Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
mSphere ; 6(4): e0024421, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34319130

RESUMO

Recent studies have shown that persistent SARS-CoV-2 infections in immunocompromised patients can trigger the accumulation of an unusual high number of mutations with potential relevance at both biological and epidemiological levels. Here, we report a case of an immunocompromised patient (non-Hodgkin lymphoma patient under immunosuppressive therapy) with a persistent SARS-CoV-2 infection (marked by intermittent positivity) over at least 6 months. Viral genome sequencing was performed at days 1, 164, and 171 to evaluate SARS-CoV-2 evolution. Among the 15 single-nucleotide polymorphisms (SNPs) (11 leading to amino acid alterations) and 3 deletions accumulated during this long-term infection, four amino acid changes (V3G, S50L, N87S, and A222V) and two deletions (18-30del and 141-144del) occurred in the virus Spike protein. Although no convalescent plasma therapy was administered, some of the detected mutations have been independently reported in other chronically infected individuals, which supports a scenario of convergent adaptive evolution. This study shows that it is of the utmost relevance to monitor the SARS-CoV-2 evolution in immunocompromised individuals, not only to identify novel potentially adaptive mutations, but also to mitigate the risk of introducing "hyper-evolved" variants in the community. IMPORTANCE Tracking the within-patient evolution of SARS-CoV-2 is key to understanding how this pandemic virus shapes its genome toward immune evasion and survival. In the present study, by monitoring a long-term COVID-19 immunocompromised patient, we observed the concurrent emergence of mutations potentially associated with immune evasion and/or enhanced transmission, mostly targeting the SARS-CoV-2 key host-interacting protein and antigen. These findings show that the frequent oscillation in the immune status in immunocompromised individuals can trigger an accelerated virus evolution, thus consolidating this study model as an accelerated pathway to better understand SARS-CoV-2 adaptive traits and anticipate the emergence of variants of concern.


Assuntos
COVID-19/imunologia , Evasão da Resposta Imune/imunologia , Hospedeiro Imunocomprometido/imunologia , Linfoma não Hodgkin/imunologia , SARS-CoV-2/imunologia , Aminoácidos/genética , Aminoácidos/imunologia , Animais , COVID-19/virologia , Linhagem Celular , Chlorocebus aethiops , Feminino , Genoma Viral/genética , Genoma Viral/imunologia , Humanos , Evasão da Resposta Imune/genética , Imunização Passiva/métodos , Linfoma não Hodgkin/virologia , Pessoa de Meia-Idade , Mutação/genética , Mutação/imunologia , Pandemias/prevenção & controle , SARS-CoV-2/genética , Células Vero , Replicação Viral/genética , Replicação Viral/imunologia
2.
Immunology ; 162(2): 194-207, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32986852

RESUMO

Class II human leucocyte antigen (HLA) proteins are involved in the immune response by presenting pathogen-derived peptides to CD4+ T lymphocytes. At the molecular level, they are constituted by α/ß-heterodimers on the surface of professional antigen-presenting cells. Here, we report that the acceptor variant (rs8084) in the HLA-DRA gene mediates the transcription of an alternative version of the α-chain lacking 25 amino acids in its extracellular domain. Molecular dynamics simulations suggest this isoform undergoes structural refolding which in turn affects its stability and cellular trafficking. The short HLA-DRA isoform cannot reach the cell surface, although it is still able to bind the corresponding ß-chain. Conversely, it remains entrapped within the endoplasmic reticulum where it is targeted for degradation. Furthermore, we demonstrate that the short isoform can be transported to the cell membrane via interactions with the peptide-binding site of canonical HLA heterodimers. Altogether, our findings indicate that short HLA-DRA functions as a novel intact antigen for class II HLA molecules.


Assuntos
Cadeias alfa de HLA-DR/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Isoformas de Proteínas/imunologia , Adulto , Idoso , Aminoácidos/imunologia , Células Apresentadoras de Antígenos/imunologia , Sítios de Ligação/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/imunologia , Retículo Endoplasmático/imunologia , Feminino , Células HEK293 , Células HeLa , Humanos , Leucócitos Mononucleares/imunologia , Masculino , Pessoa de Meia-Idade , Peptídeos/imunologia , T-Linfocitopenia Idiopática CD4-Positiva/imunologia
3.
Poult Sci ; 99(11): 5625-5636, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33142480

RESUMO

L-theanine (γ-Glutamylethylamide) is a nonprotein water soluble amino acid (AA) mostly found in leaves of Camellia sinensis (green tea). This is a key component of green tea and is considered as the most abundant form of total AAs in green tea (i.e., about 50%). L-theanine is an exclusive taste ingredient of tea producing an attractive flavor and aroma in tea. It has biological effects such as antioxidant, growth promoter, immune booster, anti-stresser, hepatoprotective, antitumor, antiaging, antimicrobial, anti-inflammatory, and antianxiety activities that are worth noticing. It could reduce the oxidative impairment by reducing the synthesis of reactive oxygen species, oxidative parameters, and lipid damage as well as increasing the activity of antioxidant enzymes. The oral ingestion of L-theanine enhanced γδ T-cell proliferation. Therefore, it is being considered an essential compound of green tea that has the ability to improve immune function. The L-theanine can be used as a potential treatment for hepatic injury and immune-related liver diseases via the downregulation of the inflammatory response through the initiation of nitric oxide synthesis and glutathione production which are likely to be critical for the control of hepatic diseases as well as for the improvement of immune function. In addition, it could be used as a best natural feed additive with a potent antistressor by decreasing the levels of corticosterone, dopamine, and noradrenaline. After systematically reviewing the literature, it is noticed that most studies were carried out on mice, pig, human, and butterfly; while dietary supplementation studies of L-theanine in animal and poultry especially among broilers are very limited because of less awareness of this AA. So, the aim of this review is to encourage the veterinarian and poultry researchers to conduct more research at the molecular level about this AA to expose its more beneficial effects and its mechanism of absorption for potential use of this unique green tea AA in poultry nutrition.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Glutamatos , Aves Domésticas , Aminoácidos/imunologia , Animais , Galinhas , Dieta/veterinária , Glutamatos/imunologia , Camundongos , Aves Domésticas/imunologia , Suínos
4.
Prog Med Chem ; 59: 1-62, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32362326

RESUMO

Immuno-oncology therapies are revolutionizing the oncology landscape with checkpoint blockade becoming the treatment backbone for many indications. While inspiring, much work remains to increase the number of cancer patients that can benefit from these treatments. Thus, a new era of immuno-oncology research has begun which is focused on identifying novel combination regimes that lead to improved response rates. This review highlights the significance of small molecules in this approach and illustrates the huge progress that has been made to date.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Aminoácidos/antagonistas & inibidores , Aminoácidos/imunologia , Antineoplásicos/química , Humanos , Neoplasias/imunologia , Inibidores de Proteínas Quinases/química , Proteínas Quinases/imunologia , Proteínas Quinases/metabolismo , Bibliotecas de Moléculas Pequenas/química
5.
Nat Rev Cancer ; 19(3): 162-175, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30696923

RESUMO

Immune checkpoints arise from physiological changes during tumorigenesis that reprogramme inflammatory, immunological and metabolic processes in malignant lesions and local lymphoid tissues, which constitute the immunological tumour microenvironment (TME). Improving clinical responses to immune checkpoint blockade will require deeper understanding of factors that impact local immune balance in the TME. Elevated catabolism of the amino acids tryptophan (Trp) and arginine (Arg) is a common TME hallmark at clinical presentation of cancer. Cells catabolizing Trp and Arg suppress effector T cells and stabilize regulatory T cells to suppress immunity in chronic inflammatory diseases of clinical importance, including cancers. Processes that induce Trp and Arg catabolism in the TME remain incompletely defined. Indoleamine 2,3 dioxygenase (IDO) and arginase 1 (ARG1), which catabolize Trp and Arg, respectively, respond to inflammatory cues including interferons and transforming growth factor-ß (TGFß) cytokines. Dying cells generate inflammatory signals including DNA, which is sensed to stimulate the production of type I interferons via the stimulator of interferon genes (STING) adaptor. Thus, dying cells help establish local conditions that suppress antitumour immunity to promote tumorigenesis. Here, we review evidence that Trp and Arg catabolism contributes to inflammatory processes that promote tumorigenesis, impede immune responses to therapy and might promote neurological comorbidities associated with cancer.


Assuntos
Aminoácidos/imunologia , Carcinogênese/imunologia , Metabolismo/imunologia , Animais , Humanos , Microambiente Tumoral/imunologia
6.
HLA ; 92(6): 403-407, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30239163

RESUMO

Development of effective immunotherapy for chemoresistant malignancies can be advanced by studies in spontaneous cancer models, such as the dog. A crucial first step, T-cell epitope discovery, can be assisted by determination of binding motifs of common dog leukocyte antigen (DLA) class Ia allotypes. Boxers are popular, inbred dogs with increased risks of relevant target cancers and restricted MHC diversity. We sought to identify the motif of DLA-88*034:01, a breed-dominant allotype, to assist peptide prediction from tumor antigens. Mass spectrometry of eluted peptides showed a preference for nonamers with conserved amino acid preferences: basic at position (P)1; hydrophobic at P2; acidic at P4; histidine at P6; and phenylalanine at P9. This data should expedite finding epitopes restricted by this DLA-88 allotype.


Assuntos
Aminoácidos/química , Epitopos/química , Antígenos de Histocompatibilidade Classe I/química , Oligopeptídeos/química , Motivos de Aminoácidos , Aminoácidos/imunologia , Animais , Antígenos de Neoplasias/análise , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Cães , Epitopos/genética , Epitopos/imunologia , Expressão Gênica , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Oligopeptídeos/genética , Oligopeptídeos/imunologia , Ligação Proteica , Linfócitos T/química , Linfócitos T/imunologia , Espectrometria de Massas em Tandem
7.
J Immunol ; 200(11): 3790-3800, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29686050

RESUMO

Amino acid metabolism plays important roles in innate immune cells, including macrophages. Recently, we reported that a lysosomal adaptor protein, Lamtor1, which serves as the scaffold for amino acid-activated mechanistic target of rapamycin complex 1 (mTORC1), is critical for the polarization of M2 macrophages. However, little is known about how Lamtor1 affects the inflammatory responses that are triggered by the stimuli for TLRs. In this article, we show that Lamtor1 controls innate immune responses by regulating the phosphorylation and nuclear translocation of transcription factor EB (TFEB), which has been known as the master regulator for lysosome and autophagosome biogenesis. Furthermore, we show that nuclear translocation of TFEB occurs in alveolar macrophages of myeloid-specific Lamtor1 conditional knockout mice and that these mice are hypersensitive to intratracheal administration of LPS and bleomycin. Our observation clarified that the amino acid-sensing pathway consisting of Lamtor1, mTORC1, and TFEB is involved in the regulation of innate immune responses.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/imunologia , Imunidade Inata/imunologia , Lisossomos/imunologia , Proteínas/imunologia , Aminoácidos/imunologia , Animais , Autofagia/imunologia , Linhagem Celular , Núcleo Celular/imunologia , Macrófagos/imunologia , Alvo Mecanístico do Complexo 1 de Rapamicina/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação/imunologia , Transporte Proteico/imunologia , Células RAW 264.7 , Transdução de Sinais/imunologia , Serina-Treonina Quinases TOR/imunologia
8.
Ann Oncol ; 29(4): 1030-1036, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29360924

RESUMO

Background: Tumor-specific mutations form novel immunogenic peptides called neoantigens. Neoantigens can be used as a biomarker predicting patient response to cancer immunotherapy. Although a predicted binding affinity (IC50) between peptide and major histocompatibility complex class I is currently used for neoantigen prediction, large number of false-positives exist. Materials and methods: We developed Neopepsee, a machine-learning-based neoantigen prediction program for next-generation sequencing data. With raw RNA-seq data and a list of somatic mutations, Neopepsee automatically extracts mutated peptide sequences and gene expression levels. We tested 14 immunogenicity features to construct a machine-learning classifier and compared with the conventional methods based on IC50 regarding sensitivity and specificity. We tested Neopepsee on independent datasets from melanoma, leukemia, and stomach cancer. Results: Nine of the 14 immunogenicity features that are informative and inter-independent were used to construct the machine-learning classifiers. Neopepsee provides a rich annotation of candidate peptides with 87 immunogenicity-related values, including IC50, expression levels of neopeptides and immune regulatory genes (e.g. PD1, PD-L1), matched epitope sequences, and a three-level (high, medium, and low) call for neoantigen probability. Compared with the conventional methods, the performance was improved in sensitivity and especially two- to threefold in the specificity. Tests with validated datasets and independently proven neoantigens confirmed the improved performance in melanoma and chronic lymphocytic leukemia. Additionally, we found sequence similarity in proteins to known pathogenic epitopes to be a novel feature in classification. Application of Neopepsee to 224 public stomach adenocarcinoma datasets predicted ∼7 neoantigens per patient, the burden of which was correlated with patient prognosis. Conclusions: Neopepsee can detect neoantigen candidates with less false positives and be used to determine the prognosis of the patient. We expect that retrieval of neoantigen sequences with Neopepsee will help advance research on next-generation cancer immunotherapies, predictive biomarkers, and personalized cancer vaccines.


Assuntos
Antígenos/genética , Genoma , Aprendizado de Máquina , Aminoácidos/imunologia , Conjuntos de Dados como Assunto , Humanos
9.
Angew Chem Int Ed Engl ; 57(9): 2314-2333, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28913971

RESUMO

Nanobodies can be seen as next-generation tools for the recognition and modulation of antigens that are inaccessible to conventional antibodies. Due to their compact structure and high stability, nanobodies see frequent usage in basic research, and their chemical functionalization opens the way towards promising diagnostic and therapeutic applications. In this Review, central aspects of nanobody functionalization are presented, together with selected applications. While early conjugation strategies relied on the random modification of natural amino acids, more recent studies have focused on the site-specific attachment of functional moieties. Such techniques include chemoenzymatic approaches, expressed protein ligation, and amber suppression in combination with bioorthogonal modification strategies. Recent applications range from sophisticated imaging and mass spectrometry to the delivery of nanobodies into living cells for the visualization and manipulation of intracellular antigens.


Assuntos
Neoplasias/imunologia , Anticorpos de Domínio Único/química , Aminoácidos/química , Aminoácidos/imunologia , Animais , Antígenos/química , Antígenos/imunologia , Humanos , Espectrometria de Massas , Neoplasias/patologia , Anticorpos de Domínio Único/imunologia
10.
Mol Plant Pathol ; 19(3): 731-743, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28387986

RESUMO

Avirulence factors are critical for the arm's race between a virus and its host in determining incompatible reactions. The response of plants to viruses from the genus Nepovirus in the family Secoviridae, including Grapevine fanleaf virus (GFLV), is well characterized, although the nature and characteristics of the viral avirulence factor remain elusive. By using infectious clones of GFLV strains F13 and GHu in a reverse genetics approach with wild-type, assortant and chimeric viruses, the determinant of necrotic lesions caused by GFLV-F13 on inoculated leaves of Nicotiana occidentalis was mapped to the RNA2-encoded protein 2AHP , particularly to its 50 C-terminal amino acids. The necrotic response showed hallmark characteristics of a genuine hypersensitive reaction, such as the accumulation of phytoalexins, reactive oxygen species, pathogenesis-related protein 1c and hypersensitivity-related (hsr) 203J transcripts. Transient expression of the GFLV-F13 protein 2AHP fused to an enhanced green fluorescent protein (EGFP) tag in N. occidentalis by agroinfiltration was sufficient to elicit a hypersensitive reaction. In addition, the GFLV-F13 avirulence factor, when introduced in GFLV-GHu, which causes a compatible reaction on N. occidentalis, elicited necrosis and partially restricted the virus. This is the first identification of a nepovirus avirulence factor that is responsible for a hypersensitive reaction in both the context of virus infection and transient expression.


Assuntos
Aminoácidos/imunologia , Nepovirus/imunologia , Nepovirus/patogenicidade , Nicotiana/imunologia , Nicotiana/virologia , Proteínas Virais/imunologia , Aminoácidos/química , Genoma Viral/genética , Nepovirus/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas Virais/química
11.
Chem Res Toxicol ; 30(12): 2218-2228, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29137457

RESUMO

Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are irreversibly inhibited by organophosphorus pesticides through formation of a covalent bond with the active site serine. Proteins that have no active site serine, for example albumin, are covalently modified on tyrosine and lysine. Chronic illness from pesticide exposure is not explained by inhibition of AChE and BChE. Our goal was to produce a monoclonal antibody that recognizes proteins diethoxyphosphorylated on tyrosine. Diethoxyphosphate-tyrosine adducts for 13 peptides were synthesized. The diethoxyphosphorylated (OP) peptides cross-linked to four different carrier proteins were used to immunize, boost, and screen mice. Monoclonal antibodies were produced with hybridoma technology. Monoclonal antibody depY was purified and characterized by ELISA, western blotting, Biacore, and Octet technology to determine binding affinity and binding specificity. DepY recognized diethoxyphosphotyrosine independent of the amino acid sequence around the modified tyrosine and independent of the identity of the carrier protein or peptide. It had an IC50 of 3 × 10-9 M in a competition assay with OP tubulin. Kd values measured by Biacore and OctetRED96 were 10-8 M for OP-peptides and 1 × 10-12 M for OP-proteins. The limit of detection measured on western blots hybridized with 0.14 µg/mL of depY was 0.025 µg of human albumin conjugated to YGGFL-OP. DepY was specific for diethoxyphosphotyrosine (chlorpyrifos oxon adduct) as it failed to recognize diethoxyphospholysine, phosphoserine, phosphotyrosine, phosphothreonine, dimethoxyphosphotyrosine (dichlorvos adduct), dimethoxyphosphoserine, monomethoxyphosphotyrosine (aged dichlorvos adduct), and cresylphosphoserine. In conclusion, a monoclonal antibody that specifically recognizes diethoxyphosphotyrosine adducts has been developed. The depY monoclonal antibody could be useful for identifying new biomarkers of OP exposure.


Assuntos
Aminoácidos/química , Anticorpos Monoclonais/imunologia , Peptídeos/química , Peptídeos/imunologia , Fosfotirosina/análogos & derivados , Fosfotirosina/imunologia , Aminoácidos/imunologia , Animais , Anticorpos Monoclonais/biossíntese , Proteínas de Transporte/química , Proteínas de Transporte/imunologia , Humanos , Camundongos , Estrutura Molecular , Fosfotirosina/química
12.
PLoS One ; 12(11): e0188089, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29149207

RESUMO

We used NMR-based metabolomics to test two hypotheses-(i) there will be evolved differences in the metabolome of selected and control populations even under un-infected conditions and (ii) post infection, the metabolomes of the selected and control populations will respond differently. We selected replicate populations of Drosophila melanogaster for increased survivorship (I) against a gram-negative pathogen. We subjected the selected (I) and their control populations (S) to three different treatments: (1) infected with heat-killed bacteria (i), (2) sham infected (s), and (3) untreated (u). We performed 1D and 2D NMR experiments to identify the metabolic differences. Multivariate analysis of the metabolic profiles of the untreated (Iu and Su) flies yielded higher concentrations of lipids, organic acids, sugars, amino acids, NAD and AMP in the Iu treatment as compared to the Su treatment, showing that even in the absence of infection, the metabolome of the I and S regimes was different. In the S and I regimes, post infection/injury, concentration of metabolites directly or indirectly associated with energy related pathways (lipids, organic acids, sugars) declined while the concentration of metabolites that are probably associated with immune response (amino acids) increased. However, in most cases, the I regime flies had a higher concentration of such metabolites even under un-infected conditions. The change in the metabolite concentration upon infection/injury was not always comparable between I and S regimes (in case of lactate, alanine, leucine, lysine, threonine) indicating that the I and S regimes had evolved to respond differentially to infection and to injury.


Assuntos
Drosophila melanogaster/metabolismo , Evolução Molecular , Imunidade Inata/genética , Metaboloma/imunologia , Pseudomonas/fisiologia , Seleção Genética/imunologia , Monofosfato de Adenosina/imunologia , Monofosfato de Adenosina/metabolismo , Aminoácidos/imunologia , Aminoácidos/metabolismo , Animais , Resistência à Doença/genética , Drosophila melanogaster/genética , Drosophila melanogaster/imunologia , Drosophila melanogaster/microbiologia , Feminino , Lipídeos/química , Lipídeos/imunologia , Masculino , Metaboloma/genética , Metabolômica , Análise Multivariada , NAD/imunologia , NAD/metabolismo , Análise de Componente Principal , Pseudomonas/patogenicidade , Açúcares/imunologia , Açúcares/metabolismo
13.
Nat Commun ; 7: 13130, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27731330

RESUMO

Macrophages play crucial roles in host defence and tissue homoeostasis, processes in which both environmental stimuli and intracellularly generated metabolites influence activation of macrophages. Activated macrophages are classified into M1 and M2 macrophages. It remains unclear how intracellular nutrition sufficiency, especially for amino acid, influences on macrophage activation. Here we show that a lysosomal adaptor protein Lamtor1, which forms an amino-acid sensing complex with lysosomal vacuolar-type H+-ATPase (v-ATPase), and is the scaffold for amino acid-activated mTORC1 (mechanistic target of rapamycin complex 1), is critically required for M2 polarization. Lamtor1 deficiency, amino-acid starvation, or inhibition of v-ATPase and mTOR result in defective M2 polarization and enhanced M1 polarization. Furthermore, we identified liver X receptor (LXR) as the downstream target of Lamtor1 and mTORC1. Production of 25-hydroxycholesterol is dependent on Lamtor1 and mTORC1. Our findings demonstrate that Lamtor1 plays an essential role in M2 polarization, coupling immunity and metabolism.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Aminoácidos/imunologia , Citocinas/imunologia , Macrófagos/imunologia , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Serina-Treonina Quinases TOR/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Aminoácidos/deficiência , Animais , Diferenciação Celular , Linhagem da Célula/imunologia , Citocinas/genética , Feminino , Regulação da Expressão Gênica , Receptores X do Fígado/genética , Receptores X do Fígado/imunologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Macrolídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/imunologia , Camundongos , Camundongos Transgênicos , Naftiridinas/farmacologia , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/imunologia , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/imunologia
14.
Org Lett ; 18(15): 3890-3, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27453399

RESUMO

The first examples of amino acid (Ser/Thr)-sp(2)-iminosugar glycomimetic conjugates featuring an α-O-linked pseudoanomeric linkage are reported. The key synthetic step involves the completely diastereoselective α-glycosylation of Ser/Thr due to strong stereoelectronic and conformational bias imposed by the bicyclic sp(2)-iminosugar scaffold. Mucin-related glycopeptides incorporating these motifs were recognized by the monoclonal antibody (mAb) scFv-SM3, with activities depending on both the hydroxylation pattern (Glc/Gal/GlcNAc/GalNAc) of the sp(2)-iminosugar and the peptide aglycone structure (Ser/Thr).


Assuntos
Aminoácidos/química , Aminoácidos/imunologia , Anticorpos Monoclonais/imunologia , Afinidade de Anticorpos , Antígenos Glicosídicos Associados a Tumores/química , Mucina-1/imunologia , Glicopeptídeos/química , Glicopeptídeos/imunologia , Humanos
15.
Cell Rep ; 16(5): 1326-1338, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27452455

RESUMO

Chikungunya virus (CHIKV) and related alphaviruses cause epidemics of acute and chronic musculoskeletal disease. To investigate the mechanisms underlying the failure of immune clearance of CHIKV, we studied mice infected with an attenuated CHIKV strain (181/25) and the pathogenic parental strain (AF15561), which differ by five amino acids. Whereas AF15561 infection of wild-type mice results in viral persistence in joint tissues, 181/25 is cleared. In contrast, 181/25 infection of µMT mice lacking mature B cells results in viral persistence in joint tissues, suggesting that virus-specific antibody is required for clearance of infection. Mapping studies demonstrated that a highly conserved glycine at position 82 in the A domain of the E2 glycoprotein impedes clearance and neutralization of multiple CHIKV strains. Remarkably, murine and human antibodies targeting E2 domain B failed to neutralize pathogenic CHIKV strains efficiently. Our data suggest that pathogenic CHIKV strains evade E2 domain-B-neutralizing antibodies to establish persistence.


Assuntos
Linfócitos B/imunologia , Febre de Chikungunya/imunologia , Vírus Chikungunya/imunologia , Aminoácidos/imunologia , Animais , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Glicoproteínas/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Envelope Viral/imunologia
16.
Mar Drugs ; 14(6)2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27338421

RESUMO

Mycosporine-like amino acids (MAAs) are secondary metabolites, produced by a large variety of microorganisms including algae, cyanobacteria, lichen and fungi. MAAs act as UV-absorbers and photo-protectants. MAAs are suggested to exert pharmaceutical relevant bioactivities in the human system. We particularly focused on their effect on defence and regulatory pathways that are active in inflamed environments. The MAAs shinorine and porphyra-334 were isolated and purified from the red algae Porphyra sp. using chromatographic methods. The effect of MAAs on central signaling cascades, such as transcription factor nuclear factor kappa b (NF-κB) activation, as well as tryptophan metabolism, was investigated in human myelomonocytic THP-1 and THP-1-Blue cells. Cells were exposed to the MAAs in the presence or absence of lipopolysaccharide (LPS). NF-κB activity and the activity of tryptophan degrading enzyme indoleamine 2,3-dioxygenase (IDO-1) were used as readout. Compounds were tested in the concentration range from 12.5 to 200 µg/mL. Both MAAs were able to induce NF-κB activity in unstimulated THP-1-Blue cells, whereby the increase was dose-dependent and more pronounced with shinorine treatment. While shinorine also slightly superinduced NF-κB in LPS-stimulated cells, porphyra-334 reduced NF-κB activity in this inflammatory background. Modulation of tryptophan metabolism was moderate, suppressive in stimulated cells with the lower treatment concentration of both MAAs and with the unstimulated cells upon porphyra-334 treatment. Inflammatory pathways are affected by MAAs, but despite the structural similarity, diverse effects were observed.


Assuntos
Aminoácidos/farmacologia , Cicloexanonas/farmacologia , Cicloexilaminas/farmacologia , Glicina/análogos & derivados , Fatores Imunológicos/farmacologia , Aminoácidos/imunologia , Linhagem Celular Tumoral , Cicloexanonas/imunologia , Cicloexilaminas/imunologia , Glicina/imunologia , Glicina/farmacologia , Humanos , Fatores Imunológicos/imunologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , NF-kappa B/metabolismo , Porphyra/química , Rodófitas/química , Triptofano/metabolismo
17.
Immunogenetics ; 68(4): 247-60, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26758079

RESUMO

Defining permissive and non-permissive mismatches for transplantation is a demanding challenge. Single mismatches at amino acid (AA) position 156 of human leucocyte antigen (HLA) class I have been described to alter the peptide motif, repertoire, or mode of peptide loading through differential interaction with the peptide-loading complex. Hence, a single mismatch can tip the balance and trigger an immunological reaction. HLA-B*35 subtypes have been described to evade the loading complex, 156 mismatch distinguishing B*35:01 and B*35:08 changes the binding groove sufficiently to alter the sequence features of the selected peptide repertoire. To understand the functional influences of residue 156 in B*35 variants, we analyzed the peptide binding profiles of HLA-B*35:01(156Leu), B*35:08(156Arg) and B*35:62(156Trp). The glycoprotein tapasin represents a target for immune evasions and functions within the multimeric peptide-loading complex to stabilize empty class I molecules and promote acquisition of high-affinity peptides. All three B*35 subtypes showed a tapasin-independent mode of peptide acquisition. HLA-B*35-restricted peptides of low- and high-binding affinities were recovered in the presence and absence of tapasin and subsequently sequenced utilizing mass spectrometry. The peptides derived from B*35 variants differ substantially in their features dependent on their mode of recruitment; all peptides were preferentially anchored by Pro at p2 and Tyr, Phe, Leu, or Lys at pΩ. However, the Trp at residue 156 altered the p2 motif to an Ala and restricted the pΩ to a Trp. Our results highlight the importance of understanding the impact of key micropolymorphism and how a single AA mismatch orchestrates the neighboring AAs.


Assuntos
Substituição de Aminoácidos/genética , Antígeno HLA-B35/genética , Peptídeos/genética , Polimorfismo Genético/imunologia , Motivos de Aminoácidos/genética , Motivos de Aminoácidos/imunologia , Substituição de Aminoácidos/imunologia , Aminoácidos/genética , Aminoácidos/imunologia , Linhagem Celular , Retículo Endoplasmático/imunologia , Antígeno HLA-B35/imunologia , Transplante de Células-Tronco Hematopoéticas , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/imunologia , Peptídeos/imunologia , Ligação Proteica/imunologia
18.
J Agric Food Chem ; 63(45): 9987-95, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26551350

RESUMO

Calcium-sensing receptor (CaSR) plays an essential role in sensing nutrients and monitoring ion balance in the human gut. However, no discovery of CaSR-mediated anti-inflammatory effect of l-amino acids (l-AAs) on the gut system has been reported. The aim of this study is to screen and identify the anti-inflammatory activity of various l-AAs in intestinal epithelial cells (IECs) and stepwise illustrate a possible molecular mechanism for anti-inflammation. We used Caco-2 and HT-29 cell lines to evaluate the anti-inflammatory activity of l-AAs and revealed that l-tryptophan (l-Trp) and l-valine (l-Val) have strong anti-inflammatory activity consistent in both cell lines. l-Trp treatment (5 mM) reduced TNF-α-induced IL-8 secretion from HT-29 or Caco-2 cells to about 50 or 40%, respectively. l-Trp also significantly inhibited the expression of phosphorylation of JNK or IκBα to around 50% in HT-29 cells. However, the above inhibitory effects of l-Trp on inflammatory responses in TNF-α-induced HT-29 cells were abrogated by NPS-2143. The result of CaSR antagonist NPS-2143 pretreatment study suggests l-Trp exerts anti-inflammatory effects on IECs through CaSR activation. The involvement of ß-arrestin2 was then found to block tumor necrosis factor (TNF)-α-induced signaling pathways after CaSR activated by l-Trp. These results validate a novel mechanism underlying CaSR agonistic l-AAs exerting anti-inflammatory effects on human intestinal epithelia.


Assuntos
Aminoácidos/imunologia , Células Epiteliais/imunologia , Intestinos/imunologia , Receptores de Detecção de Cálcio/imunologia , Células CACO-2 , Humanos , Interleucina-8/imunologia , Mucosa Intestinal/imunologia , Intestinos/citologia , Fator de Necrose Tumoral alfa/imunologia
19.
Biochim Biophys Acta ; 1854(10 Pt A): 1438-43, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26160751

RESUMO

Dengue fever is a re-emerging tropical disease and its severe form is caused by cross-reactivity between its four serotypes (DEN1, DEN2, DEN3 and DEN4). The third domain of the viral envelope protein (ED3) contains the two major putative epitopes and is a highly suitable model protein for examining the molecular determinants of a virus' sero-specificity. Here we examine d the sero-specificity and cross-reactivity of the immune response against DEN3 and DEN4 ED3 using six epitope grafted ED3 variants where the surface-exposed epitope residues from DEN3 ED3 were switched to those of DEN4 ED3 and vice versa. We prepared anti-DEN3 and anti-DEN4 ED3 serum by immunizing Swiss albino mice and measured their reactivities against all six grafted mutants. As expected, both sera exhibited strong reactivity against its own serotype's ED3, and little cross-reactivity against their counterpart serotype's ED3s. E2 played a major role in the sero-specificity of anti-DEN3 serum, whereas E1 was important for DEN4 ED3's sero-specificity. Next, the reactivity patterns corroborated our working hypothesis that sero-specificity could be transferred by grafting the surface exposed epitope residues from one serotype to the other. To analyze the above results from a structural viewpoint, we determined the crystal structure of a DEN4 ED3 variant, where E2 was grafted from DEN3 ED3, at 2.78Å resolution and modeled the structures of the five remaining grafted variants by assuming that the overall backbone remained unchanged. The examination of the electrostatic and molecular surfaces of the variants suggested some further rationale for the sero-specificity of the immune responses.


Assuntos
Aminoácidos/química , Vírus da Dengue/química , Epitopos/química , Soros Imunes/química , Proteínas do Envelope Viral/química , Sequência de Aminoácidos , Aminoácidos/imunologia , Animais , Reações Cruzadas , Cristalografia por Raios X , Vírus da Dengue/genética , Vírus da Dengue/imunologia , Epitopos/genética , Epitopos/imunologia , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Engenharia Genética , Imunização , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Alinhamento de Sequência , Sorotipagem , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
20.
Pathol Oncol Res ; 21(4): 909-20, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25740072

RESUMO

Protein therapeutics, particularly of heterologous origin are shown to elicit immunogenic responses which result in adverse allergic reactions in spite of their promising clinical benefit. L-Asparaginase is one such well known chemotherapeutic agent that has enhanced the survival rates to 90 % in the treatment of acute lymphoblastic leukaemia for past 30 years. But the use of this enzyme is accompanied by hypersensitive reactions ranging from allergy to anaphylactic shock which have a drastic influence in treatment outcomes. Numerous attempts have been made to minimize the problems of immunogenicity, which remained as a major bottleneck in the treatment protocols. Conjugating the enzyme L- Asparaginase with PEG was successful as it has reduced the complications in therapy and frequency of injections (dosages), and thus became prominent in reducing the immunogenicity up to a certain extent. Keeping the bottlenecks in consideration during the development of therapeutics, the present study concentrates on engineering of protein as an alternative to the PEGylated enzyme, having reduced immunogenicity as an inbuilt character of protein by using in silico approaches. L-Asparaginase from Escherichia coli and Pectobacterium carotovorum were selected for the present study. The methodology consists of (i) locating the B and CD4+ T cell epitopes of enzyme by in silico tools (ii) generating point mutations of these epitopes to alter or reduce the immunogenicity of protein (iii) generating enzyme models by molecular modelling (iv) assessing the binding affinity of the substrate with L-Asparaginase variants by in silico docking methods using Autodock 4.2 and (v) validating the mutated model for stability by molecular dynamics simulation studies using Gromacs.


Assuntos
Aminoácidos/deficiência , Asparaginase/metabolismo , Terapia Enzimática , Epitopos/imunologia , Simulação de Dinâmica Molecular , Pectobacterium carotovorum/enzimologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Sequência de Aminoácidos , Aminoácidos/imunologia , Asparaginase/genética , Asparaginase/imunologia , Linfócitos T CD4-Positivos/imunologia , Simulação por Computador , Hipersensibilidade a Drogas/imunologia , Epitopos/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA