was not observed. Because an inhibitor of the mitogen-activated protein kinase (MAPK) pathway also attenuated the effects of flagellin on Na+ absorption, we conclude that flagellin exclusively inhibits ENaC, probably due to release of ATP and activation of purinergic receptors of the P2Y subtype. Stimulation of these receptors activates the MAPK pathway, thereby leading to inhibition of ENaC. Thus, P. aeruginosa reduces Na+ absorption, which could enhance local mucociliary clearance, a mechanism that seem to be attenuated in CF.


Assuntos
Flagelina/farmacologia , Transporte de Íons/efeitos dos fármacos , Infecções por Pseudomonas/fisiopatologia , Pseudomonas aeruginosa/fisiologia , Canais de Sódio/efeitos dos fármacos , Sódio/metabolismo , Trifosfato de Adenosina/metabolismo , Amilorida/metabolismo , Animais , Brônquios/citologia , Brônquios/metabolismo , Butadienos/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Fibrose Cística/complicações , Fibrose Cística/fisiopatologia , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Canais Epiteliais de Sódio , Estrenos/farmacologia , Flagelina/genética , Flagelina/metabolismo , Gangliosídeo G(M1)/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CFTR , Nitrilas/farmacologia , Técnicas de Patch-Clamp , Fosfatidilinositol 4,5-Difosfato/metabolismo , Infecções por Pseudomonas/complicações , Pirrolidinonas/farmacologia , Receptores Purinérgicos P2/fisiologia , Receptores Purinérgicos P2Y12 , Infecções Respiratórias/complicações , Infecções Respiratórias/microbiologia , Infecções Respiratórias/fisiopatologia , Canais de Sódio/fisiologia , Traqueia/metabolismo , Traqueia/microbiologia
20.
J Biol Chem ; 281(9): 5623-33, 2006 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-16407190

RESUMO

In a process called capacitation, mammalian sperm gain the ability to fertilize after residing in the female tract. During capacitation the mouse sperm plasma membrane potential (E(m)) hyperpolarizes. However, the mechanisms that regulate sperm E(m) are not well understood. Here we show that sperm hyperpolarize when external Na(+) is replaced by N-methyl-glucamine. Readdition of external Na(+) restores a more depolarized E(m) by a process that is inhibited by amiloride or by its more potent derivative 5-(N-ethyl-N-isopropyl)-amiloride hydrochloride. These findings indicate that under resting conditions an electrogenic Na(+) transporter, possibly involving an amiloride sensitive Na(+) channel, may contribute to the sperm resting E(m). Consistent with this proposal, patch clamp recordings from spermatogenic cells reveal an amiloride-sensitive inward Na(+) current whose characteristics match those of the epithelial Na(+) channel (ENaC) family of epithelial Na(+) channels. Indeed, ENaC-alpha and -delta mRNAs were detected by reverse transcription-PCR in extracts of isolated elongated spermatids, and ENaC-alpha and -delta proteins were found on immunoblots of sperm membrane preparations. Immunostaining indicated localization of ENaC-alpha to the flagellar midpiece and of ENaC-delta to the acrosome. Incubations known to produce capacitation in vitro or induction of capacitation by cell-permeant cAMP analogs decreased the depolarizing response to the addition of external Na(+). These results suggest that increases in cAMP content occurring during capacitation may inhibit ENaCs to produce a required hyperpolarization of the sperm membrane.


Assuntos
Potenciais da Membrana/fisiologia , Canais de Sódio/metabolismo , Sódio/metabolismo , Capacitação Espermática , Espermatozoides/metabolismo , Amilorida/química , Amilorida/metabolismo , Animais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Canais Epiteliais de Sódio , Feminino , Concentração de Íons de Hidrogênio , Masculino , Meglumina/metabolismo , Camundongos , Técnicas de Patch-Clamp , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais , Bloqueadores dos Canais de Sódio/química , Bloqueadores dos Canais de Sódio/metabolismo , Canais de Sódio/genética , Espermatozoides/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA