Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Chemistry ; 30(5): e202302877, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37909475

RESUMO

Poly-N-acetyl lactosamines (polyLacNAc) are common structural motifs of N- and O-linked glycan, glycosphingolipids and human milk oligosaccharides. They can be branched by the addition of ß1,6-linked N-acetyl-glucosamine (GlcNAc) moieties to internal galactoside (Gal) residues by the I-branching enzyme beta-1,6-N-acetylglucosaminyltransferase 2 (GCNT2). I-branching has been implicated in many biological processes and is also associated with various diseases such as cancer progression. Currently, there is a lack of methods that can install, in a regioselective manner, I-branches and allows the preparation of isomeric poly-LacNAc derivatives. Here, we described a chemo-enzymatic strategy that addresses this deficiency and is based on the enzymatic assembly of an oligo-LacNAc chain that at specific positions is modified by a GlcNTFA moiety. Replacement of the trifluoroacetyl (TFA) moiety by tert-butyloxycarbonyl (Boc) gives compounds in which the galactoside at the proximal site is blocked from modification by GCNT2. After elaboration of the antennae, the Boc group can be removed, and the resulting amine acetylated to give natural I-branched structures. It is also shown that fucosides can function as a traceless blocking group that can provide complementary I-branched structures from a single precursor. The methodology made it possible to synthesize a library of polyLacNAc chains having various topologies.


Assuntos
N-Acetilglucosaminiltransferases , Polissacarídeos , Humanos , Polissacarídeos/química , Amino Açúcares/química , Galactosídeos
2.
J Biol Chem ; 297(5): 101271, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34619151

RESUMO

The recognition of carbohydrates by lectins plays key roles in diverse cellular processes such as cellular adhesion, proliferation, and apoptosis, which makes it a therapeutic target of significance against cancers. One of the most functionally active lectins, galectin-3 is distinctively known for its specific binding affinity toward ß-galactoside. However, despite the prevalence of high-resolution crystallographic structures, the mechanistic basis and more significantly, the dynamic process underlying carbohydrate recognition by galectin-3 are currently elusive. To this end, we employed extensive Molecular Dynamics simulations to unravel the complete binding event of human galectin-3 with its native natural ligand N-acetyllactosamine (LacNAc) at atomic precision. The simulation trajectory demonstrates that the oligosaccharide diffuses around the protein and eventually identifies and binds to the biologically designated binding site of galectin-3 in real time. The simulated bound pose correlates with the crystallographic pose with atomic-level accuracy and recapitulates the signature stabilizing galectin-3/oligosaccharide interactions. The recognition pathway also reveals a set of transient non-native ligand poses in its course to the receptor. Interestingly, kinetic analysis in combination with a residue-level picture revealed that the key to the efficacy of a more active structural variant of the LacNAc lay in the ligand's resilience against disassociation from galectin-3. By catching the ligand in the act of finding its target, our investigations elucidate the detailed recognition mechanism of the carbohydrate-binding domain of galectin-3 and underscore the importance of ligand-target binary complex residence time in understanding the structure-activity relationship of cognate ligands.


Assuntos
Amino Açúcares/química , Proteínas Sanguíneas/química , Galectinas/química , Simulação de Dinâmica Molecular , Oligossacarídeos/química , Sítios de Ligação , Humanos
3.
Protein Pept Lett ; 28(10): 1108-1114, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34137358

RESUMO

BACKGROUND: Altered expression of N-glycans such as polylactosamine is observed in colon cancer. AHL, a polylactosamine specific lectin from Adenia hondala from a medicinal plant from the Passifloraceae family has been reported earlier. OBJECTIVE: The aim of the present study is to study the interaction of AHL with human colon cancer epithelial HT-29 cells and colon cancer tissues. METHODS: Cell viability was determined by MTT [3-[4, 5- dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide] assay, while cell surface binding, apoptosis by Annexin-V-PI assay and ROS production using DCFDA [2',7' - dichlorofluorescindiacetate] kit method were analysed by flowcytometry, immunohistochemistry was performed using biotinylated AHL, protein purification by affinity chromatography using asialofetuin-coupled Sepharose -4B column. RESULTS: AHL strongly binds to HT-29 cells with a Mean Fluorescence Intensity of 12.4, which could be blocked by competing glycoprotein asialofetuin. AHL inhibits HT-29 cell growth in a dose and time-dependent manner with IC50 of 2.5 µg/mL and differentially binds to human normal and cancerous tissues. AHL induces apoptosis and slight necrosis in HT-29 cells with an increase in the early apoptotic population of 25.1 and 36% for 24 h and 48 h respectively and necrotic population of 1.5 and 4.6% at 24 h and 48 h respectively as revealed by Annexin-V-PI assay. AHL induces the release of Reactive Oxygen Species in HT-29 cells in a dose-dependent manner. CONCLUSION: To the best of knowledge, this is the first report on lectin from Adenia hondala which is not a RIP with apoptotic and necrotic effects. These findings support the promising potential of AHL in cancer research.


Assuntos
Amino Açúcares/química , Neoplasias do Colo/tratamento farmacológico , Lectinas/química , Necrose/tratamento farmacológico , Passifloraceae/química , Extratos Vegetais/química , Polissacarídeos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células HT29 , Humanos , Lectinas/farmacologia , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio
4.
Biomacromolecules ; 21(2): 641-652, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31904940

RESUMO

N-Acetyllactosamine (LacNAc; Galß4GlcNAc) is a typical disaccharide ligand of galectins. The most abundant members of these human lectins, galectin-1 (Gal-1) and galectin-3 (Gal-3), participate in a number of pathologies including cancerogenesis and metastatic formation. In this study, we synthesized a series of fifteen N-(2-hydroxypropyl)methacrylamide (HPMA)-based glycopolymers with varying LacNAc amounts and presentations and evaluated the impact of their architecture on the binding affinity to Gal-1 and Gal-3. The controlled radical reversible addition-fragmentation chain transfer copolymerization technique afforded linear polymer precursors with comparable molecular weight (Mn ≈ 22,000 g mol-1) and narrow dispersity (D̵ ≈ 1.1). The precursors were conjugated with the functionalized LacNAc disaccharide (4-22 mol % content in glycopolymer) prepared by enzymatic synthesis under catalysis by ß-galactosidase from Bacillus circulans. The structure-affinity relationship study based on the enzyme-linked immunosorbent assay revealed that the type of LacNAc presentation, individual or clustered on bi- or trivalent linkers, brings a clear discrimination (almost 300-fold) between Gal-1 and Gal-3, reaching avidity to Gal-1 in the nanomolar range. Whereas Gal-1 strongly preferred a dense presentation of individually distributed LacNAc epitopes, Gal-3 preferred a clustered LacNAc presentation. Such a strong galectin preference based just on the structure of a multivalent glycopolymer type is exceptional. The prepared nontoxic, nonimmunogenic, and biocompatible glycopolymers are prospective for therapeutic applications requiring selectivity for one particular galectin.


Assuntos
Acrilamidas/química , Amino Açúcares/química , Proteínas Sanguíneas/análise , Galectina 1/análise , Galectinas/análise , Polímeros/química , Bacillus/enzimologia , Proteínas Sanguíneas/metabolismo , Catálise , Dissacarídeos/síntese química , Ensaio de Imunoadsorção Enzimática , Epitopos , Galectina 1/metabolismo , Galectinas/metabolismo , Espectroscopia de Ressonância Magnética , Polimerização , Polímeros/metabolismo , Polímeros/farmacologia , beta-Galactosidase/metabolismo
5.
J Pharm Biomed Anal ; 180: 113031, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31838284

RESUMO

Erythropoiesis stimulating agents (ESAs) are a group of therapeutic glycoproteins used to treat anaemia caused by chronic kidney disease or chemotherapy. A variety of ESA products are available in the European Union, including innovator, biosimilar and second-generation medicines. Glycosylation is a critical quality attribute of ESA products, as it has a crucial influence upon in vivo biological activity. In this study, a combination of chromatography and mass spectrometry analysis has been used to characterise and compare the glycosylation profiles of five ESA products; Eprex® (epoetin alfa), NeoRecormon® (epoetin beta), Binocrit® (epoetin alfa biosimilar), Silapo (epoetin alfa biosimilar) and Aranesp® (darbepoetin alfa). The methods utilised include mixed-mode anion-exchange/hydrophilic interaction chromatography (AEX/HILIC-MS) for N-glycan identification and quantitation, and HILIC-MS for O-glycan characterisation. The products exhibit notable differences in N- and O-glycosylation, including attributes such as sialic acid occupation, O-acetylation, N-acetyllactosamine extended antennae and sulphated/penta-sialylated N-glycans, which have the potential to cause divergence of therapeutic potencies. The study highlights the need for continued monitoring of ESA product glycosylation, ideally allied to pharmacological data, in order to ensure consistency and therapeutic equivalence between products and enhance our understanding of ESA structure-activity-relationships.


Assuntos
Hematínicos/química , Polissacarídeos/química , Espectrometria de Massas em Tandem/métodos , Acetilação , Amino Açúcares/química , Técnicas Biossensoriais , Cromatografia Líquida de Alta Pressão , Darbepoetina alfa/química , Epoetina alfa/química , Eritropoetina/química , Glicosilação , Estrutura Molecular , Ácido N-Acetilneuramínico/química , Proteínas Recombinantes/química
6.
Mar Drugs ; 17(2)2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30823584

RESUMO

We identified a lectin (carbohydrate-binding protein) belonging to the complement 1q(C1q) family in the feather star Anneissia japonica (a crinoid pertaining to the phylum Echinodermata). The combination of Edman degradation and bioinformatics sequence analysis characterized the primary structure of this novel lectin, named OXYL, as a secreted 158 amino acid-long globular head (sgh)C1q domain containing (C1qDC) protein. Comparative genomics analyses revealed that OXYL pertains to a family of intronless genes found with several paralogous copies in different crinoid species. Immunohistochemistry assays identified the tissues surrounding coelomic cavities and the arms as the main sites of production of OXYL. Glycan array confirmed that this lectin could quantitatively bind to type-2 N-acetyllactosamine (LacNAc: Galß1-4GlcNAc), but not to type-1 LacNAc (Galß1-3GlcNAc). Although OXYL displayed agglutinating activity towards Pseudomonas aeruginosa, it had no effect on bacterial growth. On the other hand, it showed a significant anti-biofilm activity. We provide evidence that OXYL can adhere to the surface of human cancer cell lines BT-474, MCF-7, and T47D, with no cytotoxic effect. In BT-474 cells, OXYL led to a moderate activation of the p38 kinase in the MAPK signaling pathway, without affecting the activity of caspase-3. Bacterial agglutination, anti-biofilm activity, cell adhesion, and p38 activation were all suppressed by co-presence of LacNAc. This is the first report on a type-2 LacNAc-specific lectin characterized by a C1q structural fold.


Assuntos
Equinodermos/química , Lectinas/farmacologia , Aglutinação/efeitos dos fármacos , Sequência de Aminoácidos , Amino Açúcares/química , Amino Açúcares/metabolismo , Animais , Sequência de Bases , Biofilmes/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Humanos , Lectinas/química , Lectinas/genética , Lectinas/metabolismo , Ligação Proteica , Pseudomonas aeruginosa/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
Proc Natl Acad Sci U S A ; 116(8): 2837-2842, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30718416

RESUMO

Glycan-lectin recognition is assumed to elicit its broad range of (patho)physiological functions via a combination of specific contact formation with generation of complexes of distinct signal-triggering topology on biomembranes. Faced with the challenge to understand why evolution has led to three particular modes of modular architecture for adhesion/growth-regulatory galectins in vertebrates, here we introduce protein engineering to enable design switches. The impact of changes is measured in assays on cell growth and on bridging fully synthetic nanovesicles (glycodendrimersomes) with a chemically programmable surface. Using the example of homodimeric galectin-1 and monomeric galectin-3, the mutual design conversion caused qualitative differences, i.e., from bridging effector to antagonist/from antagonist to growth inhibitor and vice versa. In addition to attaining proof-of-principle evidence for the hypothesis that chimera-type galectin-3 design makes functional antagonism possible, we underscore the value of versatile surface programming with a derivative of the pan-galectin ligand lactose. Aggregation assays with N,N'-diacetyllactosamine establishing a parasite-like surface signature revealed marked selectivity among the family of galectins and bridging potency of homodimers. These findings provide fundamental insights into design-functionality relationships of galectins. Moreover, our strategy generates the tools to identify biofunctional lattice formation on biomembranes and galectin-reagents with therapeutic potential.


Assuntos
Galectina 1/química , Galectina 3/química , Glicoconjugados/química , Polissacarídeos/química , Amino Açúcares/química , Amino Açúcares/metabolismo , Sítios de Ligação , Proteínas Sanguíneas , Adesão Celular/genética , Proliferação de Células/genética , Galectina 1/genética , Galectina 3/genética , Galectinas , Humanos , Lactose/química , Ligantes , Nanopartículas/química , Polissacarídeos/genética
8.
Biochemistry ; 58(16): 2152-2159, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30810306

RESUMO

The N-methyltransferase TylM1 from Streptomyces fradiae catalyzes the final step in the biosynthesis of the deoxyamino sugar mycaminose, a substituent of the antibiotic tylosin. The high-resolution crystal structure of TylM1 bound to the methyl donor S-adenosylmethionine (AdoMet) illustrates a network of carbon-oxygen (CH···O) hydrogen bonds between the substrate's sulfonium cation and residues within the active site. These interactions include hydrogen bonds between the methyl and methylene groups of the AdoMet sulfonium cation and the hydroxyl groups of Tyr14 and Ser120 in the enzyme. To examine the functions of these interactions, we generated Tyr14 to phenylalanine (Y14F) and Ser120 to alanine (S120A) mutations to selectively ablate the CH···O hydrogen bonding to AdoMet. The TylM1 S120A mutant exhibited a modest decrease in its catalytic efficiency relative to that of the wild type (WT) enzyme, whereas the Y14F mutation resulted in an approximately 30-fold decrease in catalytic efficiency. In contrast, site-specific substitution of Tyr14 by the noncanonical amino acid p-aminophenylalanine partially restored activity comparable to that of the WT enzyme. Correlatively, quantum mechanical calculations of the activation barrier energies of WT TylM1 and the Tyr14 mutants suggest that substitutions that abrogate hydrogen bonding with the AdoMet methyl group impair methyl transfer. Together, these results offer insights into roles of CH···O hydrogen bonding in modulating the catalytic efficiency of TylM1.


Assuntos
Proteínas de Bactérias/química , Ligação de Hidrogênio , Metiltransferases/química , S-Adenosilmetionina/química , Compostos de Sulfônio/química , Amino Açúcares/química , Amino Açúcares/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Carbono/química , Carbono/metabolismo , Cristalografia por Raios X , Glucosamina/análogos & derivados , Glucosamina/química , Glucosamina/metabolismo , Cinética , Metiltransferases/genética , Metiltransferases/metabolismo , Mutação , Oxigênio/química , Oxigênio/metabolismo , Ligação Proteica , Domínios Proteicos , S-Adenosilmetionina/metabolismo , Streptomyces/enzimologia , Streptomyces/genética , Especificidade por Substrato , Compostos de Sulfônio/metabolismo
9.
Bioconjug Chem ; 29(12): 4030-4039, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30372040

RESUMO

Chemoenzymatic synthesis is an important strategy for the formation of glycopolymers. The use of a smaller number of traditional chemical steps and enzyme catalyzed reactions increases the yield of glycopolymer that can be produced by reducing the overall number of synthetic steps. In addition, chemoenzymatic routes are likely to be more accessible to those without a background in carbohydrate synthesis, making glycopolymers more available for studies across a broader range of scientists. Here, the enzymatic addition of galactose to N-acetylglucosamine functionalized glycodendrimers reduced the requisite number of synthetic steps for the full chemical synthesis of N-acetyl lactosamine (Lac NAc) functionalized dendrimers to four steps. Unpurified cell lysate was used in the enzyme catalyzed glycosylation, and product glycodendrimers were readily purified by dialysis after enzymatic degradation of all protein components of the lysate in the crude reaction mixture. Lac NAc functionalized dendrimers were used very effectively in homotypic cancer cellular aggregation assays and were found to either inhibit or enhance galectin-3 mediated cancer cellular aggregation, with differences in outcomes dependent on the generation of Lac NAc functionalized dendrimers that were used.


Assuntos
Carboidratos/química , Enzimas/química , Galectinas/química , Polímeros/química , Polímeros/síntese química , Acetilglucosamina/química , Amino Açúcares/química , Sítios de Ligação , Linhagem Celular Tumoral , Glicosilação , Humanos
10.
Sci Rep ; 8(1): 13139, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30177739

RESUMO

The interaction of carbohydrate-binding proteins (CBPs) with their corresponding glycan ligands is challenging to study both experimentally and computationally. This is in part due to their low binding affinity, high flexibility, and the lack of a linear sequence in carbohydrates, as exists in nucleic acids and proteins. We recently described a function-prediction technique called SPOT-Struc that identifies CBPs by global structural alignment and binding-affinity prediction. Here we experimentally determined the carbohydrate specificity and binding affinity of YesU (RCSB PDB ID: 1oq1), an uncharacterized protein from Bacillus subtilis that SPOT-Struc predicted would bind high mannose-type glycans. Glycan array analyses however revealed glycan binding patterns similar to those exhibited by fucose (Fuc)-binding lectins, with SPR analysis revealing high affinity binding to Lewisx and lacto-N-fucopentaose III. Structure based alignment of YesU revealed high similarity to the legume lectins UEA-I and GS-IV, and docking of Lewisx into YesU revealed a complex structure model with predicted binding affinity of -4.3 kcal/mol. Moreover the adherence of B. subtilis to intestinal cells was significantly inhibited by Lex and Ley but by not non-fucosylated glycans, suggesting the interaction of YesU to fucosylated glycans may be involved in the adhesion of B. subtilis to the gastrointestinal tract of mammals.


Assuntos
Amino Açúcares/química , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Fucose/química , Oligossacarídeos/química , Polissacarídeos/química , Receptores de Superfície Celular/química , Amino Açúcares/metabolismo , Bacillus subtilis/química , Bacillus subtilis/genética , Aderência Bacteriana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Células CACO-2 , Sequência de Carboidratos , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Fucose/metabolismo , Expressão Gênica , Glicosilação , Humanos , Cinética , Antígenos do Grupo Sanguíneo de Lewis , Simulação de Acoplamento Molecular , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína
11.
Nat Commun ; 9(1): 3287, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30120234

RESUMO

Leukocytes are coated with a layer of heterogeneous carbohydrates (glycans) that modulate immune function, in part by governing specific interactions with glycan-binding proteins (lectins). Although nearly all membrane proteins bear glycans, the identity and function of most of these sugars on leukocytes remain unexplored. Here, we characterize the N-glycan repertoire (N-glycome) of human tonsillar B cells. We observe that naive and memory B cells express an N-glycan repertoire conferring strong binding to the immunoregulatory lectin galectin-9 (Gal-9). Germinal center B cells, by contrast, show sharply diminished binding to Gal-9 due to upregulation of I-branched N-glycans, catalyzed by the ß1,6-N-acetylglucosaminyltransferase GCNT2. Functionally, we find that Gal-9 is autologously produced by naive B cells, binds CD45, suppresses calcium signaling via a Lyn-CD22-SHP-1 dependent mechanism, and blunts B cell activation. Thus, our findings suggest Gal-9 intrinsically regulates B cell activation and may differentially modulate BCR signaling at steady state and within germinal centers.


Assuntos
Linfócitos B/metabolismo , Galectinas/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais , Amino Açúcares/química , Sinalização do Cálcio , Linhagem Celular , Núcleo Celular/metabolismo , Proliferação de Células , Endocitose , Galectinas/sangue , Centro Germinativo/metabolismo , Humanos , Fatores Imunológicos/metabolismo , Memória Imunológica , Antígenos Comuns de Leucócito/metabolismo , Ativação Linfocitária/imunologia , Tecido Linfoide/metabolismo , Modelos Biológicos , N-Acetilexosaminiltransferases/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Fosforilação , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Quinases da Família src/metabolismo
12.
Bioconjug Chem ; 28(11): 2832-2840, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28976746

RESUMO

Galectin-3 (Gal-3), a member of the ß-galactoside-binding lectin family, is a tumor biomarker and involved in tumor angiogenesis and metastasis. Gal-3 is therefore considered as a promising target for early cancer diagnosis and anticancer therapy. We here present the synthesis of a library of tailored multivalent neo-glycoproteins and evaluate their Gal-3 binding properties. By the combinatorial use of glycosyltransferases and chemo-enzymatic reactions, we first synthesized a set of N-acetyllactosamine (Galß1,4GlcNAc; LacNAc type 2)-based oligosaccharides featuring five different terminating glycosylation epitopes, respectively. Neo-glycosylation of bovine serum albumin (BSA) was accomplished by dialkyl squarate coupling to lysine residues resulting in a library of defined multivalent neo-glycoproteins. Solid-phase binding assays with immobilized neo-glycoproteins revealed distinct affinity and specificity of the multivalent glycan epitopes for Gal-3 binding. In particular, neo-glycoproteins decorated with N',N″-diacetyllactosamine (GalNAcß1,4GlcNAc; LacdiNAc) epitopes showed high selectivity and were demonstrated to capture Gal-3 from human serum with high affinity. Furthermore, neo-glycoproteins with terminal biotinylated LacNAc glycan motif could be utilized as Gal-3 detection agents in a sandwich enzyme-linked immunosorbent assay format. We conclude that, in contrast to antibody-based capture steps, the presented neo-glycoproteins are highly useful to detect functionally intact Gal-3 with high selectivity and avidity. We further gain novel insights into the binding affinity of Gal-3 using tailored multivalent neo-glycoproteins, which have the potential for an application in the context of cancer-related biomedical research.


Assuntos
Galectina 3/antagonistas & inibidores , Galectina 3/metabolismo , Glicoproteínas/química , Glicoproteínas/farmacologia , Amino Açúcares/síntese química , Amino Açúcares/química , Amino Açúcares/metabolismo , Animais , Bovinos , Técnicas de Química Combinatória , Glicoproteínas/síntese química , Glicoproteínas/metabolismo , Glicosilação , Humanos , Ligantes , Oligossacarídeos/síntese química , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Ligação Proteica , Soroalbumina Bovina/síntese química , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Soroalbumina Bovina/farmacologia
13.
Sci Rep ; 7(1): 12218, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28939860

RESUMO

Optical clearing methods can facilitate deep optical imaging in biological tissue by reducing light scattering and this has enabled accurate three-dimensional signal visualization and quantification of complex biological structures. Unfortunately, existing optical clearing approaches present a compromise between maximizing clearing capability, the preservation of fluorescent protein emission and membrane integrity and the speed of sample processing - with the latter typically requiring weeks for cm scale tissue samples. To address this challenge, we present a new, convenient, aqueous optical clearing agent, termed UbasM: Urea-Based Amino-Sugar Mixture, that rapidly renders fixed tissue samples highly transparent and reliably preserves emission from fluorescent proteins and lipophilic dyes in membrane integrity preserved tissues. UbasM is simple, inexpensive, reproducible and compatible with all labeling methods that we have encountered. It can enable convenient, volumetric imaging of tissue up to the scale of whole adult mouse organs and should be useful for a wide range of light microscopy and tomography techniques applied to biomedical research, especially the study on organism-level systems biology at multiple levels.


Assuntos
Técnicas Histológicas/métodos , Imagem Óptica/métodos , Amino Açúcares/química , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Soluções , Ureia/química
14.
Molecules ; 22(8)2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28796164

RESUMO

Repeats of the disaccharide unit N-acetyllactosamine (LacNAc) occur as type 1 (Galß1, 3GlcNAc) and type 2 (Galß1, 4GlcNAc) glycosylation motifs on glycoproteins and glycolipids. The LacNAc motif acts as binding ligand for lectins and is involved in many biological recognition events. To the best of our knowledge, we present, for the first time, the synthesis of LacNAc type 1 oligomers using recombinant ß1,3-galactosyltransferase from Escherichia coli and ß1,3-N-acetylglucosaminyltranferase from Helicobacter pylori. Tetrasaccharide glycans presenting LacNAc type 1 repeats or LacNAc type 1 at the reducing or non-reducing end, respectively, were conjugated to bovine serum albumin as a protein scaffold by squarate linker chemistry. The resulting multivalent LacNAc type 1 presenting neo-glycoproteins were further studied for specific binding of the tumor-associated human galectin 3 (Gal-3) and its truncated counterpart Gal-3∆ in an enzyme-linked lectin assay (ELLA). We observed a significantly increased affinity of Gal-3∆ towards the multivalent neo-glycoprotein presenting LacNAc type 1 repeating units. This is the first evidence for differences in glycan selectivity of Gal-3∆ and Gal-3 and may be further utilized for tracing Gal-3∆ during tumor progression and therapy.


Assuntos
Amino Açúcares/química , Galactosiltransferases/química , Galectina 3/química , Oligossacarídeos/química , Escherichia coli/enzimologia , Glicoproteínas/síntese química , Helicobacter pylori/enzimologia , Humanos , Ligantes , Ligação Proteica , Soroalbumina Bovina/química
15.
Chembiochem ; 18(15): 1477-1481, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28503789

RESUMO

Galectin-1 is a tumor-associated protein recognizing the Galß1-4GlcNAc motif of cell-surface glycoconjugates. Herein, we report the stepwise expansion of a multifunctional natural scaffold based on N-acetyllactosamine (LacNAc). We obtained a LacNAc mimetic equipped with an alkynyl function on the 3'-hydroxy group of the disaccharide facing towards a binding pocket adjacent to the carbohydrate-recognition domain. It served as an anchor motif for further expansion by the Sharpless-Huisgen-Meldal reaction, which resulted in ligands with a binding mode almost identical to that of the natural carbohydrate template. X-ray crystallography provided a structural understanding of the galectin-1-ligand interactions. The results of this study enable the development of bespoke ligands for members of the galectin target family.


Assuntos
Amino Açúcares/química , Galectina 1/química , Amino Açúcares/síntese química , Sítios de Ligação , Calorimetria , Cristalografia por Raios X , Humanos , Ligantes
16.
Curr Med Chem ; 24(34): 3667-3680, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-28545372

RESUMO

Lectins are a large group of proteins found in animals, plants, fungi, and bacteria that recognize specific carbohydrate targets and play an important role in cell recognition and communication, host-pathogen interactions, embryogenesis, and tissue development. Recently, lectins have emerged as important biomedical tools that have been used in the development of immunomodulatory, antipathogenic, and anticancer agents. Several lectins have been shown to have the ability to discriminate between normal cells and tumor cells as a result of their different glycosylation patterns. Furthermore, the specific binding of lectins to cancer cells has been shown to trigger mechanisms that can promote the death of these abnormal cells. Here, we review the importance of lectins-carbohydrates interactions in cancer therapy and diagnosis. We examine the use of lectins in the modification of nanoparticles (liposomes, solid lipid nanoparticles and other polymers) for anticancer drug delivery. The development of drug delivery systems (liposomes, alginate/chitosan microcapsules, alginate beads) carrying some antitumor lectins is also discussed. In these cases, the processes of cell death induced by these antitumor lectins were also showed (if available). In both cases (lectin-conjugated polymers or encapsulated lectins), these new pharmaceutical preparations showed improved intracellular delivery, bioavailability and targetability leading to enhanced therapeutic index and significantly less side effects.


Assuntos
Amino Açúcares/metabolismo , Antineoplásicos/química , Lectinas/metabolismo , Amino Açúcares/química , Antineoplásicos/uso terapêutico , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Técnicas Biossensoriais , Portadores de Fármacos/química , Glicosilação , Humanos , Lectinas/química , Lectinas/uso terapêutico , Lectinas/toxicidade , Nanopartículas/química , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico
17.
Chembiochem ; 18(8): 782-789, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28166391

RESUMO

Galectins have been recognized as potential novel therapeutic targets for the numerous fundamental biological processes in which they are involved. Galectins are key players in homeostasis, and as such their expression and function are finely tuned in vivo. Thus, their modes of action are complex and remain largely unexplored, partly because of the lack of dedicated tools. We thus designed galectin inhibitors from a lactosamine core, functionalized at key C2 and C3' positions by aromatic substituents to ensure both high affinity and selectivity, and equipped with a spacer that can be modified on demand to further modulate their physico-chemical properties. As a proof-of-concept, galectin-3 was selectively targeted. The efficacy of the synthesized di-aromatic lactosamine tools was shown in cellular assays to modulate collective epithelial cell migration and to interfere with actin/cortactin localization.


Assuntos
Amino Açúcares/farmacologia , Galectina 3/antagonistas & inibidores , Cicatrização/efeitos dos fármacos , Amino Açúcares/síntese química , Amino Açúcares/química , Proteínas Sanguíneas , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Galectina 1/antagonistas & inibidores , Galectinas/antagonistas & inibidores , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/fisiologia
18.
Anal Bioanal Chem ; 409(2): 439-451, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27826629

RESUMO

Re-analysis of two breast cancer cell lines, MCF-7 and MDA-MB-231, has shown multiple isomeric structures exposed by sequential mass spectrometry, MS n . Several released glycan compositions were re-evaluated, which indicated variations in polylactosamine and fucosylation structures. Probable isomer numbers, when considering both stereo and structural entities, are significant and the varying types are mentioned. The structural isomers of linkage position are most frequently considered, while stereo isomers are usually assumed from biosynthetic data. Evaluation of any new sample should be cautious and merits careful attention to empirical data. While isomers are usually considered a chromatographic problem (e.g., LCMS, IMMS) and most frequently considered a separations problem, such results will always be challenged by identification and documentation. MSn data provide a direct spatial solution that includes spectral data for characterization (mass and abundance) supported by a universal library match feature.


Assuntos
Polissacarídeos/química , Espectrometria de Massas em Tandem , Amino Açúcares/química , Linhagem Celular Tumoral , Feminino , Glicolipídeos/química , Glicosilação , Humanos , Isomerismo , Células MCF-7
19.
Biochemistry ; 55(32): 4541-51, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27427828

RESUMO

Glycosaminoglycan (GAG) binding proteins (GAGBPs), including growth factors, cytokines, morphogens, and extracellular matrix proteins, interact with both free GAGs and those covalently linked to proteoglycans. Such interactions modulate a variety of cellular and extracellular events, such as cell growth, metastasis, morphogenesis, neural development, and inflammation. GAGBPs are structurally and evolutionarily unrelated proteins that typically recognize internal sequences of sulfated GAGs. GAGBPs are distinct from the other major group of glycan binding proteins, lectins. The multifunctional human galectin-3 (Gal-3) is a ß-galactoside binding lectin that preferentially binds to N-acetyllactosamine moieties on glycoconjugates. Here, we demonstrate through microcalorimetric and spectroscopic data that Gal-3 possesses the characteristics of a GAGBP. Gal-3 interacts with unmodified heparin, chondroitin sulfate-A (CSA), -B (CSB), and -C (CSC) as well as chondroitin sulfate proteoglycans (CSPGs). While heparin, CSA, and CSC bind with micromolar affinity, the affinity of CSPGs is nanomolar. Significantly, CSA, CSC, and a bovine CSPG were engaged in multivalent binding with Gal-3 and formed noncovalent cross-linked complexes with the lectin. Binding of sulfated GAGs was completely abolished when Gal-3 was preincubated with ß-lactose. Cross-linking of Gal-3 by CSA, CSC, and the bovine CSPG was reversed by ß-lactose. Both observations strongly suggest that GAGs primarily occupy the lactose/LacNAc binding site of Gal-3. Hill plot analysis of calorimetric data reveals that the binding of CSA, CSC, and a bovine CSPG to Gal-3 is associated with progressive negative cooperativity effects. Identification of Gal-3 as a GAGBP should help to reveal new functions of Gal-3 mediated by GAGs and proteoglycans.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/metabolismo , Galectina 3/metabolismo , Glicosaminoglicanos/metabolismo , Amino Açúcares/química , Amino Açúcares/metabolismo , Animais , Sítios de Ligação , Bovinos , Dermatan Sulfato/metabolismo , Relação Dose-Resposta a Droga , Galectina 3/química , Heparina/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Lactose/metabolismo , Ligação Proteica/efeitos dos fármacos , Cloreto de Sódio/farmacologia
20.
Food Chem ; 210: 457-65, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27211671

RESUMO

In this work, steam-explosion treatment was evaluated as a procedure to recover sugars and natural antioxidants from olive tree leaves. The treatment was carried out following a Box-Behnken experimental design, with three factors, temperature (180-220°C), process time (2-10min) and milling time (0-15s). Response surface methodology showed that temperature was the most influential factor, followed by process time, while the best results were achieved with whole leaves. The operational conditions for simultaneously maximizing the sugars and natural antioxidants recoveries resulted to be 180°C, 8.3min and whole leaf; under these conditions 18.39g and 1950mg were obtained from 100g dry olive leaves, respectively. This is equivalent to 70% recovery of the initial sugars present in olive leaves, with a very low formation of inhibitory compounds and an important amount of natural products with antioxidant capacity such as oleuropein, hydroxytyrosol and flavonoids.


Assuntos
Amino Açúcares/química , Antioxidantes/química , Olea/química , Folhas de Planta/química , Vapor/análise , Antioxidantes/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA