Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Aquat Toxicol ; 182: 120-128, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27889504

RESUMO

Ocean acidification, caused by increasing atmospheric carbon dioxide (CO2), is a growing concern in marine environments. Land-based sources of pollution, such as metals, have also been a noted problem; however, little research has addressed the combined exposure of both pollutants to coral reef organisms. In this study we examined tissue metal accumulation and physiological effects (activity of anti-oxidant enzymes, catalase and glutathione reductase) in the sea anemone, Exaiptasia pallida after exposure to increased CO2, as well as zinc (Zn) or nickel (Ni). After exposure to four concentrations (nominal values=control, 10, 50, 100µg/L) of Zn or Ni over 7days, both metals accumulated in the tissues of E. pallida in a concentration-dependent manner. Anemones exposed to elevated CO2 (1000ppm) accumulated significant tissue burdens of Zn or Ni faster (by 48h) than those exposed to the same metal concentrations at ambient CO2. No differences were observed in catalase activity due to Zn exposure; however, 50µg/L Ni caused a significant increase in catalase activity at ambient CO2. No significant effect on catalase activity from CO2 exposure alone was observed. Glutathione reductase activity was affected by increased Zn or Ni exposure and those effects were influenced by increased CO2. Results of this study provide insight into the toxic mechanisms and environmental implications of CO2 and Zn or Ni exposure to the cnidarian E. pallida.


Assuntos
Dióxido de Carbono/toxicidade , Níquel/toxicidade , Anêmonas-do-Mar/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Poluição da Água/efeitos adversos , Zinco/toxicidade , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Catalase/metabolismo , Relação Dose-Resposta a Droga , Glutationa Redutase/metabolismo , Níquel/metabolismo , Oceanos e Mares , Anêmonas-do-Mar/metabolismo , Testes de Toxicidade , Zinco/metabolismo
2.
Cell Tissue Res ; 366(3): 693-705, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27623804

RESUMO

We report here a novel approach for the extraction, isolation and culturing of intact ectodermal tissue layers from a model marine invertebrate, the sea anemone Nematostella vectensis. A methodology is described in which a brief exposure of the animal to the mucolytic agent N-acetyl-L-cysteine (NAC) solution triggers the dislodging of the ectodermis from its underlying basement membrane and mesoglea. These extracted fragments of cell sheets adherent to culture-dish substrates, initially form 2D monolayers that are transformed within 24 h post-isolation into 3D structures. These ectodermal tissues were sustained in vitro for several months, retaining their 3D structure while continuously releasing cells into the surrounding media. Cultures were then used for cell type characterizations and, additionally, the underlying organization of actin filaments in the 3D structures are demonstrated. Incorporation of BrdU and immunohistochemical labeling using p-histone H3 primary antibody were performed to compare mitotic activities of ectodermal cells originating from intact and from in vivo regenerating animals. Results revealed no change in mitotic activities at 2 h after bisection and a 1.67-, 1.71- and 3.74-fold increase over 24, 48 and 72 h of regeneration, respectively, depicting a significant correlation coefficient (p < 0.05; R 2 = 0.74). A significant difference was found only between the control and 3-day regenerations (p = 0.016). Cell proliferation was demonstrated in the 3D ectodermis after 6 culturing days. Moreover, monolayers that were subjected to Ca++/Mg++ free medium for the first 2 h after isolation and then replaced by standard medium, showed, at 6 days of culturing, profuse appearance of positive p-histone H3-labeled nuclei in the 3D tissues. Cytochalasin administered throughout the culturing period abolished all p-histone H3 labeling. This study thus depicts novel in vitro tissue culturing of ectodermal layers from a model marine invertebrate, demonstrating the ease with which experiments can be performed and cellular and molecular pathways can be revealed, thus opening studies on 2D tissue organizations and morphogenesis as well as the roles of cellular components in the formation of tissues in this organism.


Assuntos
Ectoderma/citologia , Modelos Biológicos , Anêmonas-do-Mar/citologia , Animais , Cálcio/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citocalasina D/farmacologia , Ectoderma/efeitos dos fármacos , Feminino , Histonas/metabolismo , Magnésio/farmacologia , Masculino , Mitose/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Anêmonas-do-Mar/efeitos dos fármacos
3.
J Exp Biol ; 217(Pt 9): 1444-53, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24436378

RESUMO

Organisms are continuously exposed to reactive chemicals capable of causing oxidative stress and cellular damage. Antioxidant enzymes, such as superoxide dismutases (SODs) and catalases, are present in both prokaryotes and eukaryotes and provide an important means of neutralizing such oxidants. Studies in cnidarians have previously documented the occurrence of antioxidant enzymes (transcript expression, protein expression and/or enzymatic activity), but most of these studies have not been conducted in species with sequenced genomes or included phylogenetic analyses, making it difficult to compare results across species due to uncertainties in the relationships between genes. Through searches of the genome of the sea anemone Nematostella vectensis Stephenson, one catalase gene and six SOD family members were identified, including three copper/zinc-containing SODs (CuZnSODs), two manganese-containing SODs (MnSODs) and one copper chaperone of SOD (CCS). In 24 h acute toxicity tests, juvenile N. vectensis showed enhanced sensitivity to combinations of ultraviolet radiation (UV) and polycyclic aromatic hydrocarbons (PAHs, specifically pyrene, benzo[a]pyrene and fluoranthene) relative to either stressor alone. Adult N. vectensis exhibited little or no mortality following UV, benzo[a]pyrene or crude oil exposure but exhibited changes in gene expression. Antioxidant enzyme transcripts were both upregulated and downregulated following UV and/or chemical exposure. Expression patterns were most strongly affected by UV exposure but varied between experiments, suggesting that responses vary according to the intensity and duration of exposure. These experiments provide a basis for comparison with other cnidarian taxa and for further studies of the oxidative stress response in N. vectensis.


Assuntos
Petróleo/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Raios Ultravioleta/efeitos adversos , Poluentes Químicos da Água/toxicidade , Animais , Catalase/metabolismo , Expressão Gênica , Estresse Oxidativo , Filogenia , Anêmonas-do-Mar/efeitos dos fármacos , Anêmonas-do-Mar/metabolismo , Anêmonas-do-Mar/efeitos da radiação , Superóxido Dismutase/metabolismo
4.
BMC Dev Biol ; 12: 34, 2012 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-23206430

RESUMO

BACKGROUND: The contribution of cell proliferation to regeneration varies greatly between different metazoan models. Planarians rely on pluripotent neoblasts and amphibian limb regeneration depends upon formation of a proliferative blastema, while regeneration in Hydra can occur in the absence of cell proliferation. Recently, the cnidarian Nematostella vectensis has shown potential as a model for studies of regeneration because of the ability to conduct comparative studies of patterning during embryonic development, asexual reproduction, and regeneration. The present study investigates the pattern of cell proliferation during the regeneration of oral structures and the role of cell proliferation in this process. RESULTS: In intact polyps, cell proliferation is observed in both ectodermal and endodermal tissues throughout the entire oral-aboral axis, including in the tentacles and physa. Following bisection, there is initially little change in proliferation at the wound site of the aboral fragment, however, beginning 18 to 24 hours after amputation there is a dramatic increase in cell proliferation at the wound site in the aboral fragment. This elevated level of proliferation is maintained throughout the course or regeneration of oral structures, including the tentacles, the mouth, and the pharynx. Treatments with the cell proliferation inhibitors hydroxyurea and nocodazole demonstrate that cell proliferation is indispensable for the regeneration of oral structures. Although inhibition of regeneration by nocodazole was generally irreversible, secondary amputation reinitiates cell proliferation and regeneration. CONCLUSIONS: The study has found that high levels of cell proliferation characterize the regeneration of oral structures in Nematostella, and that this cell proliferation is necessary for the proper progression of regeneration. Thus, while cell proliferation contributes to regeneration of oral structures in both Nematostella and Hydra, Nematostella lacks the ability to undergo the compensatory morphallactic mode of regeneration that characterizes Hydra. Our results are consistent with amputation activating a quiescent population of mitotically competent stem cells in spatial proximity to the wound site, which form the regenerated structures.


Assuntos
Proliferação de Células , Regeneração , Anêmonas-do-Mar/fisiologia , Animais , Proliferação de Células/efeitos dos fármacos , Hidroxiureia/farmacologia , Morfogênese , Boca , Nocodazol/farmacologia , Regeneração/efeitos dos fármacos , Anêmonas-do-Mar/citologia , Anêmonas-do-Mar/efeitos dos fármacos , Cicatrização
5.
J Exp Biol ; 204(Pt 11): 2011-20, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11441042

RESUMO

Cnidocytes, the stinging cells of cnidarians, optimally discharge nematocysts in response to combined physical contact and stimulation of specific chemoreceptors. In the tentacles of certain sea anemones, the primary chemoreceptors bind N-acetylated sugars, such as N-acetylneuraminic acid (NANA). Sensitization with NANA predisposes contact-sensitive mechanoreceptors (CSMs) to trigger discharge in response to physical contact. In the ectoderm of sea anemone tentacles, cnidocyte/supporting cell complexes (CSCCs) control and trigger nematocyst discharge. Previous findings have implicated cyclic AMP (cAMP) as a second messenger in NANA-sensitized nematocyst discharge. However, no reports have directly demonstrated that the cAMP content of tentacles changes in response to NANA stimulation. We now show that NANA elevates in situ cAMP levels in a dose-dependent manner in the ectoderm of tentacles from the sea anemone Aiptasia pallida. However, the endoderm of tentacles shows no detectable cAMP response to NANA. The effect of NANA on the cAMP content of the ectoderm is biphasic. Micromolar NANA increases the in situ cAMP level, with a maximal response occurring at 1.8x10(-5)mol x l(-1) NANA. At higher NANA concentrations, the cAMP content decreases to that of controls. Because the cAMP dose/response curve to NANA coincides precisely with the dose/response curves of NANA-sensitized nematocyst discharge and nematocyst-mediated adhesive force, a second-messenger role for cAMP in NANA-sensitized nematocyst discharge is strongly suggested. The addition of isobutyl-1-methylxanthine (IBMX) to the medium with sea anemones increases tissue cAMP levels both in the absence and in the presence of NANA. However, anesthetizing anemones in sea water containing high levels of Mg(2+) blocks the NANA-stimulated cAMP response of the ectoderm. In addition, our results suggest that NANA-stimulated cAMP may activate endogenous cAMP-dependent protein kinase (PKA) in broken cell preparations of tentacles. Thus, NANA-stimulated cAMP may function as a second messenger in the NANA chemosensory signaling pathway controlling nematocyst discharge.


Assuntos
AMP Cíclico/biossíntese , Ácido N-Acetilneuramínico/farmacologia , Anêmonas-do-Mar/fisiologia , 1-Metil-3-Isobutilxantina/farmacologia , Animais , Células Quimiorreceptoras/efeitos dos fármacos , Células Quimiorreceptoras/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ectoderma/metabolismo , Endoderma/metabolismo , Anêmonas-do-Mar/anatomia & histologia , Anêmonas-do-Mar/efeitos dos fármacos
6.
Exp Cell Res ; 198(1): 8-16, 1992 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-1309195

RESUMO

In fishing tentacles of sea anemones, cnidocyte/supporting cell complexes (CSCCs) trigger the discharge of nematocysts following stimulation by swimming prey of specific mechanoreceptors and chemoreceptors located on the supporting cells. Two types of mechanoreceptors have been identified: a contact-sensitive mechanoreceptor (CSM), and a vibration-sensitive mechanoreceptor (VSM). The CSMs become predisposed to initiate nematocyst discharge into static (i.e., nonvibrating) test probes in the presence of submicromolar free and conjugated N-acetylated sugars, a process referred to as sensitization. In seawater, the VSMs cause maximal discharge in response to test probes vibrating at 30, 50-55, and 75 Hz, whereas in the presence of submicromolar N-acetylated sugars the VSMs cause maximal discharge into test probes vibrating at 5, 15, 30, and 40 Hz, a process referred to as tuning. Tuning of the VSMs is accompanied by elongation of the stereocilium bundles comprising the VSMs. We report that dibutyryl cyclic-AMP sensitizes CSMs and tunes VSMs to the lower frequencies of 5, 15, 30, and 40 Hz, while cyclic-AMP has no such effects. Endogenous adenylate cyclase activity at the apical plasma membrane of the supporting cells is detectable by cytochemical methods in the presence of N-acetylated sugars but not in seawater alone. By activating adenylate cyclase with L858051, an analogue of forskolin, or by activating the stimulatory form of G proteins (Gs) with cholera toxin, CSCCs are induced to sensitize CSMs and to tune VSMs to the lower frequencies of 5, 15, 30, and 40 Hz. Caged GTP-gamma S also sensitizes CSMs but tunes VSMs to 5, 15, 30, 40, 55, 65, and 75 Hz, suggesting that VSM tuning may be regulated both by Gs and inhibitory G-proteins. Together, these results implicate cAMP as the second messenger for activated supporting cell chemoreceptors involved in sensitizing the CSMs and tuning the VSMs to lower frequencies.


Assuntos
Células Quimiorreceptoras/fisiologia , AMP Cíclico/fisiologia , Mecanorreceptores/fisiologia , Anêmonas-do-Mar/fisiologia , Acetilglucosamina/farmacologia , Animais , AMP Cíclico/farmacologia , Relação Dose-Resposta a Droga , Ácido N-Acetilneuramínico , Anêmonas-do-Mar/efeitos dos fármacos , Sistemas do Segundo Mensageiro/fisiologia , Ácidos Siálicos/farmacologia , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA