Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Food Chem ; 451: 139440, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692245

RESUMO

The preservation of fresh-cut fruits and vegetables has attracted attention to the shelf-life reduction caused by high humidity. Herein, alginate/copper ions cross-linking, in-situ growth and self-assembly techniques of metal-organic frameworks (MOFs) were utilized to prepare a moisture responsive hydrogel bead (HKUST-1@ALG). As the multistage porous structure formation, tea tree essential oil (TTO) load capacity in hydrogel bead (TTO-HKUST-1@ALG) was increased from 6.1% to 21.6%. TTO-HKUST-1@ALG had excellent moisture response performance, and the release rates of TTO increased from 33.89% to 70.98% with moisture increasing from 45% to 95%. Besides, TTO-HKUST-1@ALG exhibited excellent antimicrobial, antioxidant capacity, and biocompatibility. During storage, TTO-HKUST-1@ALG effectively improved the cell membrane integrity by maintaining the balance of reactive oxygen species metabolism. The degradation of cell wall structure and tissue softening were delayed by inhibiting the cell wall-degrading enzymes activity. Briefly, TTO-HKUST-1@ALG improved the storage quality and extended shelf-life of fresh-cut pineapple, which was a promising preservative.


Assuntos
Ananas , Conservação de Alimentos , Hidrogéis , Estruturas Metalorgânicas , Óleos Voláteis , Ananas/química , Óleos Voláteis/química , Hidrogéis/química , Estruturas Metalorgânicas/química , Conservação de Alimentos/métodos , Conservação de Alimentos/instrumentação , Frutas/química , Antioxidantes/química , Conservantes de Alimentos/farmacologia , Conservantes de Alimentos/química
2.
J Proteome Res ; 23(5): 1583-1592, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38651221

RESUMO

MD2 pineapple (Ananas comosus) is the second most important tropical crop that preserves crassulacean acid metabolism (CAM), which has high water-use efficiency and is fast becoming the most consumed fresh fruit worldwide. Despite the significance of environmental efficiency and popularity, until very recently, its genome sequence has not been determined and a high-quality annotated proteome has not been available. Here, we have undertaken a pilot proteogenomic study, analyzing the proteome of MD2 pineapple leaves using liquid chromatography-mass spectrometry (LC-MS/MS), which validates 1781 predicted proteins in the annotated F153 (V3) genome. In addition, a further 603 peptide identifications are found that map exclusively to an independent MD2 transcriptome-derived database but are not found in the standard F153 (V3) annotated proteome. Peptide identifications derived from these MD2 transcripts are also cross-referenced to a more recent and complete MD2 genome annotation, resulting in 402 nonoverlapping peptides, which in turn support 30 high-quality gene candidates novel to both pineapple genomes. Many of the validated F153 (V3) genes are also supported by an independent proteomics data set collected for an ornamental pineapple variety. The contigs and peptides have been mapped to the current F153 genome build and are available as bed files to display a custom gene track on the Ensembl Plants region viewer. These analyses add to the knowledge of experimentally validated pineapple genes and demonstrate the utility of transcript-derived proteomics to discover both novel genes and genetic structure in a plant genome, adding value to its annotation.


Assuntos
Ananas , Genoma de Planta , Proteínas de Plantas , Proteogenômica , Espectrometria de Massas em Tandem , Ananas/genética , Ananas/química , Proteogenômica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cromatografia Líquida , Proteoma/genética , Proteoma/análise , Anotação de Sequência Molecular , Folhas de Planta/genética , Folhas de Planta/química , Peptídeos/genética , Peptídeos/análise , Peptídeos/química
3.
Food Res Int ; 164: 112439, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36738003

RESUMO

Pineapple is among the most produced and consumed fruits worldwide, and consequently, its agroindustrial production/processing generates high amounts of agricultural waste, which are routinely discarded. Thus, it is crucial to seek alternatives to reuse this agricultural waste that are in high availability. Therefore, this work aims to evaluate the chemical composition of a specific residue (leaves) of seven commercial varieties of pineapples, to attribute high added value uses, and to evaluate its potential as a source of secondary metabolites and minerals. Thereby, twenty-eight metabolites were annotated by UPLC-QTOF-MSE, including amino acids, organic acids, and phenolic compounds. The following minerals were quantitatively assessed by ICP-OES: Zn (5.30-19.77 mg kg-1), Cr, Cd, Mn (50.80-113.98 mg kg-1), Cu (1.05-4.01 mg kg-1), P (1030.77-6163.63 mg kg-1) and Fe (9.06-70.17 mg kg-1). In addition, Cr and Cd (toxic materials) present concentration levels below the limit of quantification of the analytical method (LOQCr and LOQCd = 0.02 mg kg-1) for all samples. The multivariate analysis was conceived from the chemical profile, through the tools of PCA (principal component analysis) and HCA (hierarchical cluster analysis). The results show that pineapple leaves have similarities and differences concerning their chemical composition. In addition, the cytotoxicity assays of the extracts against tumor and non-tumor strains shows that the extracts were non-toxic. This fact can corroborate and enhance the prospection of new uses and applications of agroindustrial co-products from pineapple, enabling the evaluation and use in different types of industries, such as pharmacological, cosmetic, and food, in addition to the possibility of being a potential source of bioactive compounds.


Assuntos
Ananas , Ananas/química , Cádmio , Minerais/metabolismo , Fenóis/metabolismo , Análise Multivariada
4.
Sci Rep ; 12(1): 19384, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371484

RESUMO

The present study proposes the production of vinegars from pineapple processing residues as an eco-friendly strategy for adding value and economic strengthening of the production chain. Pineapple pulp and peel wines were produced and acetificated to vinegar by wild strains of acetic bacteria using Orlean's method (traditional system) followed by enrichment with leaf extract of Red-Jambo, Syzygium malaccense. Appreciable phenolic contents and antioxidant potential were found in pulp and peel vinegars with the added leaf extract. Catechin, epicatechin and caffeic, p-coumaric, ferulic, and gallic acids were the main phenolic compounds found in peel vinegar. The enrichment of the vinegar with the extract promoted an increase in the content of polyphenols (443.6-337.3 mg GAE/L) and antioxidant activity. Peel wines presented higher luminosity (L*) and higher saturation index (C*), and their color tended more toward yellow than pulp wines. Acetification reduced the saturation index (C*) and led to the intensification of the hue angle in the peels vinegar. Each type of pineapple vinegar produced showed biocidal activity against different bacteria and yeast, and the addition of leaf extract potentiated the antimicrobial activity of peel vinegar, especially against Staphalococcus aureus. The vinegars developed could find an attractive market niche in the food sector.


Assuntos
Ananas , Syzygium , Vinho , Ácido Acético/química , Ananas/química , Vinho/análise , Fenóis/química , Antioxidantes/química , Saccharomyces cerevisiae , Extratos Vegetais
5.
Molecules ; 27(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36144767

RESUMO

Bromelain is a unique enzyme-based bioactive complex containing a mixture of cysteine proteases specifically found in the stems and fruits of pineapple (Ananas comosus) with a wide range of applications. MD2 pineapple harbors a gene encoding a small bromelain cysteine protease with the size of about 19 kDa, which might possess unique properties compared to the other cysteine protease bromelain. This study aims to determine the expressibility and catalytic properties of small-sized (19 kDa) bromelain from MD2 pineapple (MD2-SBro). Accordingly, the gene encoding MD2-SBro was firstly optimized in its codon profile, synthesized, and inserted into the pGS-21a vector. The insolubly expressed MD2-SBro was then resolubilized and refolded using urea treatment, followed by purification by glutathione S-transferase (GST) affinity chromatography, yielding 14 mg of pure MD2-SBro from 1 L of culture. The specific activity and catalytic efficiency (kcat/Km) of MD2-SBro were 3.56 ± 0.08 U mg-1 and 4.75 ± 0.23 × 10-3 µM-1 s-1, respectively, where optimally active at 50 °C and pH 8.0, and modulated by divalent ions. The MD2-SBro also exhibited the ability to scavenge the 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) with an IC50 of 0.022 mg mL-1. Altogether, this study provides the production feasibility of active and functional MD2-Bro as a bioactive compound.


Assuntos
Ananas , Cisteína Proteases , Ananas/química , Ananas/genética , Bromelaínas/química , Códon/genética , Glutationa Transferase/genética , Ureia
6.
Int J Immunopathol Pharmacol ; 35: 20587384211034686, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34387509

RESUMO

INTRODUCTION: Bromelain is a complex mixture of thiol proteases and other non-proteolytic constituents, commercially extracted primarily from the pineapple stem. Evidence from several in vitro and in vivo studies highlights its excellent bioavailability, lack of side effects, and broad spectrum of medical efficacies, of which the antiphlogistic properties are among the most valuable ones. Bromelain has indeed been employed for the efficient treatment of many inflammatory disorders, ranging from osteoarthritis and inflammatory bowel diseases to cancer-related inflammation. METHODS: The aim of the current study was to assess the anti-inflammatory effects of bromelain after gastrointestinal digestion simulated in vitro using stomach, intestinal, and chondrocyte human cellular models (AGS, Caco-2, and SW1353, respectively). RESULTS: We successfully demonstrated the capability of bromelain to reduce an inflammatory stimulus by reproducing its exposure to the gastro-enteric environment in vitro and assaying its effect in human cell lines derived from stomach, intestinal, and chondrocytes. CONCLUSION: Consistently with the previously published data, our work underpins the relevance of bromelain in the development of safer and more effective anti-inflammatory therapies.


Assuntos
Anti-Inflamatórios/farmacologia , Bromelaínas/farmacologia , Digestão/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Ananas/química , Células CACO-2 , Linhagem Celular Tumoral , Humanos , Extratos Vegetais/farmacologia
7.
Int J Biol Macromol ; 187: 223-231, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34310991

RESUMO

This research study explores the fabrication of polyvinyl alcohol (PVOH) and corn starch (ST) with pineapple peel extract (PPE) as a natural antioxidant agent, which is an abundant by-product from the food processing industry via casting method. The effects of PPEs concentration (5%, 10%, 15%, and 20%) on the antioxidant capacity, optical, thermal, mechanical, barrier properties, and changes in PVOH-starch molecular structure of PVOH/ST films were investigated. The results revealed that with the increasing concertation of PPEs, prepared films' thickness and water vapor permeability slightly increased. Elongation at break of PVOH/ST films was also enhanced with PPEs concentration. All PPEs incorporated films exhibited enhanced thermal stability as the degradation occurred above 300 °C. The addition of PPE to PVOH/ST films remarkably increased the antioxidant properties. Finally, prepared PVOH/ST/PPE films demonstrated to be a capable material for developing active biodegradable packaging material due to its proven antioxidant activity and mechanical property, which can be helpful in the packaging of food products that gets spoiled due to oxidation reactions.


Assuntos
Ananas/química , Antioxidantes/química , Embalagem de Alimentos , Extratos Vegetais/química , Álcool de Polivinil/química , Amido/química
8.
Curr Issues Mol Biol ; 43(1): 93-106, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067064

RESUMO

Bromelain is a mixture of proteolytic enzymes derived from pineapple (Ananas comosus) fruit and stem possessing several beneficial properties, particularly anti-inflammatory activity. However, the molecular mechanisms underlying the anti-inflammatory effects of bromelain are unclear. This study investigated the anti-inflammatory effects and inhibitory molecular mechanisms of crude and purified rhizome bromelains on lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells. RAW264.7 cells were pre-treated with various concentrations of crude bromelain (CB) or purified bromelain (PB), and then treated with LPS. The production levels of pro-inflammatory cytokines and mediators, including nitric oxide (NO), interleukin (IL)-6, and tumor necrosis factor (TNF)-α were determined by Griess and ELISA assays. The expressions of inducible nitric oxide synthetase (iNOS), cyclooxygenase (COX)-2, nuclear factor kappa B (NF-κB), and mitogen-activated protein kinases (MAPKs)-signaling pathway-related proteins were examined by western blot analysis. The pre-treatment of bromelain dose-dependently reduced LPS-induced pro-inflammatory cytokines and mediators, which correlated with downregulation of iNOS and COX-2 expressions. The inhibitory potency of PB was stronger than that of CB. PB also suppressed phosphorylated NF-κB (p65), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha, extracellular signal-regulated kinases, c-Jun amino-terminal kinases, and p38 proteins in LPS-treated cells. PB then exhibited potent anti-inflammatory effects on LPS-induced inflammatory responses in RAW264.7 cells by inhibiting the NF-κB and MAPKs-signaling pathways.


Assuntos
Ananas/química , Bromelaínas/farmacologia , Lipopolissacarídeos/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Rizoma/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Bromelaínas/química , Regulação para Baixo , Macrófagos/metabolismo , Camundongos , Células RAW 264.7 , Transdução de Sinais
9.
Appl Biochem Biotechnol ; 193(6): 1873-1897, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33735410

RESUMO

Cancer is a complicated long-term disease due to computable key molecular players involved in aggravating the disease. Among various kinds of cancer, hepatocellular carcinoma (HCC) is the ninth leading cause of cancer. Recently, plant-based products are gaining a lot of attention in the field of research because of their anti-tumor properties. In our previous study, we reported based on in-silico method that bromelain, a cysteine protease extracted from the stem of the pineapple, has high binding affinity with the transcription factors p53 and ß-catenin proteins which are key players in controlling the progression of hepatocellular carcinoma. Bromelain, isolated mainly from the stem of Pineapple (Ananas comosus), belongs to the family Bromeliaceae. The present study deals with preclinical analysis of bromelain as an anti-cancer agent and its intracellular effect on the expression of p53 and ß-catenin protein. Our study reports cytotoxic activity, cell proliferation, migration, invasion, arrest in the S-phase, and G2/M phase in cell cycle analysis by treating with bromelain in HepG2 cell lines. We also report up-regulation of p53 protein by drug-induced impediment leading to apoptotic process in HepG2 cells and down-regulation of ß-catenin protein in HepG2 cells which interferes in ß-catenin/TCF-DNA interaction further, down-regulating Wnt genes and suppressing the canonical pathway. Finally, we conclude that bromelain inhibits tumorigenic potential in HepG2 cell lines.


Assuntos
Ananas/química , Antineoplásicos Fitogênicos/farmacologia , Bromelaínas/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Citotoxinas/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Antineoplásicos Fitogênicos/química , Bromelaínas/química , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Ciclo Celular/efeitos dos fármacos , Citotoxinas/química , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Invasividade Neoplásica , Proteína Supressora de Tumor p53/metabolismo , beta Catenina/metabolismo
10.
Food Chem ; 339: 127882, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32889131

RESUMO

Unconventional parts of vegetables represent a rich source of health-promoting phytochemicals. The phenolic profile of cabbage-stalk flour (CSF), pineapple-crown flour (PCF), and their essential oils were characterized via UPLC-ESI-QTOF-MSE and GC-FID/MS. Antimicrobial activity was tested against five strains, and antioxidant activities were determined in free and bound extracts. Globally, 177 phenolics were tentatively identified in PCF (major p-coumaric acid, ferulic acid, and 4-hydroxybenzaldehyde) and 56 in CSF (major chlorogenicacid, quercetin 3-O-glucuronide, and p-coumaric acid). PCF exhibited a distinguished profile (lignans, stilbenes) and antioxidant capacity, especially in bound extracts (1.3 g GAE.100 g-1; 0.6 g catechin eq.100 g-1; DPPH: 244.7; ABTS: 467.8; FRAP: 762.6 µg TE.g-1, ORAC: 40.9 mg TE.g-1). The main classes of volatile compounds were fatty acids, their esters, and terpenes in CSF (30) and PCF (41). A comprehensive metabolomic approach revealed CSF and PCF as a promising source of PC, showing great antioxidant and discrete antimicrobial activities.


Assuntos
Ananas/química , Anti-Infecciosos/análise , Antioxidantes/química , Brassica/química , Farinha/análise , Fenóis/química , Compostos Orgânicos Voláteis/química , Ananas/metabolismo , Anti-Infecciosos/farmacologia , Brassica/metabolismo , Cromatografia Líquida de Alta Pressão , Análise Discriminante , Cromatografia Gasosa-Espectrometria de Massas , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Óleos Voláteis/análise , Óleos Voláteis/química , Fenóis/análise , Fenóis/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Análise de Componente Principal , Espectrometria de Massas por Ionização por Electrospray , Compostos Orgânicos Voláteis/análise
11.
Sci Rep ; 10(1): 19570, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177555

RESUMO

The Ananas comosus stem extract is a complex mixture containing various cysteine ​​proteases of the C1A subfamily, such as bromelain and ananain. This mixture used for centuries in Chinese medicine, has several potential therapeutic applications as anti-cancer, anti-inflammatory and ecchymosis degradation agent. In the present work we determined the structures of bromelain and ananain, both in their free forms and in complex with the inhibitors E64 and TLCK. These structures combined with protease-substrate complexes modeling clearly identified the Glu68 as responsible for the high discrimination of bromelain in favor of substrates with positively charged residues at P2, and unveil the reasons for its weak inhibition by cystatins and E64. Our results with purified and fully active bromelain, ananain and papain show a strong reduction of cell proliferation with MDA-MB231 and A2058 cancer cell lines at a concentration of about 1 µM, control experiments clearly emphasizing the need for proteolytic activity. In contrast, while bromelain and ananain had a strong effect on the proliferation of the OCI-LY19 and HL-60 non-adherent cell lines, papain, the archetypal member of the C1A subfamily, had none. This indicates that, in this case, sequence/structure identity beyond the active site of bromelain and ananain is more important than substrate specificity.


Assuntos
Ananas/química , Bromelaínas/química , Cisteína Endopeptidases/química , Inibidores de Cisteína Proteinase/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Bromelaínas/antagonistas & inibidores , Bromelaínas/metabolismo , Bromelaínas/farmacologia , Domínio Catalítico , Linhagem Celular Tumoral , Cisteína/química , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/farmacologia , Inibidores de Cisteína Proteinase/metabolismo , Dissulfetos/química , Humanos , Leucina/análogos & derivados , Leucina/química , Leucina/metabolismo , Modelos Moleculares , Caules de Planta/química , Conformação Proteica , Espectrometria de Massas por Ionização por Electrospray , Especificidade por Substrato , Tosilina Clorometil Cetona/química , Tosilina Clorometil Cetona/metabolismo
12.
Int J Biol Macromol ; 163: 2357-2364, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32949627

RESUMO

Ultrasonic-assisted extraction (UAE) technique has been investigated to extract polysaccharides from pineapple core as a by-product using response surface methodology. A Box-Behnken design was employed to optimize the conditions for the maximum extraction yield of polysaccharides. The results demonstrated that the optimum extraction conditions were as follows: water/solid material ratio of 29.5 mL/g, extraction temperature of 66.3 °C and extraction time of 46.7 min. Under these conditions, the extraction yield of pineapple core polysaccharides (PCPs) was 16.7%. The structure of PCPs was analyzed by Fourier transform-infrared spectroscopy (FT-IR) analysis, X-ray diffractometry (XRD), SEM (scanning electron microscope) and gas chromatography-mass spectrometry (GC-MS). The results of thermogravimetric analysis indicated that the PCPs had a good thermal stability at temperatures below 250 °C. The extracted polysaccharides had a porous structure with rough surface. The extracted polysaccharides had strong scavenging activities on DPPH and hydroxyl radicals. Furthermore, they demonstrated interesting water-holding and fat-binding capacities (3.11 and 4.25 g/g, respectively). The results revealed that polysaccharides displayed good emulsifying and foaming properties. Overall, the findings suggest that PCPs are a promising source of antioxidants and may have potential applications in functional food industries.


Assuntos
Ananas/química , Antioxidantes/química , Polissacarídeos/química , Fracionamento Químico , Emulsões/química , Emulsões/farmacologia , Polissacarídeos/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Água/química
13.
J Trace Elem Med Biol ; 62: 126631, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32763766

RESUMO

BACKGROUND: Aluminum (Al) has been reported to induce testicular injury via oxidative stress. Ananas comosus stem extract is an inexpensive byproduct waste rich in bromelain which is a group of sulfur-containing enzymes known for its biological activities and medicinal applications. So, the current investigation aims to evaluate the efficacy of bromelain in counteracting oxidative injury and testicular dysfunction stimulated by aluminum in rats. METHODS: Male adult Wistar rats were divided into four groups. The first group used as control, however, the second and third groups were received bromelain (250 mg/kg) and AlCl3 (34 mg/Kg, 1/25 LD50), and the fourth group supplemented with bromelain one hour before AlCl3 intoxication, respectively. Bromelain was administered daily while AlCl3 was given every other day by oral gavages for one month. RESULTS: Al intoxicated animals revealed an elevation in lipid peroxidation (TBARS and H2O2) level and lactate dehydrogenase (LDH) activity. However, reduced glutathione (GSH) and protein contents, antioxidant enzymes (SOD, CAT, GPx, GR, GST), phosphatases (ALP, AcP) and aminotransferases (AST, ALT) activities were significantly reduced. Additionally, considerable amendments in hormonal levels (testosterone, luteinizing and follicle-stimulating hormone) and sperm characteristics were spotted. Further, histological variations in the testes section were detected and this supports the biochemical observations. Otherwise, rats supplemented with bromelain alone diminished TBARS and H2O2 and augmented mostly other parameters. Furthermore, supplementation with bromelain before Al intoxication in rats exhibited worthy betterment in oxidative stress markers, hormones, and sperm quality compared to Al treated group. CONCLUSION: In conclusion, bromelain had a powerful protective role against Al-induced testicular dysfunction so, it represents a novel approach in metal toxicity processing.


Assuntos
Ananas/química , Bromelaínas/química , Bromelaínas/farmacologia , Cloreto de Alumínio/química , Animais , Antioxidantes/química , Glutationa/química , Hormônios/metabolismo , Peróxido de Hidrogênio/química , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar
14.
Environ Monit Assess ; 192(5): 273, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32266493

RESUMO

An accurate and sensitive dispersive liquid-liquid microextraction method based on binary solvents was used to enrich prothiofos, oxadiargyl, and gamma-cyhalothrin for quantification by GC-MS. The combination of two extraction solvents (binary mixture) resulted in higher extraction efficiencies compared to the single solvent extraction systems. Parameters of the binary extraction method where optimized to enhance the extraction output of the analytes. The limits of detection calculated for the analytes ranged between 0.59 and 1.6 ng/mL. Linear calibration plots of the analytes covered wide concentration ranges with R2 values greater than 0.9996 and percent relative standard deviation lower than 10%. Spiked recovery experiments were performed well and wastewater at two different concentrations and satisfactory results (89-104%) were obtained. The binary solvent microextraction method was combined with QuEChERS to quantify the analytes in pineapple matrix, using matrix matching method to enhance the accuracy of the method to almost 100%.


Assuntos
Microextração em Fase Líquida , Poluentes Químicos da Água , Ananas/química , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Limite de Detecção , Nitrilas/análise , Organotiofosfatos/análise , Oxidiazóis/análise , Piretrinas/análise , Solventes , Água/química
15.
Braz J Microbiol ; 51(3): 1169-1175, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32189177

RESUMO

Papain-like cysteine proteases (PLCPs) in plants are essential to prevent phytopathogen invasion. In order to search for cysteine protease inhibitors and to investigate compounds that could be associated to pineapple Fusarium disease, a chemistry investigation was performed on Fusarium proliferatum isolated from Ananas comosus (pineapple) and cultivated in Czapek medium. From F. proliferatum extracts, nine secondary metabolites were isolated and characterized by nuclear magnetic resonance spectroscopy and mass spectrometry experiments: beauvericin (1), fusaric acid (2), N-ethyl-3-phenylacetamide (3), N-acetyltryptamine (4), cyclo(L-Val-L-Pro) cyclodipeptide (5), cyclo(L-Leu-L-Pro) cyclodipeptide (6), cyclo(L-Leu-L-Pro) diketopiperazine (7), 2,4-dihydroxypyrimidine (8), and 1H-indole-3-carbaldehyde (9). Compounds 1, 3, and 6 showed significant inhibition of papain, with IC50 values of 25.3 ± 1.9, 39.4 ± 2.5, and 7.4 ± 0.5 µM, respectively. Compound 1 also showed significant inhibition against human cathepsins V and B with IC50 of 46.0 ± 3.0 and 6.8 ± 0.7 µM, respectively. The inhibition of papain by mycotoxins (fusaric acid and beauvericin) may indicate a mechanism of Fusarium in the roles of infection process.


Assuntos
Ananas/enzimologia , Cisteína Proteases/química , Inibidores de Cisteína Proteinase/química , Fusarium/química , Micotoxinas/química , Proteínas de Plantas/química , Ananas/química , Ananas/microbiologia , Inibidores de Cisteína Proteinase/metabolismo , Fusarium/metabolismo , Cinética , Espectrometria de Massas , Micotoxinas/metabolismo , Metabolismo Secundário
16.
Int J Biol Macromol ; 150: 775-785, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32061697

RESUMO

In this work peanut oil cake extracted Cellulose Micro Filler (CMF) is used for the advancement of mechanical and thermal properties in natural fiber composites. This fiber powder was used in enhancing the applications of Pineapple (P)/Flax (F) natural fiber epoxy composites. The X Ray Diffraction (XRD) results of CMF showed improved Crystalline Index (Crl) of 70.25° and crystalline size of 5.5 nm. FTIR results confirmed the rich cellulose content in functional groups of filler with peaks at 1058 cm-1, 1162 cm-1, 1370 cm-1 and 1428 cm-1. Mechanical results showed a positive impact with incorporation of CMF in PF hybrid fiber composites. Thermal stability results showed enhancement in the degradation temperature, residual %, endothermic peak and enthalpy by the incorporation of CMF. In the 30% PF combinations degradation temperature T50, T70, T70 enhanced from 387.73-391.08°, 434.81-454.81° and 468.91-553.36° by the filler substitution. Similarly residual % increased from 17.69-24.35%. The combination with 35% PF showed enhancement in degradation temperature, residual percentage, endothermic peak and enthalpy with filler addition up to 3%.


Assuntos
Ananas/química , Celulose/química , Linho/química , Óleo de Amendoim/química , Temperatura Alta , Teste de Materiais
17.
Pak J Pharm Sci ; 33(4): 1679-1688, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33583802

RESUMO

The present study evaluates the prophylactic role of Ananas comosus ethanolic extract (ACEE) against sodium oxalate (NaOx) - induced nephrolithiasis. Forty two rats were allocated into the following set of groups (6 rats/set group). Normal rats divided to two groups, one of them received distilled water (Control group) and the other received ACEE (1000 mg/kg body weight, p.o) for 7 consecutive days. Urolithiatic rat groups which divided into five subgroups injected with sodium oxalate (70 mg NaOx /kg body weight, i.p) for 7 days; and concurrently received oral administration of distilled water (Urolithiatic group, Vehicle), ACEE and Cystone. Interestingly, ACEE showed a beneficial effect in preventing stone formation. Significant reductions were obtained in the urinary and serum calcium and phosphate excretion along with an increase in magnesium excretion in urolithiatic rats treated with ACEE. Urolithiatic rats treated with ACEE and cystone significantly increased the urinary volume. Administration of ACEE caused significant amelioration in renal function which suggests antilithiatic activity of ACEE. Moreover, urolithiatic rats treated with ACEE significantly attenuated oxidative damage induced by NaOx. In conclusion, ACEE has antilithiatic efficacy may be due to its diuretic activity, antioxidant activity, beside its bioactive constituents which affecting calcium oxalate crystallization.


Assuntos
Ananas/química , Cálculos Renais/tratamento farmacológico , Extratos Vegetais/farmacologia , Urolitíase/tratamento farmacológico , Animais , Antioxidantes/farmacologia , Modelos Animais de Doenças , Rim/efeitos dos fármacos , Masculino , Ácido Oxálico/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fitoterapia/métodos , Ratos , Ratos Wistar
18.
Nutr Cancer ; 72(7): 1200-1210, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31591915

RESUMO

Aim: Pineapple (Ananas comosus (L.) Merr.) is a good source of bromelain (B) and also contain peroxidase. The objective of this study is isoaltion of bromelain plus peroxidase (BP) from the pineapple fruit to evaluate the anticancer activity of BP from the pineapple fruit of Tripura, compared to commercial bromelain against ascitic Dalton's lymphoma cells (DLA) in mice. Methods: By acetone precipitation BP was isolated from the pineapple. Animals bearing DLA, receive B and BP orally for 15 alternative days. Apoptotic proteins are assayed using western blot. Results: BP treated mice showed recover of hemoglobin and WBC count compared to control lymphoma animal. The animal showed significant reduction of body weight due to reduced tunor load and elevated reactive oxygen species (ROS) production, elevated levels of vitamin C and vitamin E and other antioxidants in blood after BP treatment. Histology of liver and kidney also shows restored architecture in BP treated animal compared to only B treated group. BP treatment upregulates the cytochrome C, BAD, and BAX protein and downregulates the Bcl-2 and NF-kß occuring upon BP treatment in the DLA cells collected from lymphoma animal. This induce the apoptosis of DLA cells in lymphoma animal and reduce the tumor load. Conclusion: The present findings suggest that BP from pineapple improves the survival of the induced lymphoma animal compared to only B which may be used as therapeutic target.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Bromelaínas/farmacologia , Linfoma não Hodgkin/tratamento farmacológico , Peroxidase/farmacologia , Extratos Vegetais/farmacologia , Ananas/química , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Linhagem Celular Tumoral , Humanos , Linfoma não Hodgkin/metabolismo , Linfoma não Hodgkin/patologia , Camundongos , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Regulação para Cima/efeitos dos fármacos
19.
J Agric Food Chem ; 68(38): 10329-10335, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31763832

RESUMO

During the cultivation of the edible mushroom Fomitopsis betulina on agro-industrial side streams, a pleasant flavor strongly reminiscent of pineapple was perceived. Aroma extract dilution analyses identified two flavor components with a distinct pineapple odor. On the basis of mass spectrometric data, a Wittig reaction of (E)-penta-2,4-dien-1-yltriphosphonium bromide with ethyl levulinate was conducted. The resulting (5E/Z,7E,9)-decatrien-2-ones were identical to the compounds isolated from the fungal culture. Some structurally related methyl ketones were synthesized, confirmed by nuclear magnetic resonance and mass spectrometry, and their odor was characterized. The lowest odor threshold and most characteristic pineapple-like odor was found for (5Z,7E,9)-decatrien-2-one. Global minimum energy calculation of the methyl ketones and the comparison to (1,3E,5Z)-undecatriene, a character impact compound of fresh pineapple, showed that a chain length of at least 10 carbon atoms and a terminal double bond embedded in a "L"-shaped conformation were common to compounds imparting an intense pineapple-like odor. Both (5E/Z,7E,9)-decatrien-2-ones have not been described as natural flavor compounds.


Assuntos
Aromatizantes/química , Polyporales/química , Ananas/química , Cromatografia Gasosa-Espectrometria de Massas , Cetonas/química , Espectroscopia de Ressonância Magnética , Odorantes/análise
20.
Bol. latinoam. Caribe plantas med. aromát ; 18(6): 577-585, nov. 2019. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1102645

RESUMO

Pineapple peels has several beneficial properties including antioxidant activity. We investigated the antioxidant effect of five different peels of pineapple lyophilized extracts, not adsorbed and adsorbed onto Amberlite. They were examined using total phenolic contents (TPC), antioxidant effect by 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging and ferric reducing antioxidant power (FRAP). In addition, we analyzed the chemical composition by HPLC-ESI-QTOF-MS/MS. The main constituents of pineapple peels were tentatively identified as quercetin glycosides and N,N'-diferuloylspermidine. We conclude that the antioxidant activity in pineapple peels from District of Poroto, Province of Trujillo, Region of La Libertad, can be associated with the presence of flavonoid and spermidines.


Las cáscaras de piña tienen varias propiedades beneficiosas, incluida la actividad antioxidante. Investigamos el efecto antioxidante de cinco exfoliaciones diferentes de extracto liofilizado de piña, no adsorbidas y adsorbidas en Amberlita. Se examinaron utilizando los contenidos fenólicos totales (TPC), el efecto antioxidante mediante la eliminación del radical 1,1-difenil-2-picril-hidrazilo (DPPH) y el poder férrico antioxidante reductor (FRAP). Además, analizamos la composición química por HPLC-ESI-QTOF-MS/MS. Los principales constituyentes de las cáscaras de piña se identificaron tentativamente como glucósidos de quercetina y N,N'- diferuloylspermidina. Concluimos que la actividad antioxidante en las cáscaras de piña del Distrito de Poroto, Provincia de Trujillo, Región de La Libertad, puede estar asociada con la presencia de flavonoides y espermidinas.


Assuntos
Ananas/química , Antioxidantes/farmacologia , Peru , Fenóis/análise , Picratos , Compostos de Bifenilo , Compostos Férricos , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem , Antioxidantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA