Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Nat Commun ; 15(1): 6186, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043665

RESUMO

Although hydrophobic interactions provide the main driving force for initial peptide aggregation, their role in regulating suprastructure handedness of higher-order architectures remains largely unknown. We here interrogate the effects of hydrophobic amino acids on handedness at various assembly stages of peptide amphiphiles. Our studies reveal that relative to aliphatic side chains, aromatic side chains set the twisting directions of single ß-strands due to their strong steric repulsion to the backbone, and upon packing into multi-stranded ß-sheets, the side-chain aromatic interactions between strands form the aromatic ladders with a directional preference. This ordering not only leads to parallel ß-sheet arrangements but also induces the chiral flipping over of single ß-strands within a ß-sheet. In contrast, the lack of orientational hydrophobic interactions in the assembly of aliphatic peptides implies no chiral inversion upon packing into ß-sheets. This study opens an avenue to harness peptide aggregates with targeted handedness via aromatic side-chain interactions.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Peptídeos , Peptídeos/química , Peptídeos/metabolismo , Conformação Proteica em Folha beta , Estereoisomerismo , Estrutura Secundária de Proteína , Aminoácidos Aromáticos/química , Dicroísmo Circular , Modelos Moleculares , Aminoácidos/química
2.
J Phys Chem Lett ; 15(25): 6611-6620, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38888261

RESUMO

Amphiphilic peptides show great potential for exfoliating graphite and functionalizing graphene. However, the variety of amino acids complicates our understanding of the underlying mechanisms. In this study, we designed four peptides (C6W1, C6W2, C6W4, and C6W6) with different amounts of aromatic tryptophan amino acids and two additional peptides (C6F4 and C6Y4) by substituting tryptophan with aromatic phenylalanine or tyrosine. This allowed us to investigate the processes and mechanisms of graphite exfoliation and graphene functionalization. Using experimental and computational methods, we discovered that peptides containing tryptophan demonstrated higher exfoliation efficiency and increased tryptophan content further improved this efficiency, resulting in more peptide-functionalized graphene layers. Significantly, the primary driving force for the surface-assisted assembly of peptides on graphite is the π-π stacking interaction between the aromatic ring contributed by aromatic amino acids and the hexagonal rings of the graphite surface. This interaction leads to a layer-by-layer exfoliation mechanism. Our research offers valuable insights into peptide design strategies for one-step graphite exfoliation and graphene functionalization in aqueous environments.


Assuntos
Aminoácidos Aromáticos , Grafite , Peptídeos , Propriedades de Superfície , Grafite/química , Peptídeos/química , Aminoácidos Aromáticos/química , Triptofano/química , Tensoativos/química
3.
Biochemistry ; 63(10): 1307-1321, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38688031

RESUMO

In this study, we investigated the trimerization mechanism and structure of heat shock factor 1 (HSF1) using western blotting, tryptophan (Trp) fluorescence spectroscopy, and molecular modeling. First, we examined the DNA-binding domains of human (Homo sapiens), goldfish (Carassius auratus), and walleye pollock (Gadus chalcogrammus) HSF1s by mutating key residues (36 and 103) that are thought to directly affect trimer formation. Human, goldfish, and walleye pollock HSF1s contain cysteine at residue 36 but cysteine (C), tyrosine (Y), and phenylalanine (F), respectively, at residue 103. The optimal trimerization temperatures for the wild-type HSF1s of each species were found to be 42, 37, and 20 °C, respectively. Interestingly, a mutation experiment revealed that trimerization occurred at 42 °C when residue 103 was cysteine, at 37 °C when it was tyrosine, and at 20 °C when it was phenylalanine, regardless of the species. In addition, it was confirmed that when residue 103 of the three species was mutated to alanine, trimerization did not occur. This suggests that in addition to trimerization via disulfide bond formation between the cysteine residues in human HSF1, trimerization can also occur via the formation of a different type of bond between cysteine and aromatic ring residues such as tyrosine and phenylalanine. We also confirmed that at least one cysteine is required for the trimerization of HSF1s, regardless of its position (residue 36 or 103). Additionally, it was shown that the trimer formation temperature is related to growth and survival in fish.


Assuntos
Aminoácidos Aromáticos , Cisteína , Fatores de Transcrição de Choque Térmico , Animais , Humanos , Aminoácidos Aromáticos/metabolismo , Aminoácidos Aromáticos/química , Cisteína/química , Cisteína/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Carpa Dourada/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Fatores de Transcrição de Choque Térmico/química , Fatores de Transcrição de Choque Térmico/genética , Modelos Moleculares , Domínios Proteicos , Multimerização Proteica
4.
Langmuir ; 40(2): 1470-1486, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38174846

RESUMO

Peptides are able to self-organize in structural elements including cross-ß structures. Taking advantage of this tendency, in the last decades, peptides have been scrutinized as molecular elements for the development of multivalent supramolecular architectures. In this context, different classes of peptides, also with completely aromatic sequences, were proposed. Our previous studies highlighted that the (FY)3 peptide, which alternates hydrophobic phenylalanine and more hydrophilic tyrosine residues, is able to self-assemble, thanks to the formation of both polar and apolar interfaces. It was observed that the replacement of Phe and Tyr residues with other noncoded aromatic amino acids like 2-naphthylalanine (Nal) and Dopa affects the interactions among peptides with consequences on the supramolecular organization. Herein, we have investigated the self-assembling behavior of two novel (FY)3 analogues with Trp and Dopa residues in place of the Phe and Tyr ones, respectively. Additionally, PEGylation of the N-terminus was analyzed too. The supramolecular organization, morphology, and capability to gel were evaluated using complementary techniques, including fluorescence, Fourier transform infrared spectroscopy, and scanning electron microscopy. Structural periodicities along and perpendicular to the fiber axis were detected by grazing incidence wide-angle X-ray scattering. Finally, molecular dynamics studies provided interesting insights into the atomic structure of the cross-ß that constitutes the basic motif of the assemblies formed by these novel peptide systems.


Assuntos
Triptofano , Tirosina , Tirosina/química , Triptofano/química , Di-Hidroxifenilalanina , Peptídeos/química , Aminoácidos Aromáticos/química
5.
Se Pu ; 40(8): 686-693, 2022 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-35903835

RESUMO

Amino acids are important building blocks of proteins in the human body, which are involved in many metabolic pathways. Patients with metabolic diseases such as phenylketonuria, tyrosinemia, and hepatic encephalopathy are genetically defective and cannot metabolize aromatic amino acids (AAA) in food; hence, a regular diet may lead to permanent physiological damage. For this reason, it is necessary to restrict the intake of AAA in their daily diet by limiting natural protein intake, while ensuring normal intake of low protein foods and supplementation with low-AAA protein equivalents. Sources of low-AAA protein equivalents currently rely on free amino acid complex mixtures and low-AAA peptides (also known as high-Fischer-ratio peptides), which have better absorption availability and palatability. AAA separation and analysis techniques are essential for the preparation and detection of low-AAA peptides. Researchers in this field have explored a variety of efficient adsorption materials to selectively remove AAA from complex protein hydrolysates and thus prepare low-AAA peptide foods, or to establish analysis strategies for AAA. Covering more than 70 publications on AAA removal and separation in the last decade from Web of Science Core Collection and China National Knowledge Infrastructure, this review analyzes the structural characteristics and physicochemical properties of AAA, and summarizes the technological progress of AAA removal based on adsorbents such as activated carbon and resin. The applications of two-dimensional nanomaterials, molecular imprinting, cyclodextrins, and metal-organic frameworks in AAA adsorption and analysis from three dimensions, i. e., sample pretreatment, chiral separation and adsorption sensing, are also reviewed. The mainstream adsorbents for AAA removal, such as activated carbon, still suffer from poor specificity and cause environmental pollution during post-use treatment. Existing AAA separating materials show impressive selective adsorption capability in food samples and chiral mixtures as well as high sensitivity in adsorption sensing. The development of an efficient detection technology for AAA may help in detecting trace AAA in food and in evaluating chiral AAA adulteration in food samples. By exploring the advantages and disadvantages of each type of technology, we provide support for the advancement of the removal and analysis techniques for AAA.


Assuntos
Aminoácidos Aromáticos , Carvão Vegetal , Adsorção , Aminoácidos , Aminoácidos Aromáticos/química , Humanos , Peptídeos
6.
ChemMedChem ; 16(23): 3559-3564, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34528415

RESUMO

Aromatic residues are widely used as building blocks for driving self-assemblies in natural and designer biomaterials. The noncovalent interactions involving aromatic rings determine proteins' structure and biofunction. Here, we studied the effects of changes in the proximity of the aromatic rings in a self-assembling peptide for modulating interactions involving the aromatic residues. By changing the distance between the aromatic ring and peptide backbone and replacing the side chain with a sulfur atom, we altered the nanostructures and gene transfection efficiency of peptide-DNA co-assemblies. This study demonstrates the significance of subtle alterations in aromatic interactions and facilitates deeper understanding of the aromatic-involving interactions.


Assuntos
Aminoácidos Aromáticos/química , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , DNA/química , Proteínas de Ligação a DNA/química , Técnicas de Transferência de Genes , Células HEK293 , Humanos , Peptídeos/química , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína
7.
Biochem Biophys Res Commun ; 578: 110-114, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34560580

RESUMO

The C-terminal, intrinsically disordered, prion-like domain (PrLD) of TDP-43 promotes liquid condensate and solid amyloid formation. These phase changes are crucial to the normal biological functions of the protein but also for its abnormal aggregation, which is implicated in amyotrophic lateral sclerosis (ALS) and certain dementias. We and other previously found that certain amyloid forms emerge from an intermediate condensed state that acts as a nucleus for fibrillization. To quantitatively ascertain the role of individual residues within TDP-43's PrLD in its early self-assembly we have followed the kinetics of NMR 1H-15N HSQC signal loss to obtain values for the lag time, elongation rate and extent of condensate formation at equilibrium. The results of this analysis represent a robust corroboration that aliphatic and aromatic residues are key drivers of condensate formation.


Assuntos
Proteínas Amiloidogênicas/metabolismo , Amiloidose/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Príons/metabolismo , Aminoácidos Aromáticos/química , Proteínas Amiloidogênicas/química , Amiloidose/patologia , Esclerose Lateral Amiotrófica/patologia , Proteínas de Ligação a DNA/química , Humanos , Príons/química , Estrutura Terciária de Proteína
8.
Phys Chem Chem Phys ; 23(31): 16767-16775, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34319324

RESUMO

Photosensing LOV (Light, Oxygen, Voltage) domains detect and respond to UVA/Blue (BL) light by forming a covalent adduct between the flavin chromophore and a nearby cysteine, via the decay of the flavin triplet excited state. LOV domains where the reactive cysteine has been mutated are valuable fluorescent tools for microscopy and as genetically encoded photosensitisers for reactive oxygen species. Besides being convenient tools for applications, LOV domains without the reactive cysteine (naturally occurring or engineered) can still be functionally photoactivated via formation of a neutral flavin radical. Tryptophans and tyrosines are held as the main partners as potential electron donors to the flavin excited states. In this work, we explore the relevance of aromatic amino acids in determining the photophysical features of the LOV protein Mr4511 from Methylobacterium radiotolerans by introducing point mutations into the C71S variant that does not form the covalent adduct. By using an array of spectroscopic techniques we measured the fluorescence quantum yields and lifetimes, the triplet yields and lifetimes, and the efficiency of singlet oxygen (SO) formation for eleven Mr4511 variants. Insertion of Trp residues at distances between 0.6 and 1.5 nm from the flavin chromophore results in strong quenching of the flavin excited triplet state and, at the shorter distances even of the singlet excited state. The mutation F130W (ca. 0.6 nm) completely quenches the singlet excited state, preventing triplet formation: in this case, even if the cysteine is present, the photo-adduct is not formed. Tyrosines are also quenchers for the flavin excited states, although not as efficient as Trp residues, as demonstrated with their substitution with the inert phenylalanine. For one of these variants, C71S/Y116F, we found that the quantum yield of formation for singlet oxygen is 0.44 in aqueous aerobic solution, vs 0.17 for C71S. Based on our study with Mr4511 and on literature data for other LOV domains we suggest that Trp and Tyr residues too close to the flavin chromophore (at distances less than 0.9 nm) reduce the yield of photoproduct formation and that introduction of inert Phe residues in key positions can help in developing efficient, LOV-based photosensitisers.


Assuntos
Aminoácidos Aromáticos/química , Proteínas de Bactérias/química , Luz , Oxigênio/química , Methylobacterium/química , Processos Fotoquímicos
9.
ACS Appl Mater Interfaces ; 13(31): 36722-36736, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34327979

RESUMO

Considering the relevance of accumulation and self-assembly of metabolites and aftermath of biological consequences, it is important to know whether they undergo coassembly and what properties the resultant hybrid higher-order structures would exhibit. This work reveals the inherent tendency of aromatic amino acids to undergo a spontaneous coassembly process under physiologically mimicked conditions, which yields neurotoxic hybrid nanofibers. Resultant hybrid nanostructures resembled the ß-structured conformers stabilized by H-bonds and π-π stacking interactions, which were highly toxic to human neuroblastoma cells. The hybrid nanofibers also showed strong cross-seeding potential that triggered in vitro aggregation of diverse globular proteins and brain extract components, converting the native structures into cross-ß-rich amyloid aggregates. The heterogenic nature of the hybrid nanofibers seems crucial for their higher toxicity and faster cross-seeding potential as compared to the homogeneous amino acid nanofibers. Our findings reveal the importance of aromaticity-driven optimized intermolecular arrangements for the coassembly of aromatic amino acids, and the results may provide important clues to the fundamental understanding of metabolite accumulation-related complications.


Assuntos
Aminoácidos Aromáticos/toxicidade , Substâncias Macromoleculares/toxicidade , Nanofibras/toxicidade , Aminoácidos Aromáticos/química , Aminoácidos Aromáticos/metabolismo , Proteínas Amiloidogênicas/metabolismo , Linhagem Celular Tumoral , Citocromos c/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Insulina/metabolismo , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Simulação de Dinâmica Molecular , Mioglobina/metabolismo , Nanofibras/química , Multimerização Proteica/efeitos dos fármacos , Albumina Sérica/metabolismo
10.
Biochemistry ; 59(49): 4663-4680, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33269926

RESUMO

The plant Sesbania mosaic virus [a (+)-ssRNA sobemovirus] VPg protein is intrinsically disordered in solution. For the virus life cycle, the VPg protein is essential for replication and for polyprotein processing that is carried out by a virus-encoded protease. The nuclear magnetic resonance (NMR)-derived tertiary structure of the protease-bound VPg shows it to have a novel tertiary structure with an α-ß-ß-ß topology. The quaternary structure of the high-affinity protease-VPg complex (≈27 kDa) has been determined using HADDOCK protocols with NMR (residual dipolar coupling, dihedral angle, and nuclear Overhauser enhancement) restraints and mutagenesis data as inputs. The geometry of the complex is in excellent agreement with long-range orientational restraints such as residual dipolar couplings and ring-current shifts. A "vein" of aromatic residues on the protease surface is pivotal for the folding of VPg via intermolecular edge-to-face π···π stacking between Trp271 and Trp368 of the protease and VPg, respectively, and for the CH···π interactions between Leu361 of VPg and Trp271 of the protease. The structure of the protease-VPg complex provides a molecular framework for predicting sites of important posttranslational modifications such as RNA linkage and phosphorylation and a better understanding of the coupled folding upon binding of intrinsically disordered proteins. The structural data presented here augment the limited structural data available on viral proteins, given their propensity for structural disorder.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Vírus de Plantas/química , Proteínas Virais/química , Sequência de Aminoácidos , Aminoácidos Aromáticos/química , Fenômenos Biofísicos , Interações Hidrofóbicas e Hidrofílicas , Proteínas Intrinsicamente Desordenadas/genética , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Vírus de Plantas/genética , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Mapeamento de Interação de Proteínas , Eletricidade Estática , Proteínas Virais/genética
11.
Biointerphases ; 15(6): 061008, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33238712

RESUMO

Cold physical plasmas are emerging tools for wound care and cancer control that deliver reactive oxygen species (ROS) and nitrogen species (RNS). Alongside direct effects on cellular signaling processes, covalent modification of biomolecules may contribute to the observed physiological consequences. The potential of ROS/RNS generated by two different plasma sources (kINPen and COST-Jet) to introduce post-translational modifications (PTMs) in the peptides angiotensin and bradykinin was explored. While the peptide backbone was kept intact, a significant introduction of oxidative PTMs was observed. The modifications cluster at aromatic (tyrosine, histidine, and phenylalanine) and neutral amino acids (isoleucine and proline) with the introduction of one, two, or three oxygen atoms, ring cleavages of histidine and tryptophan, and nitration/nitrosylation predominantly observed. Alkaline and acidic amino acid (arginine and aspartic acid) residues showed a high resilience, indicating that local charges and the chemical environment at large modulate the attack of the electron-rich ROS/RNS. Previously published simulations, which include only OH radicals as ROS, do not match the experimental results in full, suggesting the contribution of other short-lived species, i.e., atomic oxygen, singlet oxygen, and peroxynitrite. The observed PTMs are relevant for the biological activity of peptides and proteins, changing polarity, folding, and function. In conclusion, it can be assumed that an introduction of covalent oxidative modifications at the amino acid chain level occurs during a plasma treatment. The introduced changes, in part, mimic naturally occurring patterns that can be interpreted by the cell, and subsequently, these PTMs allow for prolonged secondary effects on cell physiology.


Assuntos
Peptídeos/química , Gases em Plasma/química , Espécies Reativas de Nitrogênio/química , Espécies Reativas de Oxigênio/química , Aminoácidos Aromáticos/química , Cromatografia Líquida de Alta Pressão , Oxirredução , Peptídeos/análise , Peptídeos/síntese química , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem
12.
Int J Mol Sci ; 21(14)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32709112

RESUMO

There is increasing interest in the development of noble metal separation/recovery processes, especially for applications to "urban mining". Common separation/recovery processes for noble metals use a solvent (liquid-liquid) extraction technique in hydrometallurgy. However, these processes are time-consuming and not environmentally friendly, because they use organic solvents for sequential metal ion extractions. Electrowinning is an alternative approach for selective metal precipitation that involves controlling the redox potentials of electrodes but requires specialized equipment and generates hydrogen as a byproduct at the cathode surface under dilute conditions. In the present study, we investigated selective gold recovery from a homogenous aqueous solution containing a mixture of dilute HAuCl4 and H2PtCl6 (5.0 × 10-5 M each) and aromatic amino acid-containing peptides (2.0 × 10-4 M each). Gold selectivity was determined by analyzing the compositions of the solids and supernatants obtained from the reaction mixtures. A much higher gold selectivity (gold/platinum (Au/Pt) atomic ratio = 7.5) was obtained using an anthracene-containing peptide compared to peptides containing one or two naphthalene ring(s). Our proposed approach is applicable to the sequential separation of several noble metal ions, such as Au, palladium (Pd), Pt, iridium (Ir) and rhodium (Rh), and simply requires developing aromatics suitable for each noble metal of interest.


Assuntos
Aminoácidos Aromáticos/química , Ouro/isolamento & purificação , Peptídeos/química , Água/análise , Precipitação Química , Ouro/análise , Platina/análise , Platina/isolamento & purificação , Soluções
13.
Arch Biochem Biophys ; 681: 108264, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31945312

RESUMO

Serum amyloid A variant 1.1 (SAA1.1) is an acute phase protein. In response to injury, inflammation or infection its production increases highly, which may lead to aggregation of the protein and accumulation of its deposits in various organs. Due to the cellular toxicity of the aggregates, as well as the fact that accumulated deposits are a burden that obstructs proper functioning of the affected tissues, it is vital to find a way to suppress the process of pathological aggregates formation. To make this possible, it is necessary to investigate thoroughly the oligomerization process and recognize factors that may influence its course. Some previous studies showed that aromatic interactions are important to the potential of an inhibitor to suppress the aggregation process. In our research we had proved that a five-residue peptide RSFFS (saa1-5) is an efficient inhibitor of aggregation of the most amyloidogenic fragment of SAA1.1, SAA1-12. In the present work the oligomerization and aggregation propensity of SAA1-12 was compared to that of SAA1-27, in order to determine the contribution of the sequence which extends beyond the most amyloidogenic region but encompasses residues reportedly involved in the stabilization of the SAA native conformation. Thioflavin T fluorescence assay, quantitative chromatographic analysis of the insoluble fraction and transmission electron microscopy allowed for a deeper insight into the SAA aggregation process and the morphology of aggregates. Substitutions of Phe3 and/or Phe4 residues in saa1-5 sequence with tryptophan, tyrosine, homophenylalanine, naphthylalanine and ß,ß-diphenylalanine allowed to study the influence of different aromatic systems on the aggregation of SAA1-12 and SAA1-27, and evaluate these results in relation to hSAA1.1 protein. Our results indicate that compounds with aromatic moieties can affect the course of the aggregation process and change the ratio between the soluble and insoluble aggregates.


Assuntos
Aminoácidos Aromáticos/farmacologia , Amiloidose/tratamento farmacológico , Oligopeptídeos/farmacologia , Proteína Amiloide A Sérica/metabolismo , Aminoácidos Aromáticos/química , Amiloidose/metabolismo , Humanos , Simulação de Dinâmica Molecular , Oligopeptídeos/química , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/tratamento farmacológico , Agregação Patológica de Proteínas/metabolismo
14.
Chem Rev ; 120(7): 3296-3327, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-31424927

RESUMO

A detailed understanding of radiative and nonradiative processes in peptides containing an aromatic chromophore requires the knowledge of the nature and energy level of low-lying excited states that could be coupled to the bright 1ππ* excited state. Isolated aromatic amino acids and short peptides provide benchmark cases to study, at the molecular level, the photoinduced processes that govern their excited state dynamics. Recent advances in gas phase laser spectroscopy of conformer-selected peptides have paved the way to a better, yet not fully complete, understanding of the influence of intramolecular interactions on the properties of aromatic chromophores. This review aims at providing an overview of the photophysics and photochemistry at play in neutral and charged aromatic chromophore containing peptides, with a particular emphasis on the charge (electron, proton) and energy transfer processes. A significant impact is exerted by the experimental progress in energy- and time-resolved spectroscopy of protonated species, which leads to a growing demand for theoretical supports to accurately describe their excited state properties.


Assuntos
Aminoácidos Aromáticos/química , Peptídeos/química , Aminoácidos Aromáticos/efeitos da radiação , Transferência de Energia , Fluorescência , Transferência Ressonante de Energia de Fluorescência , Peptídeos/efeitos da radiação , Fotoquímica , Conformação Proteica , Prótons , Espectrofotometria Ultravioleta/métodos , Raios Ultravioleta
15.
Chemistry ; 25(69): 15779-15785, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31523878

RESUMO

A series of fluoroalkylated cyclic λ3 -iodanes and their hydrochloride salts was prepared and used in a combination with sodium ascorbate in buffer or aqueous methanol mixtures for radical fluoroalkylation of a range of substituted indoles, pyrroles, tryptophan or its derivatives, and Trp residues in peptides. As demonstrated on several peptides, the aromatic amino acid residues of Trp, Tyr, Phe, and His are targeted with high selectivity to Trp. The functionalization method is biocompatible, mild, rapid, and transition-metal-free. The proteins myoglobin, ubiquitin, and human carbonic anhydrase I were also successfully functionalized.


Assuntos
Aminoácidos Aromáticos/química , Indóis/química , Peptídeos/química , Proteínas/química , Pirróis/química , Alquilação , Aminoácidos Aromáticos/síntese química , Radicais Livres/síntese química , Radicais Livres/química , Halogenação , Humanos , Indóis/síntese química , Modelos Moleculares , Peptídeos/síntese química , Proteínas/síntese química , Pirróis/síntese química
16.
Chem Biodivers ; 16(11): e1900339, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31557397

RESUMO

The aim of the study was the assessment of the ability of short peptides to form aggregates under physiological conditions. The dipeptides studied were derived from different aromatic amino acids (heteroaromatic peptides). Tripeptides were obtained from two distinct aromatic amino acids and cysteine or methionine residue in the C-terminal, N-terminal, or central position. The ability of the peptides to form fibrous aggregates under physiological conditions was evaluated using three independent methods: the Congo Red assay, the Thioflavin T assay, and microscopic examinations using normal and polarized light. Materials potentially useful for regenerative medicine were selected based on their cytotoxicity to the endothelial cell line EA.hy 926 and physicochemical properties of films formed by peptides. The required parameters of biocompatibility were fulfilled by H-PheCysTrp-OH, H-PheCysTyr-OH, H-PheTyrMet-OH, and H-TrpTyr-OH.


Assuntos
Aminoácidos Aromáticos/química , Peptídeos/química , Aminoácidos Aromáticos/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Peptídeos/síntese química , Peptídeos/farmacologia , Agregados Proteicos , Técnicas de Síntese em Fase Sólida
17.
J Am Chem Soc ; 141(7): 2782-2799, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30592612

RESUMO

Chemical modification of proteins provides powerful tools to realize a broad range of exciting biological applications, including the development of new classes of biopharmaceuticals and functional studies of individual proteins in complex biological systems. Numerous strategies for linking desired chemical probes with target proteins have been developed in the last two decades, with most exploiting genetic protein engineering and/or bio-orthogonal chemistry that utilizes unnatural amino acids incorporated into proteins. Modification of native proteins in test tubes and biological contexts by site-specific and target-selective approaches remains challenging because appropriate organic chemistry to carry out such modifications is currently limited. Nonetheless, a variety of promising strategies have appeared recently that address this grand challenge in chemical biology. These new chemistries yield native protein-based well-defined bioconjugations, specific labeling of endogenous proteins in various biological crude milieus, and the establishment of chemical proteomics as a new research area in protein science. In this Perspective, we focus on recent remarkable progress in chemistry for native protein modification. We survey chemical characteristics of the methods and describe briefly these advanced applications to address unsolved biological issues. Current limitations and future directions of this research field are also discussed.


Assuntos
Sondas Moleculares/química , Proteínas/química , Aminoácidos Aromáticos/química , Animais , Cisteína/análogos & derivados , Humanos , Lisina/análogos & derivados , Metionina/análogos & derivados , Sondas Moleculares/síntese química , Proteoma/química
18.
Molecules ; 23(1)2018 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-29342843

RESUMO

Chiral and molecular recognition through protonation was investigated through the collision-activated dissociation (CAD) of protonated noncovalent complexes of aromatic amino acid enantiomers with l-alanine- and l-serine-containing tripeptides using a linear ion trap mass spectrometer. In the case of l-alanine-tripeptide (AAA), NH3 loss was observed in the CAD of heterochiral H⁺(d-Trp)AAA, while H2O loss was the main dissociation pathways for l-Trp, d-Phe, and l-Phe. The protonation site of heterochiral H⁺(d-Trp)AAA was the amino group of d-Trp, and the NH3 loss occurred from H⁺(d-Trp). The H2O loss indicated that the proton was attached to the l-alanine tripeptide in the noncovalent complexes. With the substitution of a central residue of l-alanine tripeptide to l-Ser, ASA recognized l-Phe by protonation to the amino group of l-Phe in homochiral H⁺(l-Phe)ASA. For the protonated noncovalent complexes of His enantiomers with tripeptides (AAA, SAA, ASA, and AAS), protonated His was observed in the spectra, except for those of heterochiral H⁺(d-His)SAA and H⁺(d-His)AAS, indicating that d-His did not accept protons from the SAA and AAS in the noncovalent complexes. The amino-acid sequences of the tripeptides required for the recognition of aromatic amino acids were determined by analyses of the CAD spectra.


Assuntos
Aminoácidos Aromáticos/química , Oligopeptídeos/química , Alanina/química , Prótons , Serina/química
19.
Arch Pharm (Weinheim) ; 350(10)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28872704

RESUMO

A new class of peptide derivatives possessing SO2 Me and N3 pharmacophores at the para position of a phenyl ring bound to different aromatic amino acids were synthesized based on solid-phase synthesis methodology, and evaluated as selective cyclooxygenase-2 (COX-2) inhibitors. One of the analogues, i.e., compound 2a as the representative of this series, was recognized as the highest selective COX-2 inhibitor with a COX-2 selectivity index of >500. The structure-activity relationships (SARs) acquired indicated that compound 2a containing a 4-(methylsulfonyl)benzoyl group as a pharmacophore and tyrosine as a ring bearing amino acid in the second position and glutamic acid as the C-terminal amino acid can give the essential geometry to provide selective COX-2 inhibitory activity. Antiproliferative activity of the synthesized peptides (1a-7b) was also determined against four different human cancer cell lines, including MCF-7, HepG2, A549, and HeLa. According to our results, A549, HepG2, and MCF7 seemed to be more sensitive cell lines than HeLa cells encountering these compounds, which gave inhibitory action with IC50 values from 4.8 to 64.4 µM. In this regard, compounds 3a and 2b displayed the best inhibitory activity against the cell lines. Moreover, a good correlation was observed between the antiproliferative potency and the COX-2 inhibitory activity of compounds 1a, 2a, 2b, and 5b. Such findings suggest that one of the mechanism of anticancer activity of these peptides may be through the COX-2 inhibitory action.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Peptídeos/farmacologia , Células A549 , Aminoácidos Aromáticos/síntese química , Aminoácidos Aromáticos/química , Aminoácidos Aromáticos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Células HeLa , Células Hep G2 , Humanos , Concentração Inibidora 50 , Células MCF-7 , Modelos Moleculares , Peptídeos/síntese química , Peptídeos/química , Relação Estrutura-Atividade
20.
J Mol Recognit ; 30(12)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28621027

RESUMO

Phosphoinositides are phosphatidylinositol derived, well known to be second messengers in various cell signaling pathways as well as in processes such as cell differentiation, cellular stress response, gene transcription, and chromatin remodeling. The pleckstrin homology domain of phospholipase C-delta 1 is responsible for recognizing and binding to PI(4,5)P2 and for this reason has been widely used to study this phosphoinositide as a biosensor when it is conjugated to a fluorescent tag. In this work, we modified the primary structure of pleckstrin homology domain by site-specific mutagenesis to change the specificity for phosphoinositides. We obtained 3 mutants: K30A, W36F, and W36Y with different specificity to phosphoinositides. Mutant domain K30A recognized PI(4,5)P2 , PI(3,4,5)P3 , phosphatidic acid (PA), and weakly PI(3,5)P2 . Mutant domain W36F recognized all the phosphoinositides studied and the PA. Finally, mutant domain W36Y seemed to interact with PA and all the other phosphoinositides studied, except PI(3)P. The changes in recognition argue against a simple charge and nonpolar region model for these interactions and more in favor of a specific docking region with a specific recognition site. We conducted in silico modeling that explains the mechanisms behind the observed changes and showed that aromatic amino acids appear to play more important role, than previously thought, in the specificity of phospholipids' binding domains.


Assuntos
Aminoácidos Aromáticos/química , Domínios de Homologia à Plecstrina , Sequência de Aminoácidos , Animais , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfolipase C delta/química , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA