Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
PLoS One ; 16(5): e0251354, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33999958

RESUMO

Active DNA-dependent ATPase A Domain inhibitor (ADAADi) is the only known inhibitor of ATP-dependent chromatin remodeling proteins that targets the ATPase domain of these proteins. The molecule is synthesized by aminoglycoside phosphotransferase enzyme in the presence of aminoglycosides. ADAADi interacts with ATP-dependent chromatin remodeling proteins through motif Ia present in the conserved helicase domain, and thus, can potentially inhibit all members of this family of proteins. We show that mammalian cells are sensitive to ADAADi but with variable responses in different cell lines. ADAADi can be generated from a wide variety of aminoglycosides; however, cells showed differential response to ADAADi generated from various aminoglycosides. Using HeLa and DU145 cells as model system we have explored the effect of ADAADi on cellular functions. We show that the transcriptional network of a cell type is altered when treated with sub-lethal concentration of ADAADi. Although ADAADi has no known effects on DNA chemical and structural integrity, expression of DNA-damage response genes was altered. The transcripts encoding for the pro-apoptotic proteins were found to be upregulated while the anti-apoptotic genes were found to be downregulated. This was accompanied by increased apoptosis leading us to hypothesize that the ADAADi treatment promotes apoptotic-type of cell death by upregulating the transcription of pro-apoptotic genes. ADAADi also inhibited migration of cells as well as their colony forming ability leading us to conclude that the compound has effective anti-tumor properties.


Assuntos
Adenosina Trifosfatases/genética , Montagem e Desmontagem da Cromatina/genética , Cromatina/genética , DNA/genética , Redes Reguladoras de Genes/genética , Mamíferos/genética , Trifosfato de Adenosina/genética , Aminoglicosídeos/genética , Animais , Linhagem Celular Tumoral , DNA Helicases/genética , Células HeLa , Humanos , Domínios Proteicos/genética
2.
Oncol Rep ; 43(3): 851-863, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32020213

RESUMO

Efficient enrichment and transmembrane transport of cytotoxic reagents are considered to be effective strategies to increase the efficiency and selectivity of antitumor drugs targeting solid tumors. In the present study, a recombinant protein ABD­LDP­Ec consisting of the albumin­binding domain (ABD), the apoprotein (LDP) of lidamycin (LDM) and an EGFR­targeting oligopeptide (Ec) was prepared by DNA recombination and bacterial fermentation, and was integrated with the enediyne chromophore (AE) of lidamycin to generate its enediyne­integrated analogue ABD­LDP­Ec­AE. ABD­LDP­Ec exhibited high binding capacity to both albumin and EGFR­positive pancreatic cancer cells, and was internalized into the cytoplasm through receptor­mediated endocytosis and albumin­driven macropinocytosis of K­ras mutant cells. In animal experiments, ABD­LDP­Ec demonstrated notable selective distribution in pancreatic carcinoma xenografts by passive targeting of albumin captured in the blood and was retained in the tumor for 48 h. ABD­LDP­Ec and ABD­LDP­Ec­AE exhibited inhibitory activity in cell proliferation and AsPC­1 xenograft growth, and ABD­LDP­Ec­AE increased the tumor growth inhibition rate by 20% compared with natural LDM. The results indicated that the introduction of ABD­based multi­functional drug delivery may be an effective approach to improve the efficacy of antitumor drugs, especially for K­ras mutant cancers.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Peptídeos/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Albuminas/química , Albuminas/genética , Aminoglicosídeos/química , Aminoglicosídeos/genética , Aminoglicosídeos/farmacologia , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Enedi-Inos/química , Enedi-Inos/farmacologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Xenoenxertos , Humanos , Camundongos , Mutação/genética , Oligopeptídeos/química , Oligopeptídeos/genética , Oligopeptídeos/farmacologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Peptídeos/genética , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos/genética , Proteínas Recombinantes/efeitos dos fármacos , Proteínas Recombinantes/genética , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Rev. Soc. Bras. Med. Trop ; 53: e20190044, 2020. tab
Artigo em Inglês | LILACS | ID: biblio-1057279

RESUMO

Abstract INTRODUCTION: Acinetobacter baumannii are opportunistic bacteria, highly capable of acquiring antimicrobial resistance through the production of carbapenemases and aminoglycoside modifying enzymes (AMEs). METHODS: Carbapenemase and AME genes were investigated in A. baumannii recovered from inpatients of a Brazilian hospital. RESULTS: The key genes found were bla OXA-51-like, the association ISAba1- bla OXA-23-like, and the AME genes aph(3´)-VI, aac(6´)-Ib, aac(3)-Ia, and aph(3´)-Ia. Different clusters spread through the institution wards. CONCLUSIONS: The dissemination of bla OXA-23-like and AME-carrying A. baumannii through the hospital highlights the need for improved preventive measures to reduce the spread of infection.


Assuntos
Humanos , Proteínas de Bactérias/genética , beta-Lactamases/genética , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/enzimologia , Aminoglicosídeos/genética , Brasil , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla , Acinetobacter baumannii/isolamento & purificação , Acinetobacter baumannii/efeitos dos fármacos , Centros de Atenção Terciária , Unidades de Terapia Intensiva , Antibacterianos/farmacologia
4.
Cell Chem Biol ; 26(4): 493-501.e5, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30713097

RESUMO

Malayamycin A is an unusual bicyclic C-nucleoside, with interesting antiviral, antifungal, and anticancer bioactivity. We report here the discovery and characterization of the biosynthetic pathway to malayamycin by using genome mining of near-identical clusters both from the known producer Streptomyces malaysiensis and from Streptomyces chromofuscus. The key precursor 5'-pseudouridine monophosphate (5'-Ψ-MP) is supplied chiefly through the action of MalD, a TruD-like pseudouridine synthase. In vitro assays showed that MalO is an enoylpyruvyltransferase acting almost exclusively on 5'-Ψ-MP rather than 5'-UMP, while in contrast the counterpart enzyme NikO in the nikkomycin pathway readily accepts either substrate. As a result, deletion of malD in S. chromofuscus coupled with introduction of the gene for NikO led to production of non-natural N-malayamycin, as well as malayamycin A. Conversely, cloning malO into the nikkomycin producer Streptomyces tendae in place of nikO diverted biosynthesis toward C-nucleoside formation.


Assuntos
Antifúngicos/metabolismo , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Nucleosídeos/metabolismo , Streptomyces/metabolismo , Aminoglicosídeos/genética , Aminoglicosídeos/metabolismo , Proteínas de Bactérias/genética , Genoma Bacteriano , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Família Multigênica , Nucleosídeos/genética , Streptomyces/genética
5.
Appl Environ Microbiol ; 85(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30530711

RESUMO

A number of strategies have been developed to mine novel natural products based on biosynthetic gene clusters and there have been dozens of successful cases facilitated by the development of genomic sequencing. During our study on biosynthesis of the antitumor polyketide kosinostatin (KST), we found that the genome of Micromonospora sp. strain TP-A0468, the producer of KST, contains other potential polyketide gene clusters, with no encoded products detected. Deletion of kst cluster led to abolishment of KST and the enrichment of several new compounds, which were isolated and characterized as 16-demethylrifamycins (referred to here as compounds 3 to 6). Transcriptional analysis demonstrated that the expression of the essential genes related to the biosynthesis of compounds 3 to 6 was comparable to the level in the wild-type and in the kst cluster deletion strain. This indicates that the accumulation of these compounds was due to the redirection of metabolic flux rather than transcriptional activation. Genetic disruption, chemical complementation, and bioinformatic analysis revealed that the production of compounds 3 to 6 was accomplished by cross talk between the two distantly placed polyketide gene clusters pks3 and M-rif This finding not only enriches the analogue pool and the biosynthetic diversity of rifamycins but also provides an auxiliary strategy for natural product discovery through genome mining in polyketide-producing microorganisms.IMPORTANCE Natural products are essential in the development of novel clinically used drugs. Discovering new natural products and modifying known compounds are still the two main ways to generate new candidates. Here, we have discovered several rifamycins with varied skeleton structures by redirecting the metabolic flux from the predominant polyketide biosynthetic pathway to the rifamycin pathway in the marine actinomycetes species Micromonospora sp. strain TP-A0468. Rifamycins are indispensable chemotherapeutics in the treatment of various diseases such as tuberculosis, leprosy, and AIDS-related mycobacterial infections. This study exemplifies a useful method for the discovery of cryptic natural products in genome-sequenced microbes. Moreover, the 16-demethylrifamycins and their genetically manipulable producer provide a new opportunity in the construction of novel rifamycin derivates to aid in the defense against the ever-growing drug resistance of Mycobacterium tuberculosis.


Assuntos
Aminoglicosídeos/biossíntese , Aminoglicosídeos/genética , Antibacterianos/biossíntese , Antibacterianos/farmacologia , Descoberta de Drogas , Micromonospora/genética , Micromonospora/metabolismo , Aminoglicosídeos/farmacologia , Sequência de Bases , Vias Biossintéticas/genética , Deleção de Genes , Lactamas Macrocíclicas/metabolismo , Família Multigênica/genética , Policetídeos/metabolismo , Rifamicinas/biossíntese , Metabolismo Secundário/genética
6.
Rev. Soc. Bras. Med. Trop ; 52: e20180460, 2019. tab
Artigo em Inglês | LILACS | ID: biblio-1041512

RESUMO

Abstract INTRODUCTION: The objective of this study was to characterize genes of aminoglycoside modifying enzymes (AMEs) in colonizing and infecting isolates of E. aerogenes harboring bla KPC from patients at a public hospital in Recife-PE, Brazil. METHODS: We analyzed 29 E. aerogenes clinical isolates resistant to aminoglycosides. AMEs genes were investigated by PCR and sequencing. RESULTS: Colonizing and infecting isolates mainly presented the genetic profiles aac(3)-IIa/aph(3')-VI or ant(2")-IIa/aph(3')-VI. This is the first report of aph(3')-VI in E. aerogenes harboring bla KPC in Brazil. CONCLUSIONS: The results highlight the importance in establishing rigorous methods for the surveillance of resistance genes, especially in colonized patients.


Assuntos
Humanos , Enterobacter aerogenes/genética , Farmacorresistência Bacteriana/genética , Infecções por Enterobacteriaceae/microbiologia , Aminoglicosídeos/genética , Antibacterianos/farmacologia , Fenótipo , Brasil , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase , Enterobacter aerogenes/isolamento & purificação
7.
J Nat Prod ; 81(3): 594-599, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29345939

RESUMO

The potent cytotoxicity and unique mode of action make the enediyne antitumor antibiotic C-1027 an exquisite drug candidate for anticancer chemotherapy. However, clinical development of C-1027 has been hampered by its low titer from the original producer Streptomyces globisporus C-1027. Here we report three new C-1027 alternative producers, Streptomyces sp. CB00657, CB02329, and CB03608, from The Scripps Research Institute actinomycetes strain collection. Together with the previously disclosed Streptomyces sp. CB02366 strain, four C-1027 alternative producers with C-1027 titers of up to 11-fold higher than the original producer have been discovered. The five C-1027 producers, isolated from distant geographic locations, are distinct Streptomyces strains based on morphology and taxonomy. Pulsed-field gel electrophoresis and Southern analysis of the five C-1027 producers reveal that their C-1027 biosynthetic gene clusters (BGCs) are all located on giant plasmids of varying sizes. The high nucleotide sequence similarity among the five C-1027 BGCs implies that they most likely have evolved from a common ancestor.


Assuntos
Aminoglicosídeos/genética , Antibióticos Antineoplásicos/metabolismo , Enedi-Inos/metabolismo , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Família Multigênica/genética , Plasmídeos/genética , Streptomyces/genética
8.
Anticancer Drugs ; 27(1): 24-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26457548

RESUMO

Neocarzinostatin (NCS) consists of an enediyne chromophore and an apoprotein (NCP). Lidamycin (LDM) is composed of another active enediyne chromophore (AE) and an acidic protein (LDP). Although the structures of NCP and LDP are very similar, LDM has been shown to have an increased tumor-suppressive activity than that of NCS. The aim of this study was to construct a chimeric protein (CMP) that consists of both the terminus residue of NCP and an LDP pocket-forming residue that can bind AE. This CMP will have a structure similar to NCS and an antitumor activity similar to LDM. The assembling efficiency of LDP, CMP, and NCP was 73.9, 1.5, and 1.1%, respectively. The cytotoxicity was consistent with their assembling efficiency of AE in proteins. When CMP-AE and NCP-AE were administered at equivalent AE doses of LDM, the inhibition rate of CMP-AE was the same as LDM and significantly higher than that of NCP-AE. Our study implied that the binding activity between LDP and AE was very specific. The terminus residue of LDP could affect the specifically binding activity. The pocket-forming residue could confer a protective function to the chromophore. Further investigation of its bioactivity might serve as a new drug design strategy and drug-delivery carrier in targeted cancer therapy.


Assuntos
Aminoglicosídeos/química , Antineoplásicos/química , Apoproteínas/química , Enedi-Inos/química , Proteínas Recombinantes de Fusão/química , Zinostatina/química , Aminoglicosídeos/genética , Animais , Antineoplásicos/farmacologia , Apoproteínas/genética , Apoproteínas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino , Camundongos , Transplante de Neoplasias , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia
9.
Oncotarget ; 6(28): 26322-34, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26314845

RESUMO

Recent studies have shown that MMP-14 is highly expressed in a panel of human solid tumors and poses as a potential molecular target for anticancer drugs. Currently, major strategies for targeted therapeutics have mainly focused on the use of antibody or ligand-based agents. For seeking an alternative approach, it is of interest to employ endogenous proteins as drug delivery carriers. Considering the facts that TIMP2, the tissue inhibitor of metalloproteinase 2, shows specific interaction with MMP-14 and that Lidamycin (LDM), an extremely potent cytotoxic antitumor antibiotic, consists of an apoprotein (LDP) and a highly active enediyne (AE); we designed and prepared a TIMP2-based and enediyne-integrated fusion protein LDP(AE)-TIMP2 by DNA recombination and molecular reconstitution consecutively. Furthermore, the MMP-14 binding attributes of the active fusion protein were determined and its therapeutic efficacy against human esophageal carcinoma KYSE150 xenograft and human fibrosarcoma HT1080 xenograft models in nude mice was investigated. It is suggested that TIMP2, the endogenous and MMP-14 binding protein, might serve as a guided carrier for targeted therapeutics.


Assuntos
Aminoglicosídeos/farmacologia , Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Enedi-Inos/farmacologia , Neoplasias Esofágicas/tratamento farmacológico , Metaloproteinase 14 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Engenharia de Proteínas , Inibidor Tecidual de Metaloproteinase-2/farmacologia , Aminoglicosídeos/biossíntese , Aminoglicosídeos/genética , Inibidores da Angiogênese/farmacologia , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Desenho de Fármacos , Neoplasias Esofágicas/enzimologia , Neoplasias Esofágicas/patologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , Camundongos Nus , Terapia de Alvo Molecular , Neovascularização Fisiológica/efeitos dos fármacos , Ligação Proteica , Proteínas Recombinantes de Fusão/farmacologia , Fatores de Tempo , Inibidor Tecidual de Metaloproteinase-2/biossíntese , Inibidor Tecidual de Metaloproteinase-2/genética , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Biomédica (Bogotá) ; 35(1): 117-124, ene.-mar. 2015. ilus, tab
Artigo em Inglês | LILACS | ID: lil-745656

RESUMO

Introduction: Multidrug-resistant Enterobacteriaceae, particularly those resistant to gentamicin, have become one of the most important causes of nosocomial infections. Objective: We sought to investigate the presence of genes conferring resistance to aminoglycosides, specially to gentamicin, in Klebsiella pneumoniae and Escherichia coli multidrug-resistant strains isolated from different clinical materials among patients hospitalized in a university hospital in Rio de Janeiro, Brazil. Materials and methods: Ten colonization strains and 20 infection strains were evaluated during three decades (1980 to 2010) using selective media containing 8 µg/ml of gentamicin. Thirty strains were tested for antimicrobial susceptibility. Twenty two strains were subjected to plasmid DNA extraction and 12 to hybridization assays using as probe a 1.9 kb plasmid DNA fragment from one of the K. pneumoniae strains isolated from faecal samples. This fragment was sequenced and assigned to the GQ422439 GenBank record. PCR was also performed using oligonucleotides designed for aminoglycoside-modifying enzymes. Results: An accC2 acetylase, besides transposons and insertion sequences, were evidenced. Twenty-four (80%) of the isolates were positive for the aacC2 gene in agreement with antibiotic susceptibility testing profiles, indicating the persistent presence of this gene throughout the three decades. We detected high molecular weight plasmids in 54,5% of the strains. Of the tested strains, 91% showed positive signal in the hybridization assays. Conclusion: A gene codifying for one specific aminoglycoside-modifying enzyme was detected all throughout the three decades. Our data back the adoption of preventive measures, such as a more conscious use of antimicrobial agents in hospital environments, which can contribute to control the dissemination of microorganisms harboring resistance gene plasmids.


Introducción. Las enterobacterias resistentes a la gentamicina se asocian frecuentemente a infecciones hospitalarias. Objetivo. Verificar la presencia de los genes que confieren resistencia a los aminoglucósidos, específicamente a la gentamicina, en cepas de Klebsiella pneumoniae y Escherichia coli multirresistentes, obtenidas de pacientes internados en un hospital universitario de Río de Janeiro. Materiales y métodos. Se recolectaron y evaluaron 10 cepas de colonización y 20 de infección entre 1980 y 2010, utilizando medios selectivos enriquecidos con gentamicina (8 µg/ml). Se obtuvieron 30 cepas en las que se determinó la resistencia a los antibióticos por medios fenotípicos. Veintidós muestras se sometieron a extracción de ADN plasmídico y se hicieron ensayos de hibridización en 12 de ellas, usando como sonda un fragmento de ADN plasmídico de 1,9 kb obtenido de una cepa de K. pneumoniae aislada de muestra fecal. Este fragmento fue secuenciado y correspondió al registro GQ422439 del GenBank. Se verificó la presencia de genes de enzimas modificadoras de aminoglucósidos mediante reacción en cadena de la polimerasa. Resultados. En las cepas analizadas se evidenció la presencia de la acetilasa accC2, además de transposones y secuencias de inserción. Veinticuatro aislamientos (80 %) fueron positivos para el gen aacC2 en concordancia con los perfiles de sensibilidad a los antibióticos, lo que indicó su persistencia a lo largo de las tres décadas. Se detectaron plásmidos de alto peso molecular en 54,5 % de las cepas. El 91 % de las cepas analizadas mostró signos positivos en las pruebas de hibridación. Conclusión. Se detectó la persistencia de un gen codificador de una enzima modificadora de aminoglucósidos a lo largo de las tres décadas. Los resultados indican que las medidas de prevención, tales como un uso más responsable de los agentes antimicrobianos en el ambiente hospitalario, pueden contribuir al control de la diseminación de microorganismos que albergan plásmidos de genes de resistencia.


Assuntos
Humanos , Aminoglicosídeos/genética , Farmacorresistência Bacteriana Múltipla , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Brasil , Escherichia coli/isolamento & purificação , Genes Bacterianos , Hospitais Universitários , Klebsiella pneumoniae/isolamento & purificação , Testes de Sensibilidade Microbiana , Fatores de Tempo
11.
Anticancer Drugs ; 26(1): 64-73, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25122444

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mainly induces apoptosis through the extrinsic death receptor-induced pathway by ligation with death receptor 4 (DR4) and death receptor 5 (DR5). On the basis of the antitumor activity to cancer cells and no cytotoxity to normal cells of TRAIL and the target of the epidermal growth factor receptor (EGFR) ligand peptide, the study constructed a new bispecific fusion protein and a new bifunctional enediyne-energized fusion protein and investigated their antitumor efficacy. Bispecific fusion protein Ec-LDP-TRAIL showed potent binding activity to cancer cell lines with a high expression of EGFR or DR4/DR5 such as A431 and H460 cells, whereas poor binding activity to NIH/3T3 cells with low expressing EGFR and DR4/DR5. Ec-LDP-TRAIL also showed more potent cytotoxicity to A431 and H460 cells than Ec-LDP, which could result from the TRAIL-inducing apoptosis. Results of an in-vivo efficacy study showed that Ec-LDP-TRAIL at a dose of 10 mg/kg decreased the growth of epidermoid carcinoma A431 xenografts by 80.19% (P < 0.01) on day 26. Immunohistochemical detection of nuclear antigen factor Ki-67 suggested that Ec-LDP-TRAIL effectively induced cell necrosis and inhibited cell proliferation of tumor. From IC50 values, bispecific and bifunctional energized fusion protein Ec-LDP-TRAIL-AE was more potent and selective in its cytotoxicity against different carcinoma cell lines than corresponding lidamycin in vitro and induction of the cleavage of poly(ADP-ribose)polymerase was observed in A431 cells treated with Ec-LDP-TRAIL-AE and lidamycin, respectively. Ec-LDP-TRAIL-AE also significantly inhibited the growth of A431 xenografts in a nude mouse model. These properties suggested that Ec-LDP-TRAIL and Ec-LDP-TRAIL-AE may be promising candidates for targeted cancer therapy.


Assuntos
Aminoglicosídeos/genética , Antineoplásicos/farmacologia , Receptores ErbB/metabolismo , Oligopeptídeos/genética , Proteínas Recombinantes de Fusão/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/genética , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Enedi-Inos , Xenoenxertos , Humanos , Ligantes , Camundongos , Camundongos Nus , Células NIH 3T3 , Necrose , Transplante de Neoplasias , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/uso terapêutico
12.
J Chemother ; 27(4): 207-12, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24766153

RESUMO

Multidrug-resistant Acinetobacter baumannii has become a worldwide problem, and methylation of 16S rRNA has recently emerged as a new mechanism of resistance to aminoglycosides, which is mediated by a newly recognized group of 16S rRNA methylases. 16S rRNA methylase confers a high-level resistance to all 4,6-substituted deoxystreptamine aminoglycosides that are currently used in clinical practice. Some of the A. baumannii isolates have been found to coproduce extended-spectrum beta-lactamases (ESBLs), contributing to their multidrug resistance. The aim of this study was to detect the determinants of the 16S rRNA methylase genes armA, rmtA, rmtB, rmtC, rmtD, rmtE, and npmA, the modifying enzyme genes aac(6')-Ib, ant(3″)-Ia, aph(3')-I, and the extended-spectrum beta-lactamase genes bla(TEM), bla(SHV), and bla(CTX-M-3) among A. baumannii isolates in northeastern Sichuan, China. Minimum inhibitory concentrations (MICs) of 21 different antimicrobial agents against the A. baumannii isolates were determined. The clinical isolates showed a high level of resistance (MIC≧256 µg/ml) to aminoglycosides, which ranged from 50·1 to 83·8%. The resistances to meropenem and imipenem, two of the beta-lactam antibiotics and the most active antibiotics against A. baumannii, were 9·1 and 8·2%, respectively. Among 60 amikacin-resistant isolates, only the 16S rRNA methylase gene armA was found to be prevalent (66·7%), but the other 16S rRNA methylase genes rmtA, rmtB, rmtC, rmtD, rmtE, and npmA were not detected. The prevalences of the modifying enzyme genes aac (6')-Ib, ant (3″)-Ia, and aph (3')-I were 51·7, 81·7, and 58·3%, respectively, which are different from a previous study in which the occurrences of these genes were 3, 64, and 72%, respectively. Among the 40 isolates that were armA-positive, the prevalences of bla(TEM), bla(SHV), and bla(CTX-M-3) genes were detected for the first time in China, and their occurrences were 45, 65, and 52·5%, respectively. In all, A. baumannii with all the 16S rRNA methylase, modifying enzyme, and ESBL genes is extremely prevalent in northeastern Sichuan, China, posing a serious clinical concern with a major therapeutic threat in the future.


Assuntos
Acinetobacter baumannii/genética , Metiltransferases/genética , RNA Ribossômico 16S/genética , beta-Lactamases/genética , Aminoglicosídeos/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , China , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Imipenem/farmacologia , Meropeném , Testes de Sensibilidade Microbiana/métodos , Tienamicinas/farmacologia
13.
Genet Mol Res ; 13(2): 3842-9, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24938472

RESUMO

We examined the distribution of genes of aminoglycoside-modifying enzymes and 16S rRNA methylases in multidrug-resistant Acinetobacter baumannii to explore the association of these genes with drug resistance. Strains isolated from clinical specimens were screened using an automatic microbial identification system, and 9 aminoglycoside-modifying enzyme and 6 16S rRNA methylase genes were analyzed using polymerase chain reaction and verified by DNA sequencing. Next, sequence alignment was carried out using the Chromas software and a susceptibility test was performed using the Kirby-Bauer disk diffusion method. Genes encoding aminoglycoside-modifying enzymes were detected in all 20 strains of multidrug-resistant A. baumannii. The positive rates of aac(3')-I, aac(6')-Ib, ant(3'')-I, and aph(3')-I were 90.0, 90.0, 85.0, and 35.0%, respectively. However, genes encoding 16S rRNA methylases were not positively detected in the 20 strains of multidrug-resistant A. baumannii. The resistance of multidrug-resistant A. baumannii may be associated with aminoglycoside-modifying enzyme genes but not with 16S rRNA methylase genes.


Assuntos
Acetiltransferases/genética , Aminoglicosídeos/genética , Farmacorresistência Bacteriana Múltipla/genética , Metiltransferases/genética , RNA Ribossômico 16S/genética , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/enzimologia , Acinetobacter baumannii/genética , Aminoglicosídeos/administração & dosagem , Antibacterianos/administração & dosagem , Humanos , Testes de Sensibilidade Microbiana
14.
RNA Biol ; 10(8): 1324-32, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23948732

RESUMO

Aminoglycoside antibiotics remain the drugs of choice for treatment of Pseudomonas aeruginosa infections, particularly for respiratory complications in cystic-fibrosis patients. Previous studies on other bacteria have shown that aminoglycosides have their primary target within the decoding region of 16S rRNA helix 44 with a secondary target in 23S rRNA helix 69. Here, we have mapped P. aeruginosa rRNAs using MALDI mass spectrometry and reverse transcriptase primer extension to identify nucleotide modifications that could influence aminoglycoside interactions. Helices 44 and 45 contain indigenous (housekeeping) modifications at m (4)Cm1402, m (3)U1498, m (2)G1516, m (6) 2A1518, and m (6) 2A1519; helix 69 is modified at m (3)Ψ1915, with m (5)U1939 and m (5)C1962 modification in adjacent sequences. All modifications were close to stoichiometric, with the exception of m (3)Ψ1915, where about 80% of rRNA molecules were methylated. The modification status of a virulent clinical strain expressing the acquired methyltransferase RmtD was altered in two important respects: RmtD stoichiometrically modified m (7)G1405 conferring high resistance to the aminoglycoside tobramycin and, in doing so, impeded one of the methylation reactions at C1402. Mapping the nucleotide methylations in P. aeruginosa rRNAs is an essential step toward understanding the architecture of the aminoglycoside binding sites and the rational design of improved drugs against this bacterial pathogen.


Assuntos
Aminoglicosídeos/química , Pseudomonas aeruginosa/genética , RNA Ribossômico 16S/química , RNA Ribossômico 16S/metabolismo , RNA Ribossômico 23S/química , RNA Ribossômico 23S/metabolismo , Aminoglicosídeos/genética , Aminoglicosídeos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Dicroísmo Circular , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Metilação , Metiltransferases/química , Metiltransferases/genética , Metiltransferases/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Estrutura Terciária de Proteína , Pseudomonas aeruginosa/metabolismo , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
15.
J Inherit Metab Dis ; 36(6): 955-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23532445

RESUMO

Phenylketonuria (PKU, OMIM 261600) is an autosomal recessive inborn error of phenylalanine metabolism, predominantly caused by mutations in the phenylalanine hydroxylase (PAH) gene. Approximately 10% of patients carry a nonsense mutation, which results in an inactive or unstable truncated protein. In some genetic disorders, including cystic fibrosis and Duchenne muscular dystrophy, restoration of full-length protein has been achieved by aminoglycoside antibiotics, such as gentamicin and G-418 (Geneticin). More recently, nonsense read-through has been induced at greater rates using a non-aminoglycoside drug, PTC124 (Ataluren), which has the advantage of being non-toxic in contrast to the antibiotics. The efficacy of read-through induced by three compounds, aminoglycosides G418 and gentamicin, and PTC124 were evaluated for four nonsense mutations of PAH in an in vitro expression system in two mammalian cell lines (COS-7 and HEK293). The production of full-length PAH was investigated using western blotting and the functionality confirmed by enzyme activity. Gentamicin and G-418 induced read-through of nonsense PAH mutations in HEK293 cells. The read-through product partially restored enzymatic activity, which was significantly less than that of wild-type, but comparable to a missense mutation of PAH associated with less severe forms of PKU. Treatment with PTC124 up to 100 µM did not result in full-length PAH polypeptide. Nonsense read-through drugs are a potential form of treatment for PKU, although the high dosage of aminoglycosides used is not appropriate in a clinical setting. In vitro studies with new non-toxic read-through agents as well as in vivo studies would also be essential to determine the extent of read-through required to restore normal phenylalanine levels.


Assuntos
Aminoglicosídeos/uso terapêutico , Códon sem Sentido , Gentamicinas/uso terapêutico , Oxidiazóis/uso terapêutico , Fenilalanina Hidroxilase/genética , Fenilcetonúrias/tratamento farmacológico , Aminoglicosídeos/genética , Animais , Células COS , Chlorocebus aethiops , Códon sem Sentido/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Terapia Genética/métodos , Células HEK293 , Humanos , Fenilcetonúrias/genética , Fenilcetonúrias/patologia
16.
J Biol Chem ; 287(52): 43262-9, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23115238

RESUMO

The bifunctional aminoglycoside-modifying enzyme aminoglycoside acetyltransferase(6')-Ie/aminoglycoside phosphotransferase(2″)-Ia, or AAC(6')-Ie/APH(2″)-Ia, is the major source of aminoglycoside resistance in gram-positive bacterial pathogens. In previous studies, using ATP as the cosubstrate, it was reported that the APH(2″)-Ia domain of this enzyme is unique among aminoglycoside phosphotransferases, having the ability to inactivate an unusually broad spectrum of aminoglycosides, including 4,6- and 4,5-disubstituted and atypical. We recently demonstrated that GTP, and not ATP, is the preferred cosubstrate of this enzyme. We now show, using competition assays between ATP and GTP, that GTP is the exclusive phosphate donor at intracellular nucleotide levels. In light of these findings, we reevaluated the substrate profile of the phosphotransferase domain of this clinically important enzyme. Steady-state kinetic characterization using the phosphate donor GTP demonstrates that AAC(6')-Ie/APH(2″)-Ia phosphorylates 4,6-disubstituted aminoglycosides with high efficiency (k(cat)/K(m) = 10(5)-10(7) M(-1) s(-1)). Despite this proficiency, no resistance is conferred to some of these antibiotics by the enzyme in vivo. We now show that phosphorylation of 4,5-disubstituted and atypical aminoglycosides are negligible and thus these antibiotics are not substrates. Instead, these aminoglycosides tend to stimulate an intrinsic GTPase activity of the enzyme. Taken together, our data show that the bifunctional enzyme efficiently phosphorylates only 4,6-disubstituted antibiotics; however, phosphorylation does not necessarily result in bacterial resistance. Hence, the APH(2″)-Ia domain of the bifunctional AAC(6')-Ie/APH(2″)-Ia enzyme is a bona fide GTP-dependent kinase with a narrow substrate profile, including only 4,6-disubstituted aminoglycosides.


Assuntos
Acetiltransferases/química , Trifosfato de Adenosina/química , Aminoglicosídeos/química , Proteínas de Bactérias/química , Bactérias Gram-Positivas/enzimologia , Guanosina Trifosfato/química , Fosfotransferases (Aceptor do Grupo Álcool)/química , Acetiltransferases/genética , Acetiltransferases/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Aminoglicosídeos/genética , Aminoglicosídeos/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/fisiologia , Bactérias Gram-Positivas/genética , Guanosina Trifosfato/genética , Guanosina Trifosfato/metabolismo , Fosforilação/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Especificidade por Substrato/fisiologia
17.
Mikrobiol Z ; 74(5): 66-73, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23120988

RESUMO

Streptomyces globisporus 1912, a producer of the antitumor antibiotic landomycin E, forms the new low-molecular signaling molecule N-methylphenylalanyl-dehydrobutyrine diketopiperazine (BDD) and its complex and unstable by-product which restore, like the A-factor in Streptomyces griseus 773, landomycin E and streptomycin biosynthesis, and sporulation of the defective mutants S. globisporus 1912-B2 and S. griseus 1439, respectively. Here, we report the purification and structure elucidation of two compounds with R(f)0.8 by HPLC, LC/MS and 1HMR analysis. These compounds have m/z 338 and 384, accordingly, and each of them is presented by two stereoisomers containing BDD in their structure. A hypothesis explaining the composition and regulatory properties of these unstable compounds is presented.


Assuntos
Aminoglicosídeos/biossíntese , Fatores Biológicos/isolamento & purificação , Piperazinas/isolamento & purificação , Streptomyces/metabolismo , Aminoglicosídeos/genética , Antibióticos Antineoplásicos , Fatores Biológicos/biossíntese , Fatores Biológicos/farmacologia , Cromatografia Líquida de Alta Pressão , Meios de Cultura , Espectrometria de Massas , Peso Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular , Piperazinas/metabolismo , Piperazinas/farmacologia , Transdução de Sinais/genética , Estereoisomerismo , Streptomyces/efeitos dos fármacos , Streptomyces/genética
18.
ACS Chem Biol ; 7(6): 973-7, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22390171

RESUMO

Pursuit of the actinomycete pyrrolobenzodiazepine natural product sibiromycin as a chemotherapeutic agent has been limited by its cardiotoxicity. Among pyrrolobenzodiazepines, cardiotoxicity is associated with hydroxylation at position 9. Deletion of the methyltransferase gene sibL abolishes the production of sibiromycin. Supplementation of growth media with 4-methylanthranilic acid can substitute for its native 3-hydroxy congener. Cultures grown in this fashion yielded 9-deoxysibiromycin. In this study, we characterize the structure and biological activity of sibiromycin and 9-deoxysibiromycin methyl carbinolamines. Preliminary in vitro evidence suggests that 9-deoxysibiromycin exhibits reduced cardiotoxicity while gaining antitumor activity. These results strongly support further exploration of the production and evaluation of monomeric and dimeric glycosylated pyrrolobenzodiazepine analogues of sibiromycin.


Assuntos
Actinomycetales/metabolismo , Aminoglicosídeos/química , Aminoglicosídeos/metabolismo , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/metabolismo , Actinomycetales/química , Actinomycetales/enzimologia , Actinomycetales/genética , Aminoglicosídeos/genética , Aminoglicosídeos/farmacologia , Antibióticos Antineoplásicos/farmacologia , Cardiotoxinas/química , Cardiotoxinas/genética , Cardiotoxinas/metabolismo , Cardiotoxinas/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Deleção de Genes , Humanos , Metiltransferases/genética , Neoplasias/tratamento farmacológico , ortoaminobenzoatos/metabolismo
19.
Artigo em Chinês | MEDLINE | ID: mdl-23328039

RESUMO

OBJECTIVE: To investigate mutational spectrum and frequency of the mitochondrial 12S rRNA gene in Chinese subjects with aminoglycoside-induced and non-syndromic hearing loss. METHODS: Total of 456 subjects with non-syndromic hearing loss were recruited from seven schools for deaf-mutes in Zhejiang province. Genomic DNA was extracted from the whole blood, and then the DNA fragment was amplified spanning the 12S rRNA gene, followed by sequencing and analyzed. RESULTS: Thirty-one variants were identified by mutation analysis of 12S rRNA gene in these subjects. The frequency of the known 1555A > G mutation was 4.4% (20/456). Prevalence of other putative deafness-associated mutation at positions 961 and 1095 were 2.0% (9/456) and 0.7% (3/456) respectively. Furthermore, the 1027A > G, 1109T > C and 1431G > A variants conferred increased sensitivity to ototoxic drugs or non-syndromic deafness as they were absent in 449 Chinese controls and localized at highly conserved nucleotides of this 12S rRNA gene. Moreover, clinical data showed a wide range of age-of-onset, variety of severity and various audiometric configurations in subjects carrying the 1555A > G mutation. CONCLUSIONS: Our data demonstrated that the mitochondrial 12S rRNA gene is the hot spot for mutations associated with aminoglycoside ototoxicity and non-syndromic hearing loss. Nuclear modifier genes, mitochondrial haplotypes and environmental factors might play a role in the phenotypic manifestation of these mutations.


Assuntos
DNA Mitocondrial/genética , Surdez/genética , RNA Ribossômico/genética , Adolescente , Aminoglicosídeos/genética , Povo Asiático/genética , Sequência de Bases , Criança , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Mutação , Conformação de Ácido Nucleico , Linhagem , Adulto Jovem
20.
Int J Mol Med ; 29(3): 409-15, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22108624

RESUMO

The overexpression of tissue factor (TF) observed in numerous cancer cells and clinical samples of human cancers make TF an ideal target for cancer therapy. Here, we report an energized fusion protein, hlFVII-LDP-AE, which can be used for cancer therapy and is composed of a human Factor VII light chain (hlFVII) conjugated to the cytotoxic antibiotic lidamycin (LDM, LDP-AE). hlFVII-LDP-AE binds with specificity to TF expressed on tumor cells, resulting in internalization of the fusion protein and cytotoxicity induced by the LDM domain. The potential efficacy of hlFVII-LDP-AE for cancer therapy was examined in vitro by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays and in vivo with a BALB/c nude mouse xenograft model of the human lung cancer line NCI-H292. hlFVII-LDP-AE caused chromatin condensation and cleavage of genomic DNA in NCI-H292 cells. In the MTT assays, the IC50 value of hlFVII- LDP-AE was 0.19 nM. In the in vivo tests, after two intravenous injections of hlFVII-LDP-AE at a dose of 0.6 mg/kg, the growth rate of the lung tumor xenograft was reduced to 15% of the control rate, and there was no excessive loss of body weight and inflammatory response in the mice. These findings suggest that hlFVII-LDP-AE is efficacious and tolerated in the mouse model of NCI-H292 human lung cancer examined and could have broad clinical applicability for treating cancer patients.


Assuntos
Adenocarcinoma/tratamento farmacológico , Aminoglicosídeos/genética , Aminoglicosídeos/uso terapêutico , Antineoplásicos/uso terapêutico , Enedi-Inos/uso terapêutico , Fator VII/genética , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Recombinantes de Fusão/uso terapêutico , Tromboplastina/metabolismo , Adenocarcinoma/genética , Adenocarcinoma de Pulmão , Aminoglicosídeos/metabolismo , Aminoglicosídeos/farmacologia , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Enedi-Inos/metabolismo , Enedi-Inos/farmacologia , Fator VII/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Tromboplastina/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA