Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.659
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(19): e2314704121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38691589

RESUMO

Amine modification through nucleophilic attack of the amine functionality is a very common chemical transformation. Under biorelevant conditions using acidic-to-neutral pH buffer, however, the nucleophilic reaction of alkyl amines (pKa ≈ 10) is not facile due to the generation of ammonium ions lacking nucleophilicity. Here, we disclose a unique molecular transformation system, catalysis driven by amyloid-substrate complex (CASL), that promotes amine modifications in acidic buffer. Ammonium ions attached to molecules with amyloid-binding capability were activated through deprotonation due to the close proximity to the amyloid catalyst formed by Ac-Asn-Phe-Gly-Ala-Ile-Leu-NH2 (NL6), derived from islet amyloid polypeptide (IAPP). Under the CASL conditions, alkyl amines underwent various modifications, i.e., acylation, arylation, cyclization, and alkylation, in acidic buffer. Crystallographic analysis and chemical modification studies of the amyloid catalysts suggested that the carbonyl oxygen of the Phe-Gly amide bond of NL6 plays a key role in activating the substrate amine by forming a hydrogen bond. Using CASL, selective conversion of substrates possessing equivalently reactive amine functionalities was achieved in catalytic reactions using amyloids. CASL provides a unique method for applying nucleophilic conversion reactions of amines in diverse fields of chemistry and biology.


Assuntos
Amiloide , Catálise , Amiloide/química , Amiloide/metabolismo , Aminas/química , Aminas/metabolismo , Ligação de Hidrogênio , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Concentração de Íons de Hidrogênio , Humanos
2.
Actas Esp Psiquiatr ; 52(2): 83-98, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622006

RESUMO

BACKGROUND: Vascular dementia (VaD) is a prevalent neurodegenerative disease characterized by cognitive impairment due to cerebrovascular factors, affecting a significant portion of the aging population and highlighting the critical need to understand specific targets and mechanisms for effective prevention and treatment strategies. We aimed to identify pathways and crucial genes involved in the progression of VaD through bioinformatics analysis and subsequently validate these findings. METHODS: We conducted differential expression analysis, Weighted Gene Co-expression Network Analysis (WGCNA), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and Protein-Protein Interaction (PPI) analysis. We utilized pheochromocytoma 12 (PC12) cells to create an in vitro oxygen-glucose deprivation (OGD) model. We investigated the impact of overexpression and interference of adrenoceptor alpha 1D (ADRA1D) on OGD PC12 cells using TdT-mediated dUTP nick-end labeling (TUNEL), reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot (WB), and Fluo-3-pentaacetoxymethyl ester (Fluo-3 AM) analysis. RESULTS: We found 187 differentially expressed genes (DEGs) in the red module that were strongly associated with VaD and were primarily enriched in vasoconstriction, G protein-coupled amine receptor activity, and neuroactive ligand-receptor interaction, mitogen-activated protein kinase (MAPK) signaling pathway, and cell adhesion. Among these pathways, we identified ADRA1D as a gene shared by vasoconstriction, G protein-coupled amine receptor activity, and neuroactive ligand-receptor interaction. The TUNEL assay revealed a significant decrease in PC12 cell apoptosis with ADRA1D overexpression (p < 0.01) and a significant increase in apoptosis upon silencing ADRA1D (p < 0.01). RT-qPCR and WB analysis revealed elevated ADRA1D expression (p < 0.001) and decreased phospholipase C beta (PLCß) and inositol 1,4,5-trisphosphate receptor (IP3R) expression (p < 0.05) with ADRA1D overexpression. Moreover, the Fluo-3 AM assessment indicated significantly lower intracellular Ca2+ levels with ADRA1D overexpression (p < 0.001). Conversely, interference with ADRA1D yielded opposite results. CONCLUSION: Our study provides a new perspective on the pathogenic mechanisms of VaD and potential avenues for therapeutic intervention. The results highlight the role of ADRA1D in modulating cellular responses to OGD and VaD, suggesting its potential as a target for VaD treatment.


Assuntos
Compostos de Anilina , Demência Vascular , Doenças Neurodegenerativas , Xantenos , Animais , Ratos , Humanos , Idoso , Demência Vascular/genética , Ligantes , Aminas , Transdução de Sinais/genética , Proteínas de Ligação ao GTP
3.
Anal Chim Acta ; 1304: 342538, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38637049

RESUMO

BACKGROUND: With the advent of proline-based reporter isobaric Tandem Mass Tag (TMTpro) reagents, the sample multiplexing capacity of tandem mass tags (TMTs) has been expanded, and up to 18 samples can be quantified in a multiplexed manner. Like classic TMT reagents, TMTpro reagents contain a tertiary amine group, which markedly enhances their reactivity toward hydroxyl groups and results in O-acylation of serine, threonine and tyrosine residues. This overlabeling significantly compromises proteome analysis in terms of depth and precision. In particular, the reactivity of hydroxyl-containing residues can be dramatically enhanced when coexisting with a histidine in the same peptides, leading to a severe systematic bias against the analysis of these peptides. Although some protocols using a reduced molar excess of TMT under alkaline conditions can alleviate overlabeling of histidine-free peptides to some extent, they have a limited effect on histidyl- and hydroxyl-containing peptides. RESULTS: Here, we report a novel TMTpro labeling method that overcomes detrimental overlabeling while providing high labeling efficiency of amines. Additionally, our method is cost-effective, as it requires only half the amount of TMTpro reagents recommended by the reagent manufacturer. In a deep-scale analysis of a yeast/human two-proteome model sample, we compared our method with a typical alkaline labeling method using a reduced molar excess of TMTpro. Even at a depth of over 10,000 proteins, our method detected 23.7% more unique peptides and 8.7% more protein groups compared to the alkaline labeling method. Moreover, our method significantly improved the quantitative precision due to the reduced variability in labeling and increased protein sequence coverage. This substantially enhanced the statistical power of our method for detecting differentially abundant proteins, providing an average of 13% more yeast proteins that reached statistical significance. SIGNIFCANCE: We presented a novel TMTpro labeling method that overcomes the detrimental O-acylation and thus significantly improves the depth and quantitative precision for proteome analysis.


Assuntos
Proteoma , Espectrometria de Massas em Tandem , Humanos , Proteoma/análise , Espectrometria de Massas em Tandem/métodos , Proteômica/métodos , Peptídeos/química , Aminas , Acilação
4.
Org Biomol Chem ; 22(19): 3940-3950, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38682553

RESUMO

ß-Aminophosphonates obtained by the Michael addition of primary amines to the double bond of diethyl vinylphosphonate proved to be suitable starting materials (amine components) in the Kabachnik-Fields reaction with formaldehyde and dialkyl phosphites or secondary phosphine oxides to afford N-phosphonylmethyl- and N-phosphinoylmethyl-ß-aminophosphonates. On the other hand, the starting aminophosphonates were modified by N-acylation using acid chlorides. The N-acyl products were found to exist in a dynamic equilibrium of two conformers as suggested by the broad NMR signals. At 26 °C, there may be rotation around the N-C axis of the acylamide function. At the same time, low-temperature NMR measurements at -5 °C revealed the presence of two distinct rotamers that could be characterized by 31P, 13C and 1H NMR data. The modified ß-aminophosphonic derivatives were subjected to a comparative structure-activity analysis on MDA-MB-231, PC-3, A431 and Ebc-1 tumor cell lines, and in a few cases, significant activity was detected.


Assuntos
Antineoplásicos , Organofosfonatos , Organofosfonatos/química , Organofosfonatos/farmacologia , Organofosfonatos/síntese química , Humanos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Aminas/química , Aminas/farmacologia , Aminas/síntese química
5.
ACS Biomater Sci Eng ; 10(5): 3057-3068, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38641433

RESUMO

Blood-contacting catheters play a pivotal role in contemporary medical treatments, particularly in the management of cardiovascular diseases. However, these catheters exhibit inappropriate wettability and lack antimicrobial characteristics, which often lead to catheter-related infections and thrombosis. Therefore, there is an urgent need for blood contact catheters with antimicrobial and anticoagulant properties. In this study, we employed tannic acid (TA) and 3-aminopropyltriethoxysilane (APTES) to create a stable hydrophilic coating under mild conditions. Heparin (Hep) and poly(lysine) (PL) were then modified on the TA-APTES coating surface using the layer-by-layer (LBL) technique to create a superhydrophilic TA/APTES/(LBL)4 coating on silicone rubber (SR) catheters. Leveraging the superhydrophilic nature of this coating, it can be effectively applied to blood-contacting catheters to impart antibacterial, antiprotein adsorption, and anticoagulant properties. Due to Hep's anticoagulant attributes, the activated partial thromboplastin time and thrombin time tests conducted on SR/TA-APTES/(LBL)4 catheters revealed remarkable extensions of 276 and 103%, respectively, when compared to uncoated commercial SR catheters. Furthermore, the synergistic interaction between PL and TA serves to enhance the resistance of SR/TA-APTES/(LBL)4 catheters against bacterial adherence, reducing it by up to 99.9% compared to uncoated commercial SR catheters. Remarkably, the SR/TA-APTES/(LBL)4 catheter exhibits good biocompatibility with human umbilical vein endothelial cells in culture, positioning it as a promising solution to address the current challenges associated with blood-contact catheters.


Assuntos
Catéteres , Materiais Revestidos Biocompatíveis , Heparina , Polifenóis , Taninos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Humanos , Catéteres/microbiologia , Polifenóis/química , Polifenóis/farmacologia , Heparina/química , Heparina/farmacologia , Taninos/química , Taninos/farmacologia , Silanos/química , Silanos/farmacologia , Anticoagulantes/química , Anticoagulantes/farmacologia , Propilaminas/química , Aminas/química , Aminas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Polilisina/química , Polilisina/farmacologia , Propriedades de Superfície , Interações Hidrofóbicas e Hidrofílicas , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Elastômeros de Silicone/química , Adsorção , Escherichia coli/efeitos dos fármacos
6.
Environ Int ; 186: 108609, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579452

RESUMO

Recently, evidence of aromatic amine antioxidants (AAs) existence in the dust of the electronic waste (e-waste) dismantling area has been exposed. However, there are limited studies investigating occupational exposure and toxicity associated with AAs and their transformation products (p-phenylenediamines-quinones, i.e., PPD-Qs). In this study, 115 dust and 42 hand wipe samples collected from an e-waste recycling industrial park in central China were analyzed for 19 AAs and 6 PPD-Qs. Notably, the median concentration of ∑6PPD-Qs (1,110 ng/g and 1,970 ng/m2) was significantly higher (p < 0.05, Mann-Whitney U test) than that of ∑6PPDs (147 ng/g and 34.0 ng/m2) in dust and hand wipes. Among the detected analytes, 4-phenylaminodiphenylamine quinone (DPPD-Q) (median: 781 ng/g) and 1,4-Bis(2-naphthylamino) benzene quinone (DNPD-Q) (median: 156 ng/g), were particularly prominent, which were first detected in the e-waste dismantling area. Occupational exposure assessments and nuclear receptor interference ability, conducted through estimated daily intake (EDI) and molecular docking analysis, respectively, indicated significant occupational exposure to PPD-Qs and suggested prioritized Liver X receptors (LXRs) disruption potential of PPDs and PPD-Qs. The study provides the first evidence of considerable levels of AAs and PPD-Qs in the e-waste-related hand wipe samples and underscores the importance of assessing occupational exposure and associated toxicity effects.


Assuntos
Antioxidantes , Poeira , Resíduo Eletrônico , Exposição Ocupacional , Reciclagem , Exposição Ocupacional/análise , Humanos , Poeira/análise , China , Quinonas/análise , Aminas/análise
7.
Food Chem ; 449: 139225, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38599107

RESUMO

Heterocyclic aromatic amines (HAAs), arising as chemical derivatives during the high-temperature culinary treatment of proteinaceous comestibles, exhibit notable carcinogenic potential. In this paper, a composite aerogel (AGD-UiO-66) with high-capacity and fast adsorption of HAAs was made with anchoring defective UiO-66 (D-UiO-66) mediated by lauric acid on the backbone of cellulose nanofibers (CNF). AGD-UiO-66 with hierarchical porosity reduced the mass transfer efficiency for the adsorption of HAAs and achieved high adsorption amount (0.84-1.05 µmol/g) and fast adsorption (15 min). The isothermal adsorption model demonstrated that AGD-UiO-66 belonged to a multilayer adsorption mechanism for HAAs. Furthermore, AGD-UiO-66 was successfully used to adsorb 12 HAAs in different food (roasted beef, roasted pork, roasted salmon and marinade) with high recoveries of 94.65%-104.43%. The intrinsic potential of AGD-UiO-66 demonstrated that it could be widely applicable to the adsorption of HAAs in foods.


Assuntos
Aminas , Celulose , Nanocompostos , Adsorção , Aminas/química , Celulose/química , Animais , Nanocompostos/química , Compostos Heterocíclicos/química , Bovinos , Suínos , Salmão , Estruturas Metalorgânicas/química , Carne/análise , Contaminação de Alimentos/análise , Géis/química
8.
Int J Biol Macromol ; 267(Pt 1): 131584, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615856

RESUMO

Heterocyclic aromatic amines (HAAs) are the main carcinogens produced during thermal processing of protein-rich foods. In this paper, a composite aerogel (TOCNFCa) with a stabilized dual-network structure was prepared via a template for the in-situ synthesis of UiO-66 on cellulose for the adsorption of HAAs in food. The dual-network structure of TOCNFCa provides the composite aerogel with excellent wet strength, maintaining excellent compressive properties. With the in-situ grown UiO-66 content up to 71.89 wt%, the hierarchical porosity endowed TOCNFCa@UiO-66 with the ability to rapidly adsorb HAAs molecules with high capacity (1.44-5.82 µmol/g). Based on excellent thermal stability, adsorption capacity and anti-interference, TOCNFCa@UiO-66 achieved satisfactory recoveries of HAAs in the boiled marinade, which is faster and more economical than the conventional SPE method. Moreover, TOCNFCa@UiO-66 could maintain 84.55 % of the initial adsorption capacity after 5 times of reuse.


Assuntos
Aminas , Celulose , Compostos Heterocíclicos , Estruturas Metalorgânicas , Nanofibras , Ácidos Ftálicos , Celulose/química , Adsorção , Aminas/química , Nanofibras/química , Estruturas Metalorgânicas/química , Compostos Heterocíclicos/química , Géis/química , Porosidade
9.
Molecules ; 29(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542890

RESUMO

An unparalleled copper(I)-catalyzed synthesis of 1,3,4-oxadiazoles from tertiary amines in one step has been described. The one-pot reactions involving (N-isocyanimine)triphenylphosphorane, tertiary amines, and carboxylic acids resulted in the formation of 1,3,4-oxadiazoles in moderate to good yields through a consecutive oxidative Ugi/aza-Wittig reaction, enabling the direct functionalization of sp3 C-H bonds adjacent to the nitrogen atom. This method offered several notable advantages, including ligands-free, exceptional productivity and a high functional group tolerance. The preliminary biological evaluation demonstrated that compound 4f inhibited hepatoma cells efficiently, suggesting potentially broad applications of the approach for synthesis and medicinal chemistry.


Assuntos
Cobre , Compostos Organofosforados , Oxidiazóis , Cobre/química , Oxidiazóis/química , Aminas/química , Catálise , Estresse Oxidativo
10.
Biomater Adv ; 159: 213834, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518390

RESUMO

The management of bleeding is an important aspect of endoscopic surgery to avoid excessive blood loss and minimize pain. In clinical settings, sprayable hemostatic particles are used for their easy delivery, adaptability to irregular shapes, and rapid hydration. However, conventional hemostatic particles present challenges associated with tissue adhesion. In a previous study, we reported tissue adhesive microparticles (C10-sa-MPs) derived from Alaska pollock gelatin modified with decyl groups (C10-sa-ApGltn) using secondary amines as linkages. The C10-sa-MPs adhere to soft tissues through a hydration mechanism. However, their application as a hemostatic agent was limited by their long hydration times, attributed to their high hydrophobicity. In this study, we present a new type microparticle, C10-am-MPs, synthesized by incorporating decanoyl group modifications into ApGltn (C10-am-ApGltn), using amide bonds as linkages. C10-am-MPs exhibited enhanced hydration characteristics compared to C10-sa-MPs, attributed to superior water absorption facilitated by amide bonds rather than secondary amines. Furthermore, C10-am-MPs demonstrated comparable tissue adhesion properties and underwater adhesion stability to C10-sa-MPs. Notably, C10-am-MPs exhibited accelerated blood coagulation in vitro compared to C10-sa-MPs. The application of C10-am-MPs in an in vivo rat liver hemorrhage model resulted in a hemostatic effect comparable to a commercially available hemostatic particle. These findings highlight the potential utility of C10-am-MPs as an effective hemostatic agent for endoscopic procedures and surgical interventions.


Assuntos
Gadiformes , Hemostáticos , Adesivos Teciduais , Ratos , Animais , Adesivos Teciduais/farmacologia , Adesivos Teciduais/uso terapêutico , Adesivos Teciduais/química , Hemostáticos/farmacologia , Hemostáticos/uso terapêutico , Gelatina/farmacologia , Gelatina/química , Alaska , Aderências Teciduais , Amidas , Aminas
11.
Nano Lett ; 24(14): 4091-4100, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38489158

RESUMO

Catalytic cancer therapy targets cancer cells by exploiting the specific characteristics of the tumor microenvironment (TME). TME-based catalytic strategies rely on the use of molecules already present in the TME. Amino groups seem to be a suitable target, given the abundance of proteins and peptides in biological environments. Here we show that catalytic CuFe2O4 nanoparticles are able to foster transaminations with different amino acids and pyruvate, another key molecule present in the TME. We observed a significant in cellulo decrease in glutamine and alanine levels up to 48 h after treatment. In addition, we found that di- and tripeptides also undergo catalytic transamination, thereby extending the range of the effects to other molecules such as glutathione disulfide (GSSG). Mechanistic calculations for GSSG transamination revealed the formation of an imine between the oxo group of pyruvate and the free -NH2 group of GSSG. Our results highlight transamination as alternative to the existing toolbox of catalytic therapies.


Assuntos
Aminoácidos , Neoplasias , Aminoácidos/química , Dissulfeto de Glutationa , Microambiente Tumoral , Aminas , Ácido Pirúvico , Catálise
12.
J Org Chem ; 89(7): 5010-5018, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38532573

RESUMO

Recent years have seen novel modalities emerge for the treatment of human diseases resulting in an increase in beyond rule of 5 (bRo5) chemical matter. As a result, synthetic innovations aiming to enable rapid access to complex bRo5 molecular entities have become increasingly valuable for medicinal chemists' toolkits. Herein, we report the general synthesis of a new class of noncanonical amino acids (ncAA) with a cyclopropyl backbone to achieve conformational constraint and bearing C(sp3)-rich benzene bioisosteres. We also demonstrate preliminary studies toward utilities of these ncAA as building blocks for medicinal chemistry research.


Assuntos
Aminoácidos , Benzeno , Humanos , Aminoácidos/química , Aminas , Conformação Molecular
13.
Eur J Med Chem ; 269: 116361, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38547736

RESUMO

Stabilization of G-quadruplex (G4) structures in mitochondria leads to the damage of mitochondrial DNA (mtDNA), making mtDNA G4s a promising target in the field of cancer therapy in recent years. Damaged mtDNA released into the cytosol can stimulate cytosolic DNA-sensing pathways, and cGAS-STING pathway is a typical one with potent immunostimulatory effects. A few small molecule ligands of mtDNA G4s are identified with antitumor efficacy, but little is known about their results and mechanisms on immunomodulation. In this study, we engineered a series of triphenylamine-based analogues targeting mtDNA G4s, and A6 was determined as the most promising compound. Cellular studies indicated that A6 caused severe mtDNA damage. Then, damaged mtDNA stimulated cGAS-STING pathway, resulting in the following cytokine production of tumor cells and the maturation of DCs. In vivo experiments certified that A6 exerted suppressive influences on tumor growth and metastasis in 4T1 cell-bearing mice by the regulation of TME, including the remodeling of macrophages and the activation of T cells. To our knowledge, it is the first time to report a ligand targeting mtDNA G4s to activate the cGAS-STING immunomodulatory pathway, providing a novel strategy for the future development of mtDNA G4-based antitumor agents.


Assuntos
Quadruplex G , Animais , Camundongos , Ligantes , Mitocôndrias , DNA Mitocondrial , Aminas , Imunomodulação , Nucleotidiltransferases
14.
J Med Chem ; 67(6): 4707-4725, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38498998

RESUMO

Despite decades of research on new diffuse intrinsic pontine glioma (DIPG) treatments, little or no progress has been made on improving patient outcomes. In this work, we explored novel scaffold modifications of M4K2009, a 3,5-diphenylpyridine ALK2 inhibitor previously reported by our group. Here we disclose the design, synthesis, and evaluation of a first-in-class set of 5- to 7-membered ether-linked and 7-membered amine-linked constrained inhibitors of ALK2. This rigidification strategy led us to the discovery of the ether-linked inhibitors M4K2308 and M4K2281 and the amine-linked inhibitors M4K2304 and M4K2306, each with superior potency against ALK2. Notably, M4K2304 and M4K2306 exhibit exceptional selectivity for ALK2 over ALK5, surpassing the reference compound. Preliminary studies on their in vivo pharmacokinetics, including blood-brain barrier penetration, revealed that these constrained scaffolds have favorable exposure and do open a novel chemical space for further optimization and future evaluation in orthotopic models of DIPG.


Assuntos
Aminas , Éteres , Humanos
15.
Int J Biol Macromol ; 264(Pt 1): 130566, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432269

RESUMO

Polypeptides, especially star polypeptides, as a unique kind of biological macromolecules have broad applications in biomedical fields such as drug release, gene delivery, tissue engineering, and regenerative medicines due to their close structural similarity to naturally occurring peptides and proteins, biocompatibility, and amino acid functionality. However, the synthesis of star polypeptide mainly relies on the conventional primary amine-initiated ring-opening polymerization (ROP) of N-carboxyanhydrides (NCA) and suffers from low polymerization activity and limited controllability. This study proposes a fast, efficient and metal-free strategy to access star (co)polypeptides by combining the Michael reaction between acrylates and secondary aminoalcohols with the hydrogen-bonding organocatalytic ROP of NCA. This approach enables the preparation of a library of star (co)polypeptides with predesigned molecular weights, narrow molecular weight distributions, tunable arm number, and arm compositions. Importantly, this method exhibits high activity and selectivity at room temperature, making it both practical and versatile in synthesis applications.


Assuntos
Aminoácidos , Peptídeos , Peptídeos/química , Aminoácidos/química , Aminas/química , Polimerização , Metais
16.
Pharm Dev Technol ; 29(4): 322-338, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38502578

RESUMO

AIMS: Micellar systems have the advantage of being easily prepared, cheap, and readily loadable with bioactive molecular cargo. However, their fundamental pitfall is poor stability, particularly under dilution conditions. We propose to use simple quaternary ammonium surfactants, namely, hexadecylamine (HDA) and hexadecylpyridinium (HDAP), together with tripolyphosphate (TPP) anion, to generate ionotropically stabilized micelles capable of drug delivery into cancer cells. METHODS: optimized mixed HDA/HDAP micelles were prepared and stabilized with TPP. Curcumin was used as a loaded model drug. The prepared nanoparticles were characterized by dynamic light scattering, infrared spectroscopy, transmission electron microscopy, and differential scanning calorimetry. Moreover, their cellular uptake was assessed using flow cytometry and confocal fluorescence microscopy. RESULTS: The prepared nanoparticles were found to be stable under dilution and at high temperatures and to have a size range from 139 nm to 580 nm, depending on pH (4.6-7.4), dilution (up to 100 times), and temperature (25 - 80 °C). They were effective at delivering their load into cancer cells. Additionally, flow cytometry indicated the resulting stabilized micellar nanoparticles to be non-cytotoxic. CONCLUSIONS: The described novel stabilized micelles are simple to prepare and viable for cancer delivery.


Assuntos
Aminas , Curcumina , Sistemas de Liberação de Medicamentos , Micelas , Nanopartículas , Polifosfatos , Humanos , Aminas/química , Polifosfatos/química , Nanopartículas/química , Sistemas de Liberação de Medicamentos/métodos , Curcumina/administração & dosagem , Curcumina/química , Curcumina/farmacologia , Curcumina/farmacocinética , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacocinética , Portadores de Fármacos/química , Tensoativos/química , Tensoativos/síntese química , Tamanho da Partícula , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico
17.
Compr Rev Food Sci Food Saf ; 23(2): e13313, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38470221

RESUMO

Polyphenols are well documented against the inhibition of foodborne toxicants in meat, such as heterocyclic amines, Maillard's reaction products, and protein oxidation, by means of their radical scavenging ability, metal chelation, antioxidant properties, and ability to form protein-polyphenol complexes (PPCs). However, their thermal stability, low polarity, degree of dispersion and polymerization, reactivity, solubility, gel forming properties, low bioaccessibility index during digestion, and negative impact on sensory properties are all questionable at oil-in-water interface. This paper aims to review the possibility and efficacy of polyphenols against the inhibition of mutagenic and carcinogenic oxidative products in thermally processed meat. The major findings revealed that structure of polyphenols, for example, molecular size, no of substituted carbons, hydroxyl groups and their position, sufficient size to occupy reacting sites, and ability to form quinones, are the main technical points that affect their reactivity in order to form PPCs. Following a discussion of the future of polyphenols in meat-based products, this paper offers intervention strategies, such as the combined use of food additives and hydrocolloids, processing techniques, precursors, and structure-binding relationships, which can react synergistically with polyphenols to improve their effectiveness during intensive thermal processing. This comprehensive review serves as a valuable source for food scientists, providing insights and recommendations for the appropriate use of polyphenols in meat-based products.


Assuntos
Produtos da Carne , Carne , Aminas , Antioxidantes , Carcinógenos
18.
Environ Sci Technol ; 58(10): 4792-4801, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38427382

RESUMO

N-Nitrosamines are potential human carcinogens frequently detected in natural and engineered aquatic systems. This study sheds light on the role of carbonyl compounds in the formation of N-nitrosamines by nitrosation of five secondary amines via different pathways. The results showed that compared to a control system, the presence of formaldehyde enhances the formation of N-nitrosamines by a factor of 5-152 at pH 7, depending on the structure of the secondary amines. Acetaldehyde showed a slight enhancement effect on N-nitrosamine formation, while acetone and benzaldehyde did not promote nitrosation reactions. For neutral and basic conditions, the iminium ion was the dominant intermediate for N-nitrosamine formation, while carbinolamine became the major contributor under acidic conditions. Negative free energy changes (<-19 kcal mol-1) and relatively low activation energies (<18 kcal mol-1) of the reactions of secondary amines with N2O3, iminium ions with nitrite and carbinolamines with N2O3 from quantum chemical computations further support the proposed reaction pathways. This highlights the roles of the iminium ion and carbinolamine in the formation of N-nitrosamines during nitrosation in the presence of carbonyl compounds, especially in the context of industrial wastewater.


Assuntos
Nitrosaminas , Humanos , Nitrosaminas/química , Nitrosação , Aminas , Carcinógenos , Nitritos/química
19.
Environ Geochem Health ; 46(3): 105, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441743

RESUMO

The extensive use of organic amine pesticides (OAPs) in agricultural practices has resulted in the contamination of water environments, posing threats to ecosystems and human health. This study focused on the Xiang River (XR), a representative drinking water source, as the research area to investigate the occurrence characteristics of 34 OAPs. Diphenylamine emerged as the most prevalent OAP in surface water due to industrial and agricultural activities, while cycloate dominated in sediments due to cumulative effects. Generally, the concentration of OAPs in a mixed tap water sample was lower than those in surface water samples, indicating OAPs can be removed by water plants to a certain extent. The water-sediment distribution coefficients (kd) of ΣOAPs were much less than 1 L/g, the majority of OAPs maintained relatively high concentrations in water samples instead of accumulating in sediments. Furthermore, risk assessment revealed that carbofuran showed a moderate risk to the aquatic environment, with a risk quotient of 0.23, while other OAPs presented minor risks. This study provided crucial insights for regional pesticide management and control in the XR basin, emphasizing the importance of implementing strategies to minimize the release of OAPs into the environment and protect human health.


Assuntos
Água Potável , Praguicidas , Humanos , Aminas , Ecossistema , Rios , China , Medição de Risco
20.
Amino Acids ; 56(1): 22, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483649

RESUMO

Heart failure (HF) has been recognized as a global epidemic with high rates of morbidity, hospitalization, and mortality. The role of amino acids, which provide the body with energy, in the development of HF is still unclear. The aim of this study was to explore changes in serum amino acids in patients with HF and identify potential biomarkers. First, the serum amino acid metabolism profiles of 44 patients with HF and 30 healthy controls (Con) were quantitatively measured. Then, candidate markers were identified through the utilization of T test, multivariate statistical analysis, and receiver operating characteristic (ROC) curve analysis. The results found that there were 11 amino acid levels that were significantly different between patients with HF and Con. Based on ROC curve analysis, the biomarkers of eight amino acids (Glutamic acid, Taurine, L-aspartic acid, L-ornithine, Ethanolamine, L-Serine, L-Sarcosine, and Cysteine) showed high sensitivity and specificity (AUC > 0.90), and binary logistic regression analysis was used in MetaboAnalyst 5.0. Among the amino acids examined, six exhibited notable alterations in accordance with the severity of HF. In conclusion, this study cannot only provide clinicians with an objective diagnostic approach for the early identification of HF, but also enhances comprehension of the underlying mechanisms involved in the pathogenesis of HF.


Assuntos
Insuficiência Cardíaca , Metabolômica , Humanos , Metabolômica/métodos , Aminoácidos/metabolismo , Curva ROC , Biomarcadores , Aminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA