Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RNA ; 30(3): 298-307, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38164606

RESUMO

Several methods are available to visualize and assess the kinetics and efficiency of elemental steps of protein biosynthesis. However, each of these methods has its own limitations. Here, we present a novel, simple and convenient tool for monitoring stepwise in vitro translation initiated by BODIPY-Met-tRNA. Synthesis and release of very short, 1-7 amino acids, BODIPY-labeled peptides, can be monitored using urea-polyacrylamide gel electrophoresis. Very short BODIPY-labeled oligopeptides might be resolved this way, in contrast to widely used Tris-tricine gel electrophoresis, which is suitable to separate peptides larger than 1 kDa. The method described in this manuscript allows one to monitor the steps of translation initiation, peptide transfer, translocation, and termination as well as their inhibition at an unprecedented single amino acid resolution.


Assuntos
Compostos de Boro , Peptídeos , Aminoacil-RNA de Transferência , Aminoacil-RNA de Transferência/química , Peptídeos/metabolismo , RNA de Transferência/metabolismo , Eletroforese em Gel de Poliacrilamida , Biossíntese de Proteínas
2.
Elife ; 92020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32844746

RESUMO

Puromycin is an amino-acyl transfer RNA analog widely employed in studies of protein synthesis. Since puromycin is covalently incorporated into nascent polypeptide chains, anti-puromycin immunofluorescence enables visualization of nascent protein synthesis. A common assumption in studies of local messenger RNA translation is that the anti-puromycin staining of puromycylated nascent polypeptides in fixed cells accurately reports on their original site of translation, particularly when ribosomes are stalled with elongation inhibitors prior to puromycin treatment. However, when we attempted to implement a proximity ligation assay to detect ribosome-puromycin complexes, we found no evidence to support this assumption. We further demonstrated, using biochemical assays and live cell imaging of nascent polypeptides in mammalian cells, that puromycylated nascent polypeptides rapidly dissociate from ribosomes even in the presence of elongation inhibitors. Our results suggest that attempts to define precise subcellular translation sites using anti-puromycin immunostaining may be confounded by release of puromycylated nascent polypeptide chains prior to fixation.


Assuntos
Elongação Traducional da Cadeia Peptídica/efeitos dos fármacos , Inibidores da Síntese de Proteínas , Puromicina , Ribossomos , Animais , Linhagem Celular Tumoral , Camundongos , Inibidores da Síntese de Proteínas/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , Proteínas/química , Proteínas/metabolismo , Puromicina/metabolismo , Puromicina/farmacologia , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo
3.
RNA ; 26(11): 1589-1602, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32680846

RESUMO

Cyclodipeptide synthases (CDPSs) catalyze the synthesis of various cyclodipeptides by using two aminoacyl-tRNA (aa-tRNA) substrates in a sequential mechanism. Here, we studied binding of phenylalanyl-tRNAPhe to the CDPS from Candidatus Glomeribacter gigasporarum (Cglo-CDPS) by gel filtration and electrophoretic mobility shift assay. We determined the crystal structure of the Cglo-CDPS:Phe-tRNAPhe complex to 5 Å resolution and further studied it in solution using small-angle X-ray scattering (SAXS). The data show that the major groove of the acceptor stem of the aa-tRNA interacts with the enzyme through the basic ß2 and ß7 strands of CDPSs belonging to the XYP subfamily. A bending of the CCA extremity enables the amino acid moiety to be positioned in the P1 pocket while the terminal A76 adenosine occupies the P2 pocket. Such a positioning indicates that the present structure illustrates the binding of the first aa-tRNA. In cells, CDPSs and the elongation factor EF-Tu share aminoacylated tRNAs as substrates. The present study shows that CDPSs and EF-Tu interact with opposite sides of tRNA. This may explain how CDPSs hijack aa-tRNAs from canonical ribosomal protein synthesis.


Assuntos
Peptídeo Sintases/química , Peptídeo Sintases/metabolismo , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Burkholderiaceae/efeitos dos fármacos , Burkholderiaceae/genética , Cromatografia em Gel , Cristalografia por Raios X , Ensaio de Desvio de Mobilidade Eletroforética , Modelos Moleculares , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/metabolismo , Estrutura Secundária de Proteína , Espalhamento a Baixo Ângulo , Difração de Raios X
4.
Acta Biochim Biophys Sin (Shanghai) ; 52(7): 749-756, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32400848

RESUMO

The ribosome is an ancient and universally conserved macromolecular machine that synthesizes proteins in all organisms. Since the discovery of the ribosome by electron microscopy in the mid-1950s, rapid progress has been made in research on it, regarding its architecture and functions. As a machine that synthesizes polypeptides, the sequential addition of amino acids to a growing polypeptide chain occurs during a phase called the elongation cycle. This is the core step of protein translation and is highly conserved between bacteria and eukarya. The elongation cycle involves codon recognition by aminoacyl tRNAs, catalysis of peptide bond formation, and the most complex operation of translation-translocation. In this review, we discuss the fundamental results from structural and functional studies over the past decades that have led to understanding of the three key questions underlying translation.


Assuntos
Elongação Traducional da Cadeia Peptídica/fisiologia , Aminoacil-RNA de Transferência , Ribossomos , Catálise , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/metabolismo , Ribossomos/química , Ribossomos/genética , Ribossomos/metabolismo
5.
Nat Struct Mol Biol ; 26(12): 1132-1140, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31768042

RESUMO

Faulty or damaged messenger RNAs are detected by the cell when translating ribosomes stall during elongation and trigger pathways of mRNA decay, nascent protein degradation and ribosome recycling. The most common mRNA defect in eukaryotes is probably inappropriate polyadenylation at near-cognate sites within the coding region. How ribosomes stall selectively when they encounter poly(A) is unclear. Here, we use biochemical and structural approaches in mammalian systems to show that poly-lysine, encoded by poly(A), favors a peptidyl-transfer RNA conformation suboptimal for peptide bond formation. This conformation partially slows elongation, permitting poly(A) mRNA in the ribosome's decoding center to adopt a ribosomal RNA-stabilized single-stranded helix. The reconfigured decoding center clashes with incoming aminoacyl-tRNA, thereby precluding elongation. Thus, coincidence detection of poly-lysine in the exit tunnel and poly(A) in the decoding center allows ribosomes to detect aberrant mRNAs selectively, stall elongation and trigger downstream quality control pathways essential for cellular homeostasis.


Assuntos
Peptídeos/metabolismo , Poli A/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Peptídeos/química , Poli A/química , Poliadenilação , Polilisina/química , Polilisina/metabolismo , Estabilidade de RNA , RNA Mensageiro/química , RNA de Transferência/química , RNA de Transferência/metabolismo , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/metabolismo , Ribossomos/química
6.
Nucleic Acids Res ; 47(9): e54, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30843032

RESUMO

Structural analysis of ribosomes in complex with aminoacyl- and/or peptidyl-transfer RNA (tRNA) often suffers from rapid hydrolysis of the ester bond of aminoacyl-tRNAs. To avoid this issue, several methods to introduce an unhydrolyzable amide bond instead of the canonical ester bond have been developed to date. However, the existing methodologies require rather complex steps of synthesis and are often inapplicable to a variety of amino acids including those with noncanonical structures. Here, we report a new method to synthesize 3'-aminoacyl-NH-tRNAs by means of flexizymes-ribozymes capable of charging amino acids onto tRNAs. We show that two types of flexizymes, dFx and eFx, are able to charge various amino acids, including nonproteinogenic ones, onto tRNA or microhelix RNA bearing the 3'-deoxy-3'-amino-adenosine. Due to the versatility of the flexizymes toward any pair of nonproteinogenic amino acids and full-length or fragment tRNAs, this method provides researchers an opportunity to use a wide array of hydrolytically stable 3'-aminoacyl-NH-tRNAs and analogs for various studies.


Assuntos
RNA Catalítico/genética , Aminoacil-RNA de Transferência/genética , RNA/genética , Ribossomos/genética , Aminoácidos/química , Aminoácidos/genética , Catálise , Desoxiadenosinas/química , Desoxiadenosinas/genética , Escherichia coli/química , Escherichia coli/genética , Hidrólise , Biossíntese de Proteínas/genética , RNA/química , RNA Catalítico/química , Aminoacil-RNA de Transferência/química , Ribossomos/química
7.
Protein Pept Lett ; 26(6): 435-448, 2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-30919766

RESUMO

BACKGROUND: Aminoacyl-tRNA synthetases play an important role in catalyzing the first step in protein synthesis by attaching the appropriate amino acid to its cognate tRNA which then transported to the growing polypeptide chain. Asparaginyl-tRNA Synthetase (AsnRS) from Brugia malayi, Leishmania major, Thermus thermophilus, Trypanosoma brucei have been shown to play an important role in survival and pathogenesis. Entamoeba histolytica (Ehis) is an anaerobic eukaryotic pathogen that infects the large intestines of humans. It is a major cause of dysentery and has the potential to cause life-threatening abscesses in the liver and other organs making it the second leading cause of parasitic death after malaria. Ehis-AsnRS has not been studied in detail, except the crystal structure determined at 3 Å resolution showing that it is primarily α-helical and dimeric. It is a homodimer, with each 52 kDa monomer consisting of 451 amino acids. It has a relatively short N-terminal as compared to its human and yeast counterparts. OBJECTIVE: Our study focusses to understand certain structural characteristics of Ehis-AsnRS using biophysical tools to decipher the thermodynamics of unfolding and its binding properties. METHODS: Ehis-AsnRS was cloned and expressed in E. coli BL21DE3 cells. Protein purification was performed using Ni-NTA affinity chromatography, following which the protein was used for biophysical studies. Various techniques such as steady-state fluorescence, quenching, circular dichroism, differential scanning fluorimetry, isothermal calorimetry and fluorescence lifetime studies were employed for the conformational characterization of Ehis-AsnRS. Protein concentration for far-UV and near-UV circular dichroism experiments was 8 µM and 20 µM respectively, while 4 µM protein was used for the rest of the experiments. RESULTS: The present study revealed that Ehis-AsnRS undergoes unfolding when subjected to increasing concentration of GdnHCl and the process is reversible. With increasing temperature, it retains its structural compactness up to 45ºC before it unfolds. Steady-state fluorescence, circular dichroism and hydrophobic dye binding experiments cumulatively suggest that Ehis-AsnRS undergoes a two-state transition during unfolding. Shifting of the transition mid-point with increasing protein concentration further illustrate that dissociation and unfolding processes are coupled indicating the absence of any detectable folded monomer. CONCLUSION: This article indicates that GdnHCl induced denaturation of Ehis-AsnRS is a two - state process and does not involve any intermediate; unfolding occurs directly from native dimer to unfolded monomer. The solvent exposure of the tryptophan residues is biphasic, indicating selective quenching. Ehis-AsnRS also exhibits a structural as well as functional stability over a wide range of pH.


Assuntos
Aspartato-tRNA Ligase/química , Aspartato-tRNA Ligase/metabolismo , Entamoeba histolytica/química , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/metabolismo , Aspartato-tRNA Ligase/genética , Escherichia coli/genética , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Aminoacil-RNA de Transferência/genética , Espectrometria de Fluorescência/métodos , Termodinâmica
8.
Nucleic Acids Res ; 47(4): 2089-2100, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30520988

RESUMO

During protein synthesis, ribosomes discriminate chirality of amino acids and prevent incorporation of D-amino acids into nascent proteins by slowing down the rate of peptide bond formation. Despite this phenomenon being known for nearly forty years, no structures have ever been reported that would explain the poor reactivity of D-amino acids. Here we report a 3.7Å-resolution crystal structure of a bacterial ribosome in complex with a D-aminoacyl-tRNA analog bound to the A site. Although at this resolution we could not observe individual chemical groups, we could unambiguously define the positions of the D-amino acid side chain and the amino group based on chemical restraints. The structure reveals that similarly to L-amino acids, the D-amino acid binds the ribosome by inserting its side chain into the ribosomal A-site cleft. This binding mode does not allow optimal nucleophilic attack of the peptidyl-tRNA by the reactive α-amino group of a D-amino acid. Also, our structure suggests that the D-amino acid cannot participate in hydrogen-bonding with the P-site tRNA that is required for the efficient proton transfer during peptide bond formation. Overall, our work provides the first mechanistic insight into the ancient mechanism that helps living cells ensure the stereochemistry of protein synthesis.


Assuntos
Peptídeos/química , Biossíntese de Proteínas/genética , Aminoacil-RNA de Transferência/química , Ribossomos/química , Aminoácidos/química , Aminoácidos/genética , Sítios de Ligação/genética , Domínio Catalítico/genética , Cristalografia por Raios X , Ligação de Hidrogênio , Peptídeos/genética , Aminoacil-RNA de Transferência/genética , Ribossomos/genética
9.
Biochemistry ; 57(40): 5910-5920, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30211544

RESUMO

Eukaryotic translation initiation is a multistep process requiring a number of eukaryotic translation initiation factors (eIFs). Two GTPases play key roles in the process. eIF2 brings the initiator Met-tRNAi to the preinitiation complex (PIC). Upon start codon selection and GTP hydrolysis promoted by the GTPase-activating protein (GAP) eIF5, eIF2-GDP is displaced from Met-tRNAi by eIF5B-GTP and is released in complex with eIF5. eIF5B promotes ribosomal subunit joining, with the help of eIF1A. Upon subunit joining, eIF5B hydrolyzes GTP and is released together with eIF1A. We found that human eIF5 interacts with eIF5B and may help recruit eIF5B to the PIC. An eIF5B-binding motif was identified at the C-terminus of eIF5, similar to that found in eIF1A. Indeed, eIF5 competes with eIF1A for binding and has an ∼100-fold higher affinity for eIF5B. Because eIF5 is the GAP of eIF2, the newly discovered interaction offers a possible mechanism for coordination between the two steps in translation initiation controlled by GTPases: start codon selection and ribosomal subunit joining. Our results indicate that in humans, eIF5B displacing eIF2 from Met-tRNAi upon subunit joining may be coupled to eIF1A displacing eIF5 from eIF5B, allowing the eIF5:eIF2-GDP complex to leave the ribosome.


Assuntos
Fatores de Iniciação em Eucariotos/química , Proteínas de Neoplasias/química , Proteínas do Tecido Nervoso/química , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/genética , Guanosina Trifosfato/metabolismo , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/metabolismo , Ribossomos/química , Ribossomos/genética , Ribossomos/metabolismo
10.
RNA ; 24(12): 1878-1885, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30217865

RESUMO

Amino acids are attached to the tRNA 3'-end as a prerequisite for entering the ribosome for protein synthesis. Amino acid attachment also gives tRNA access to nonribosomal cellular activities. However, the normal attachment is via an ester linkage between the carboxylic group of the amino acid and the 3'-hydroxyl of the terminal A76 ribose in tRNA. The instability of this ester linkage has severely hampered studies of aminoacyl-tRNAs. Although the use of 3'-amino-3'-deoxy A76 in a 3'-amino-tailed tRNA provides stable aminoacyl attachment via an amide linkage, there are multiple tailing protocols and the efficiency of each relative to the others is unknown. Here we compare five different tailing protocols in parallel, all dependent on the CCA-adding enzyme [CTP(ATP): tRNA nucleotidyl transferase; abbreviated as the CCA enzyme] to exchange the natural ribose with the modified one. We show that the most efficient protocol is achieved by the CCA-catalyzed pyrophosphorolysis removal of the natural A76 in equilibrium with the addition of the appropriate ATP analog to synthesize the modified 3'-end. This protocol for 3'-amino-tailing affords quantitative and stable attachment of a broad range of amino acids to tRNA, indicating its general utility for studies of aminoacyl-tRNAs in both canonical and noncanonical activities.


Assuntos
Aminoácidos/genética , Aminoacil-tRNA Sintetases/genética , RNA de Transferência/genética , Trifosfato de Adenosina/química , Aminoácidos/química , Aminoacil-tRNA Sintetases/química , Sítios de Ligação/genética , Catálise , Escherichia coli/química , Escherichia coli/genética , Biossíntese de Proteínas/genética , RNA de Transferência/química , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/genética
11.
Mol Cell ; 68(3): 528-539.e5, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100053

RESUMO

Nascent polypeptides can modulate the polypeptide elongation speed on the ribosome. Here, we show that nascent chains can even destabilize the translating Escherichia coli ribosome from within. This phenomenon, termed intrinsic ribosome destabilization (IRD), occurs in response to a special amino acid sequence of the nascent chain, without involving the release or the recycling factors. Typically, a consecutive array of acidic residues and those intermitted by alternating prolines induce IRD. The ribosomal protein bL31, which bridges the two subunits, counteracts IRD, such that only strong destabilizing sequences abort translation in living cells. We found that MgtL, the leader peptide of a Mg2+ transporter (MgtA), contains a translation-aborting sequence, which sensitizes the ribosome to a decline in Mg2+ concentration and thereby triggers the MgtA-upregulating genetic scheme. Translation proceeds at an inherent risk of ribosomal destabilization, and nascent chain-ribosome complexes can function as a Mg2+ sensor by harnessing IRD.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Biossíntese de Proteínas , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Magnésio/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Conformação Proteica , Estabilidade Proteica , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Ribossomos/química , Ribossomos/genética , Relação Estrutura-Atividade
12.
Proc Natl Acad Sci U S A ; 114(41): E8603-E8610, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28973849

RESUMO

Directional transit of the ribosome along the messenger RNA (mRNA) template is a key determinant of the rate and processivity of protein synthesis. Imaging of the multistep translocation mechanism using single-molecule FRET has led to the hypothesis that substrate movements relative to the ribosome resolve through relatively long-lived late intermediates wherein peptidyl-tRNA enters the P site of the small ribosomal subunit via reversible, swivel-like motions of the small subunit head domain within the elongation factor G (GDP)-bound ribosome complex. Consistent with translocation being rate-limited by recognition and productive engagement of peptidyl-tRNA within the P site, we now show that base-pairing mismatches between the peptidyl-tRNA anticodon and the mRNA codon dramatically delay this rate-limiting, intramolecular process. This unexpected relationship between aminoacyl-tRNA decoding and translocation suggests that miscoding antibiotics may impact protein synthesis by impairing the recognition of peptidyl-tRNA in the small subunit P site during EF-G-catalyzed translocation. Strikingly, we show that elongation factor P (EF-P), traditionally known to alleviate ribosome stalling at polyproline motifs, can efficiently rescue translocation defects arising from miscoding. These findings help reveal the nature and origin of the rate-limiting steps in substrate translocation on the bacterial ribosome and indicate that EF-P can aid in resuming translation elongation stalled by miscoding errors.


Assuntos
Bactérias/metabolismo , Fator G para Elongação de Peptídeos/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Ribossomos/metabolismo , Anticódon , Códon , Guanosina Trifosfato/metabolismo , Fator G para Elongação de Peptídeos/química , Fatores de Alongamento de Peptídeos/química , RNA Mensageiro/química , Aminoacil-RNA de Transferência/química , Ribossomos/química
13.
Nat Microbiol ; 2: 17117, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28836574

RESUMO

Faithful translation of mRNA into the corresponding polypeptide is a complex multistep process, requiring accurate amino acid selection, transfer RNA (tRNA) charging and mRNA decoding on the ribosome. Key players in this process are aminoacyl-tRNA synthetases (aaRSs), which not only catalyse the attachment of cognate amino acids to their respective tRNAs, but also selectively hydrolyse incorrectly activated non-cognate amino acids and/or misaminoacylated tRNAs. This aaRS proofreading provides quality control checkpoints that exclude non-cognate amino acids during translation, and in so doing helps to prevent the formation of an aberrant proteome. However, despite the intrinsic need for high accuracy during translation, and the widespread evolutionary conservation of aaRS proofreading pathways, requirements for translation quality control vary depending on cellular physiology and changes in growth conditions, and translation errors are not always detrimental. Recent work has demonstrated that mistranslation can also be beneficial to cells, and some organisms have selected for a higher degree of mistranslation than others. The aims of this Review Article are to summarize the known mechanisms of protein translational fidelity and explore the diversity and impact of mistranslation events as a potentially beneficial response to environmental and cellular stress.


Assuntos
Aminoácidos/genética , Biossíntese de Proteínas , Estresse Fisiológico/genética , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Fúngico/química , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Aminoacilação de RNA de Transferência
14.
Mol Cell ; 66(4): 558-567.e4, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28525745

RESUMO

Ribosome frameshifting during translation of bacterial dnaX can proceed via different routes, generating a variety of distinct polypeptides. Using kinetic experiments, we show that -1 frameshifting predominantly occurs during translocation of two tRNAs bound to the slippery sequence codons. This pathway depends on a stem-loop mRNA structure downstream of the slippery sequence and operates when aminoacyl-tRNAs are abundant. However, when aminoacyl-tRNAs are in short supply, the ribosome switches to an alternative frameshifting pathway that is independent of a stem-loop. Ribosome stalling at a vacant 0-frame A-site codon results in slippage of the P-site peptidyl-tRNA, allowing for -1-frame decoding. When the -1-frame aminoacyl-tRNA is lacking, the ribosomes switch into -2 frame. Quantitative mass spectrometry shows that the -2-frame product is synthesized in vivo. We suggest that switching between frameshifting routes may enrich gene expression at conditions of aminoacyl-tRNA limitation.


Assuntos
Proteínas de Bactérias/biossíntese , DNA Polimerase III/biossíntese , Escherichia coli/enzimologia , Mudança da Fase de Leitura do Gene Ribossômico , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Proteínas de Bactérias/genética , DNA Polimerase III/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Cinética , Mutação , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/genética , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem
15.
Nat Commun ; 7: 12026, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27380950

RESUMO

Nascent polypeptides can induce ribosome stalling, regulating downstream genes. Stalling of ErmBL peptide translation in the presence of the macrolide antibiotic erythromycin leads to resistance in Streptococcus sanguis. To reveal this stalling mechanism we obtained 3.6-Å-resolution cryo-EM structures of ErmBL-stalled ribosomes with erythromycin. The nascent peptide adopts an unusual conformation with the C-terminal Asp10 side chain in a previously unseen rotated position. Together with molecular dynamics simulations, the structures indicate that peptide-bond formation is inhibited by displacement of the peptidyl-tRNA A76 ribose from its canonical position, and by non-productive interactions of the A-tRNA Lys11 side chain with the A-site crevice. These two effects combine to perturb peptide-bond formation by increasing the distance between the attacking Lys11 amine and the Asp10 carbonyl carbon. The interplay between drug, peptide and ribosome uncovered here also provides insight into the fundamental mechanism of peptide-bond formation.


Assuntos
Proteínas de Bactérias/química , Biossíntese de Proteínas/efeitos dos fármacos , Aminoacil-RNA de Transferência/química , Ribossomos/metabolismo , Streptococcus sanguis/genética , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Microscopia Crioeletrônica , Eritromicina/química , Eritromicina/farmacologia , Sítios Internos de Entrada Ribossomal , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Conformação Proteica , Inibidores da Síntese de Proteínas/química , Inibidores da Síntese de Proteínas/farmacologia , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/ultraestrutura , Streptococcus sanguis/efeitos dos fármacos , Streptococcus sanguis/metabolismo
16.
Nature ; 534(7606): 277-280, 2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-27279228

RESUMO

In order to survive, bacteria continually sense, and respond to, environmental fluctuations. Stringent control represents a key bacterial stress response to nutrient starvation that leads to rapid and comprehensive reprogramming of metabolic and transcriptional patterns. In general, transcription of genes for growth and proliferation is downregulated, while those important for survival and virulence are upregulated. Amino acid starvation is sensed by depletion of the aminoacylated tRNA pools, and this results in accumulation of ribosomes stalled with non-aminoacylated (uncharged) tRNA in the ribosomal A site. RelA is recruited to stalled ribosomes and activated to synthesize a hyperphosphorylated guanosine analogue, (p)ppGpp, which acts as a pleiotropic secondary messenger. However, structural information about how RelA recognizes stalled ribosomes and discriminates against aminoacylated tRNAs is missing. Here we present the cryo-electron microscopy structure of RelA bound to the bacterial ribosome stalled with uncharged tRNA. The structure reveals that RelA utilizes a distinct binding site compared to the translational factors, with a multi-domain architecture that wraps around a highly distorted A-site tRNA. The TGS (ThrRS, GTPase and SpoT) domain of RelA binds the CCA tail to orient the free 3' hydroxyl group of the terminal adenosine towards a ß-strand, such that an aminoacylated tRNA at this position would be sterically precluded. The structure supports a model in which association of RelA with the ribosome suppresses auto-inhibition to activate synthesis of (p)ppGpp and initiate the stringent response. Since stringent control is responsible for the survival of pathogenic bacteria under stress conditions, and contributes to chronic infections and antibiotic tolerance, RelA represents a good target for the development of novel antibacterial therapeutics.


Assuntos
Aminoácidos/deficiência , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , GTP Pirofosfoquinase/metabolismo , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Estresse Fisiológico , Adenosina/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestrutura , GTP Pirofosfoquinase/antagonistas & inibidores , GTP Pirofosfoquinase/genética , GTP Pirofosfoquinase/ultraestrutura , Regulação Bacteriana da Expressão Gênica , Guanosina Tetrafosfato/química , Guanosina Tetrafosfato/metabolismo , Redes e Vias Metabólicas , Modelos Moleculares , Fosforilação , Biossíntese de Proteínas , Conformação Proteica , Estrutura Terciária de Proteína , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/ultraestrutura , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/metabolismo , Ribossomos/química , Ribossomos/ultraestrutura , Sistemas do Segundo Mensageiro
17.
ACS Chem Biol ; 10(10): 2187-92, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26191973

RESUMO

Ribosomal synthesis of polymers of unnatural amino acids (AAs) is limited by low incorporation efficiencies using the artificial AA-tRNAs, but the kinetics have yet to be studied. Here, kinetics were performed on five consecutive incorporations using various artificial AA-tRNAs with all intermediate products being analyzed. Yields within a few seconds displayed similar trends to our prior yields after 30 min without preincubation, demonstrating the relevance of fast kinetics to traditional long-incubation translations. Interestingly, the two anticodon swaps were much less inhibitory in the present optimized system, which should allow more flexibility in the engineering of artificial AA-tRNAs. The biggest kinetic defect was caused by the penultimate dC introduced from the standard, chemoenzymatic, charging method. This prompted peptidyl-tRNA drop-off, decreasing processivities during five consecutive AA incorporations. Indeed, two tRNA charging methods that circumvented the dC dramatically improved efficiencies of ribosomal, consecutive, unnatural AA incorporations to give near wild-type kinetics.


Assuntos
Aminoacil-RNA de Transferência/química , Ribossomos/metabolismo , Catálise , Cinética , Modelos Biológicos , Peptídeos/síntese química , Peptídeos/química , Peptídeos/metabolismo , Polimerização
18.
Proc Natl Acad Sci U S A ; 112(19): 6038-43, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25918365

RESUMO

The cellular translational machinery (TM) synthesizes proteins using exclusively L- or achiral aminoacyl-tRNAs (aa-tRNAs), despite the presence of D-amino acids in nature and their ability to be aminoacylated onto tRNAs by aa-tRNA synthetases. The ubiquity of L-amino acids in proteins has led to the hypothesis that D-amino acids are not substrates for the TM. Supporting this view, protein engineering efforts to incorporate D-amino acids into proteins using the TM have thus far been unsuccessful. Nonetheless, a mechanistic understanding of why D-aa-tRNAs are poor substrates for the TM is lacking. To address this deficiency, we have systematically tested the translation activity of D-aa-tRNAs using a series of biochemical assays. We find that the TM can effectively, albeit slowly, accept D-aa-tRNAs into the ribosomal aa-tRNA binding (A) site, use the A-site D-aa-tRNA as a peptidyl-transfer acceptor, and translocate the resulting peptidyl-D-aa-tRNA into the ribosomal peptidyl-tRNA binding (P) site. During the next round of continuous translation, however, we find that ribosomes carrying a P-site peptidyl-D-aa-tRNA partition into subpopulations that are either translationally arrested or that can continue translating. Consistent with its ability to arrest translation, chemical protection experiments and molecular dynamics simulations show that P site-bound peptidyl-D-aa-tRNA can trap the ribosomal peptidyl-transferase center in a conformation in which peptidyl transfer is impaired. Our results reveal a novel mechanism through which D-aa-tRNAs interfere with translation, provide insight into how the TM might be engineered to use D-aa-tRNAs, and increase our understanding of the physiological role of a widely distributed enzyme that clears D-aa-tRNAs from cells.


Assuntos
Aminoácidos/química , Peptidil Transferases/química , RNA de Transferência/química , Ribossomos/química , Sítios de Ligação , Cromatografia em Camada Fina , Escherichia coli/enzimologia , Simulação de Dinâmica Molecular , Peptídeos/química , Fenilalanina-tRNA Ligase/química , Ligação Proteica , Biossíntese de Proteínas , Engenharia de Proteínas , Estrutura Terciária de Proteína , Aminoacil-RNA de Transferência/química , Estereoisomerismo , Especificidade por Substrato
19.
Mol Cell ; 57(3): 389-90, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25658201

RESUMO

Utilizing their previously established minimal in vitro ubiquitination system (Shao and Hegde, 2014), Shao et al. (2015) now show how NEMF supports the binding of Listerin to stalled 60S-RNCs, a major substrate of ribosomal quality control.


Assuntos
Antígenos de Neoplasias/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Aminoacil-RNA de Transferência/química , Ribossomos/química , Ubiquitina-Proteína Ligases/metabolismo , Humanos
20.
Mol Cell ; 57(3): 433-44, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25578875

RESUMO

During ribosome-associated quality control, stalled ribosomes are split into subunits and the 60S-housed nascent polypeptides are poly-ubiquitinated by Listerin. How this low-abundance ubiquitin ligase targets rare stall-generated 60S among numerous empty 60S is unknown. Here, we show that Listerin specificity for nascent chain-60S complexes depends on nuclear export mediator factor (NEMF). The 3.6 Å cryo-EM structure of a nascent chain-containing 60S-Listerin-NEMF complex revealed that NEMF makes multiple simultaneous contacts with 60S and peptidyl-tRNA to sense nascent chain occupancy. Structural and mutational analyses showed that ribosome-bound NEMF recruits and stabilizes Listerin's N-terminal domain, while Listerin's C-terminal RWD domain directly contacts the ribosome to position the adjacent ligase domain near the nascent polypeptide exit tunnel. Thus, highly specific nascent chain targeting by Listerin is imparted by the avidity gained from a multivalent network of context-specific individually weak interactions, highlighting a new principle of client recognition during protein quality control.


Assuntos
Antígenos de Neoplasias/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Aminoacil-RNA de Transferência/química , Ribossomos/química , Ubiquitina-Proteína Ligases/metabolismo , Antígenos de Neoplasias/química , Sítios de Ligação , Microscopia Crioeletrônica , Células HEK293 , Humanos , Modelos Moleculares , Conformação Molecular , Proteínas de Transporte Nucleocitoplasmático/química , Aminoacil-RNA de Transferência/metabolismo , Ribossomos/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA