Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(9)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062942

RESUMO

A field experiment was established to study sweet potato growth, starch dynamic accumulation, key enzymes and gene transcription in the sucrose-to-starch conversion and their relationships under six K2O rates using Ningzishu 1 (sensitive to low-K) and Xushu 32 (tolerant to low-K). The results indicated that K application significantly improved the biomass accumulation of plant and storage root, although treatments at high levels of K, i.e., 300-375 kg K2O ha-1, significantly decreased plant biomass and storage root yield. Compared with the no-K treatment, K application enhanced the biomass accumulation of plant and storage root by 3-47% and 13-45%, respectively, through promoting the biomass accumulation rate. Additionally, K application also enhanced the photosynthetic capacity of sweet potato. In this study, low stomatal conductance and net photosynthetic rate (Pn) accompanied with decreased intercellular CO2 concentration were observed in the no-K treatment at 35 DAT, indicating that Pn was reduced mainly due to stomatal limitation; at 55 DAT, reduced Pn in the no-K treatment was caused by non-stomatal factors. Compared with the no-K treatment, the content of sucrose, amylose and amylopectin decreased by 9-34%, 9-23% and 6-19%, respectively, but starch accumulation increased by 11-21% under K supply. The activities of sucrose synthetase (SuSy), adenosine-diphosphate-glucose pyrophosphorylase (AGPase), starch synthase (SSS) and the transcription of Susy, AGP, SSS34 and SSS67 were enhanced by K application and had positive relationships with starch accumulation. Therefore, K application promoted starch accumulation and storage root yield through regulating the activities and genes transcription of SuSy, AGPase and SSS in the sucrose-to-starch conversion.


Assuntos
Glucose-1-Fosfato Adenililtransferase/genética , Glucosiltransferases/genética , Raízes de Plantas/crescimento & desenvolvimento , Potássio/farmacologia , Amilopectina/genética , Amilose/genética , Fertilização/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ipomoea batatas/crescimento & desenvolvimento , Ipomoea batatas/metabolismo , Fotossíntese/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Amido/metabolismo , Sacarose/metabolismo
2.
PLoS One ; 10(9): e0138228, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26394305

RESUMO

Although wheat (Triticum aestivum L.) pericarp starch granule (PSG) has been well-studied, our knowledge of its features and mechanism of accumulation and degradation during pericarp growth is poor. In the present study, developing wheat caryopses were collected and starch granules were extracted from their pericarp to investigate the morphological and structural characteristics of PSGs using microscopy, X-ray diffraction and Fourier transform infrared spectroscopy techniques. Relative gene expression levels of ADP-glucose pyrophosphorylase (APGase), granule-bound starch synthase II (GBSS II), and α-amylase (AMY) were quantified by quantitative real-time polymerase chain reaction. PSGs presented as single or multiple starch granules and were synthesized both in the amyloplast and chloroplast in the pericarp. PSG degradation occurred in the mesocarp, beginning at 6 days after anthesis. Amylose contents in PSGs were lower and relative degrees of crystallinity were higher at later stages of development than at earlier stages. Short-range ordered structures in the external regions of PSGs showed no differences in the developing pericarp. When hydrolyzed by α-amylase, PSGs at various developmental stages showed high degrees of enzymolysis. Expression levels of AGPase, GBSS II, and AMY were closely related to starch synthesis and degradation. These results help elucidate the mechanisms of accumulation and degradation as well as the functions of PSG during wheat caryopsis development.


Assuntos
Frutas/metabolismo , Sementes/metabolismo , Amido/metabolismo , Triticum/metabolismo , Amilose/genética , Amilose/metabolismo , Sequência de Bases , Cloroplastos/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glucose-1-Fosfato Adenililtransferase/genética , Glucose-1-Fosfato Adenililtransferase/metabolismo , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plastídeos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/crescimento & desenvolvimento , Sementes/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Amido/química , Amido/ultraestrutura , Sintase do Amido/genética , Sintase do Amido/metabolismo , Triticum/genética , Triticum/crescimento & desenvolvimento , Difração de Raios X
3.
BMC Plant Biol ; 12: 69, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22584013

RESUMO

BACKGROUND: Wheat (Triticum spp.) is an important source of food worldwide and the focus of considerable efforts to identify new combinations of genetic diversity for crop improvement. In particular, wheat starch composition is a major target for changes that could benefit human health. Starches with increased levels of amylose are of interest because of the correlation between higher amylose content and elevated levels of resistant starch, which has been shown to have beneficial effects on health for combating obesity and diabetes. TILLING (Targeting Induced Local Lesions in Genomes) is a means to identify novel genetic variation without the need for direct selection of phenotypes. RESULTS: Using TILLING to identify novel genetic variation in each of the A and B genomes in tetraploid durum wheat and the A, B and D genomes in hexaploid bread wheat, we have identified mutations in the form of single nucleotide polymorphisms (SNPs) in starch branching enzyme IIa genes (SBEIIa). Combining these new alleles of SBEIIa through breeding resulted in the development of high amylose durum and bread wheat varieties containing 47-55% amylose and having elevated resistant starch levels compared to wild-type wheat. High amylose lines also had reduced expression of SBEIIa RNA, changes in starch granule morphology and altered starch granule protein profiles as evaluated by mass spectrometry. CONCLUSIONS: We report the use of TILLING to develop new traits in crops with complex genomes without the use of transgenic modifications. Combined mutations in SBEIIa in durum and bread wheat varieties resulted in lines with significantly increased amylose and resistant starch contents.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/genética , Amilose/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Polimorfismo de Nucleotídeo Único/genética , Triticum/genética , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Alelos , Substituição de Aminoácidos , Amilose/análise , Amilose/genética , Cruzamento , DNA de Plantas/genética , Endosperma/química , Endosperma/enzimologia , Endosperma/genética , Genótipo , Dados de Sequência Molecular , Mutação , Fenótipo , Folhas de Planta/química , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poliploidia , Isoformas de Proteínas/genética , RNA de Plantas/genética , Análise de Sequência de DNA , Amido/química , Amido/genética , Amido/metabolismo , Triticum/química , Triticum/enzimologia
4.
BMC Plant Biol ; 10: 144, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20626919

RESUMO

BACKGROUND: High amylose starch has attracted particular interest because of its correlation with the amount of Resistant Starch (RS) in food. RS plays a role similar to fibre with beneficial effects for human health, providing protection from several diseases such as colon cancer, diabetes, obesity, osteoporosis and cardiovascular diseases. Amylose content can be modified by a targeted manipulation of the starch biosynthetic pathway. In particular, the inactivation of the enzymes involved in amylopectin synthesis can lead to the increase of amylose content. In this work, genes encoding starch branching enzymes of class II (SBEIIa) were silenced using the RNA interference (RNAi) technique in two cultivars of durum wheat, using two different methods of transformation (biolistic and Agrobacterium). Expression of RNAi transcripts was targeted to the seed endosperm using a tissue-specific promoter. RESULTS: Amylose content was markedly increased in the durum wheat transgenic lines exhibiting SBEIIa gene silencing. Moreover the starch granules in these lines were deformed, possessing an irregular and deflated shape and being smaller than those present in the untransformed controls. Two novel granule bound proteins, identified by SDS-PAGE in SBEIIa RNAi lines, were investigated by mass spectrometry and shown to have strong homologies to the waxy proteins. RVA analysis showed new pasting properties associated with high amylose lines in comparison with untransformed controls. Finally, pleiotropic effects on other starch genes were found by semi-quantitative and Real-Time reverse transcription-polymerase chain reaction (RT-PCR). CONCLUSION: We have found that the silencing of SBEIIa genes in durum wheat causes obvious alterations in granule morphology and starch composition, leading to high amylose wheat. Results obtained with two different methods of transformation and in two durum wheat cultivars were comparable.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/genética , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Amilose/metabolismo , Inativação Gênica , Triticum/genética , Triticum/metabolismo , Amilose/análise , Amilose/genética , Endosperma/química , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas , Humanos , Proteínas de Plantas/análise , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Interferência de RNA , Rhizobium/genética , Amido/análise , Triticum/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA