Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 274
Filtrar
1.
Curr Med Sci ; 44(2): 426-434, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561594

RESUMO

OBJECTIVE: Glucose-6-phosphate isomerase (GPI) deficiency is a rare hereditary nonspherocytic hemolytic anemia caused by GPI gene variants. This disorder exhibits wide heterogeneity in its clinical manifestations and molecular characteristics, often posing challenges for precise diagnoses using conventional methods. To this end, this study aimed to identify the novel variants responsible for GPI deficiency in a Chinese family. METHODS: The clinical manifestations of the patient were summarized and analyzed for GPI deficiency phenotype diagnosis. Novel compound heterozygous variants of the GPI gene, c.174C>A (p.Asn58Lys) and c.1538G>T (p.Trp513Leu), were identified using whole-exome and Sanger sequencing. The AlphaFold program and Chimera software were used to analyze the effects of compound heterozygous variants on GPI structure. RESULTS: By characterizing 53 GPI missense/nonsense variants from previous literature and two novel missense variants identified in this study, we found that most variants were located in exons 3, 4, 12, and 18, with a few localized in exons 8, 9, and 14. This study identified novel compound heterozygous variants associated with GPI deficiency. These pathogenic variants disrupt hydrogen bonds formed by highly conserved GPI amino acids. CONCLUSION: Early family-based sequencing analyses, especially for patients with congenital anemia, can help increase diagnostic accuracy for GPI deficiency, improve child healthcare, and enable genetic counseling.


Assuntos
Anemia Hemolítica Congênita não Esferocítica , Anemia Hemolítica , Criança , Humanos , Glucose-6-Fosfato Isomerase/genética , Glucose-6-Fosfato Isomerase/química , Anemia Hemolítica/genética , Anemia Hemolítica Congênita não Esferocítica/diagnóstico , Anemia Hemolítica Congênita não Esferocítica/genética , Mutação de Sentido Incorreto , Éxons
2.
J Med Case Rep ; 18(1): 130, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38539245

RESUMO

BACKGROUND: Glucose-6-phosphate isomerase deficiency is a rare genetic disorder causing hereditary nonspherocytic hemolytic anemia. It is the second most common glycolytic enzymopathy in red blood cells. About 90 cases are reported worldwide, with symptoms including chronic hemolytic anemia, jaundice, splenomegaly, gallstones, cholecystitis, and in severe cases, neurological impairments, hydrops fetalis, and neonatal death. CASE PRESENTATION: This paper details the case of the first Danish patient diagnosed with glucose-6-phosphate isomerase deficiency. The patient, a 27-year-old white female, suffered from lifelong anemia of unknown origin for decades. Diagnosis was established through whole-genome sequencing, which identified two GPI missense variants: the previously documented variant p.(Thr224Met) and a newly discovered variant p.(Tyr341Cys). The pathogenicity of these variants was verified enzymatically. CONCLUSIONS: Whole-genome sequencing stands as a potent tool for identifying hereditary anemias, ensuring optimal management strategies.


Assuntos
Anemia Hemolítica Congênita não Esferocítica , Anemia Hemolítica , Adulto , Feminino , Humanos , Anemia Hemolítica Congênita não Esferocítica/diagnóstico , Anemia Hemolítica Congênita não Esferocítica/genética , Glucose , Glucose-6-Fosfato Isomerase/genética , Fosfatos
3.
Blood Adv ; 8(10): 2433-2441, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38330179

RESUMO

ABSTRACT: Pyruvate kinase (PK) deficiency is a rare, hereditary disease characterized by chronic hemolytic anemia. Iron overload is a common complication regardless of age, genotype, or transfusion history. Mitapivat, an oral, allosteric PK activator, improves anemia and hemolysis in adult patients with PK deficiency. Mitapivat's impact on iron overload and ineffective erythropoiesis was evaluated in adults with PK deficiency who were not regularly transfused in the phase 3 ACTIVATE trial and long-term extension (LTE) (#NCT03548220/#NCT03853798). Patients in the LTE received mitapivat throughout ACTIVATE/LTE (baseline to week 96; mitapivat-to-mitapivat [M/M] arm) or switched from placebo (baseline to week 24) to mitapivat (week 24 to week 96; placebo-to-mitapivat [P/M] arm). Changes from baseline in markers of iron overload and erythropoiesis were assessed to week 96. Improvements in hepcidin (mean, 4770.0 ng/L; 95% confidence interval [CI], -1532.3 to 11 072.3), erythroferrone (mean, -9834.9 ng/L; 95% CI, -14 328.4 to -5341.3), soluble transferrin receptor (mean, -56.0 nmol/L; 95% CI, -84.8 to -27.2), and erythropoietin (mean, -32.85 IU/L; 95% CI, -54.65 to -11.06) were observed in the M/M arm (n = 40) from baseline to week 24, sustained to week 96. No improvements were observed in the P/M arm (n = 40) to week 24; however, upon transitioning to mitapivat, improvements similar to those observed in the M/M arm were seen. Mean changes from baseline in liver iron concentration by magnetic resonance imaging at week 96 in the M/M arm and the P/M arm were -2.0 mg Fe/g dry weight (dw; 95% CI, -4.8 to -0.8) and -1.8 mg Fe/g dw (95% CI, -4.4 to 0.80), respectively. Mitapivat is the first disease-modifying pharmacotherapy shown to have beneficial effects on iron overload and ineffective erythropoiesis in patients with PK deficiency. This trial was registered at www.ClinicalTrials.gov as #NCT03548220 (ACTIVATE) and #NCT03853798 (LTE).


Assuntos
Anemia Hemolítica Congênita não Esferocítica , Eritropoese , Sobrecarga de Ferro , Piruvato Quinase , Erros Inatos do Metabolismo dos Piruvatos , Humanos , Sobrecarga de Ferro/etiologia , Sobrecarga de Ferro/tratamento farmacológico , Eritropoese/efeitos dos fármacos , Adulto , Piruvato Quinase/deficiência , Masculino , Feminino , Pessoa de Meia-Idade , Adulto Jovem , Alanina/uso terapêutico , Alanina/análogos & derivados , Piperazinas , Quinolinas
4.
Blood ; 143(10): 866-871, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38118071

RESUMO

ABSTRACT: Pyruvate kinase (PK) is a key enzyme in glycolysis, the sole source of adenosine triphosphate, which is essential for all energy-dependent activities of red blood cells. Activating PK shows great potential for treating a broad range of hemolytic anemias beyond PK deficiency, because they also enhance activity of wild-type PK. Motivated by observations of sickle-cell complications in sickle-trait individuals with concomitant PK deficiency, activating endogenous PK offers a novel and promising approach for treating patients with sickle-cell disease.


Assuntos
Anemia Hemolítica Congênita não Esferocítica , Anemia Falciforme , Piruvato Quinase/deficiência , Erros Inatos do Metabolismo dos Piruvatos , Humanos , Anemia Hemolítica Congênita não Esferocítica/tratamento farmacológico , Anemia Hemolítica Congênita não Esferocítica/etiologia , Eritrócitos , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/complicações
5.
Blood Cells Mol Dis ; 104: 102801, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37951089

RESUMO

Several syndromes affecting the red cell that mimic those induced by germline mutations may result from a somatic mutation that accompanies a myeloid malignancy. These syndromes are most notable in cases of myelodysplastic syndrome, but they are not limited to any one category of myeloid neoplasm. Their occurrence in males exceed the male predominance that is evident in myeloid neoplasms. The syndromes include disorders of globin chain synthesis (α- and ß-thalassemia), heme synthesis (erythropoietic porphyria and erythropoietic uroporphyria), red cell membrane structure (elliptocytosis and spherocytosis), red cell enzyme activity (pyruvate kinase deficiency, glucose-6-phosphate dehydrogenase deficiency) and lowered expression of red cell ABO blood group antigens. This historical review describes the path to uncovering these acquired syndromes and their causal somatic mutations, where known. These syndromes often go unrecognized because of the dominant concern of the primary neoplasm. They may add to the healthcare needs of the patient.


Assuntos
Anemia Hemolítica Congênita não Esferocítica , Síndromes Mielodisplásicas , Neoplasias , Humanos , Masculino , Feminino , Hematopoiese Clonal , Eritrócitos/patologia , Síndromes Mielodisplásicas/patologia , Mutação , Hematopoese
6.
Am J Ther ; 30(5): e433-e438, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37713687

RESUMO

BACKGROUND: Pyruvate kinase (PK) deficiency is a rare enzyme-linked glycolytic defect resulting in mild-to-severe chronic persistent erythrocyte hemolysis. The disease is an autosomal recessive trait caused by mutations in the PK liver and red blood cell gene characterized by insufficient erythrocyte PK activity. PK deficiency is most diagnosed in persons of northern European descent and managed with packed red blood cell transfusions, chelation, and splenectomy with cholecystectomy. Mitapivat is the first approved therapy indicated for hemolytic anemia in adults with PK deficiency with the potential for delaying splenectomy in mild-moderate disease. MECHANISM OF ACTION, PHARMACODYNAMICS, AND PHARMACOKINETICS: Mitapivat is a PK activator that acts by allosterically binding to the PK tetramer and increases PK activity. The red blood cell form of PK is mutated in PK deficiency, which leads to reduced adenosine triphosphate, shortened red blood cell lifespan, and chronic hemolysis. The half-life of elimination is 3-5 hours, with 73% bioavailability, 98% plasma protein binding, and a median duration of response of 7 months. CLINICAL TRIALS: Mitapivat has been investigated through various clinical trials for different therapeutic indications. Pivotal trials that serve the primary focus throughout this article are ACTIVATE, ACTIVATE-T, and RISE. ACTIVATE is a phase 3, randomized, double-blind, placebo-controlled study that evaluated the efficacy and safety of mitapivat in adult patients who were not receiving regular blood transfusions. Contrarily, ACTIVATE-T explored the safety and efficacy of mitapivat in adults with PK deficiency who received regular blood transfusions. Both trials demonstrated favorable use of mitapivat in PK deficiency. Focusing on another indication, the ongoing RISE trial investigates the optimal dosage of mitapivat in sickle cell disease. THERAPEUTIC ADVANCE: Mitapivat is an appropriate treatment for adults with PK deficiency requiring transfusions and may be considered for patients with symptomatic anemia who do not require transfusions and/or PK deficiency with compensated hemolysis without overt anemia.


Assuntos
Anemia Hemolítica Congênita não Esferocítica , Anemia Hemolítica , Anemia Falciforme , Quinolonas , Humanos , Adulto , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Hemólise , Anemia Hemolítica Congênita não Esferocítica/tratamento farmacológico , Anemia Hemolítica Congênita não Esferocítica/diagnóstico , Anemia Hemolítica/tratamento farmacológico , Anemia Hemolítica/etiologia , Anemia Falciforme/complicações
8.
BMC Med Genomics ; 16(1): 162, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430284

RESUMO

BACKGROUND AND AIMS: Glucose phosphate isomerase (GPI) deficiency is an extremely rare autosomal recessive disorder caused by mutations in the GPI gene. In this research, the proband displaying typical manifestations of haemolytic anaemia and his family members were recruited to analyse the pathogenicity of the detected variants. METHODS: Peripheral blood samples were collected from the family members and genomic DNA was extracted and targeted for capture and sequencing. The effect of the candidate pathogenic variants on splicing was further investigated using the minigene splicing system. The computer simulation was also used for further analysis of the detected data. RESULTS: The proband carried the compound heterozygous variants c.633 + 3 A > G and c.295G > T in the GPI gene, which have never been reported before. In the genealogy, co-segregation of the mutant genotype with the phenotype was established. The minigene study showed that intronic mutations resulted in abnormal pre-mRNA splicing. Specifically, the two aberrant transcripts: r.546_633del and r.633 + 1_633 + 2insGT were transcribed by the minigene plasmid expressing the c.633 + 3 A > G variant. The missense mutation c.295G > T in exon 3 resulted in altering glycine at codon 87 to cysteine which was predicted to be pathogenic in an in silico analysis. Deeper analyses revealed that the Gly87Cys missense mutation led to steric hindrance. Compared to the wild-type, the mutation G87C led to a significant increase in intermolecular forces. CONCLUSION: Overall, the novel compound heterozygous variants in the GPI gene contributed to the etiology of the disease. Genetic testing can assist in the diagnosis. The novel gene variants identified in the present study has further expanded the mutational spectrum of GPI deficiency, which can better guide family counselling.


Assuntos
Anemia Hemolítica Congênita não Esferocítica , Doenças Metabólicas , Humanos , Simulação por Computador , População do Leste Asiático , Virulência , Glucose-6-Fosfato Isomerase/genética , Anemia Hemolítica Congênita não Esferocítica/genética
9.
Blood Rev ; 61: 101103, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37353463

RESUMO

Novel developments in therapies for various hereditary hemolytic anemias reflect the pivotal role of pyruvate kinase (PK), a key enzyme of glycolysis, in red blood cell (RBC) health. Without PK catalyzing one of the final steps of the Embden-Meyerhof pathway, there is no net yield of adenosine triphosphate (ATP) during glycolysis, the sole source of energy production required for proper RBC function and survival. In hereditary hemolytic anemias, RBC health is compromised and therefore lifespan is shortened. Although our knowledge on glycolysis in general and PK function in particular is solid, recent advances in genetic, molecular, biochemical, and metabolic aspects of hereditary anemias have improved our understanding of these diseases. These advances provide a rationale for targeting PK as therapeutic option in hereditary hemolytic anemias other than PK deficiency. This review summarizes the knowledge, rationale, (pre)clinical trials, and future advances of PK activators for this important group of rare diseases.


Assuntos
Anemia Hemolítica Congênita não Esferocítica , Anemia Hemolítica Congênita , Anemia Hemolítica , Humanos , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Anemia Hemolítica/metabolismo , Anemia Hemolítica Congênita não Esferocítica/etiologia , Anemia Hemolítica Congênita não Esferocítica/terapia , Eritrócitos/metabolismo , Anemia Hemolítica Congênita/terapia , Anemia Hemolítica Congênita/metabolismo
10.
Sci Rep ; 13(1): 4395, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36927785

RESUMO

Iron homeostasis and dyserythropoiesis are poorly investigated in pyruvate kinase deficiency (PKD), the most common glycolytic defect of erythrocytes. Herein, we studied the main regulators of iron balance and erythropoiesis, as soluble transferrin receptor (sTfR), hepcidin, erythroferrone (ERFE), and erythropoietin (EPO), in a cohort of 41 PKD patients, compared with 42 affected by congenital dyserythropoietic anemia type II (CDAII) and 50 with hereditary spherocytosis (HS). PKD patients showed intermediate values of hepcidin and ERFE between CDAII and HS, and clear negative correlations between log-transformed hepcidin and log-EPO (Person's r correlation coefficient = - 0.34), log-hepcidin and log-ERFE (r = - 0.47), and log-hepcidin and sTfR (r = - 0.44). sTfR was significantly higher in PKD; EPO levels were similar in PKD and CDAII, both higher than in HS. Finally, genotype-phenotype correlation in PKD showed that more severe patients, carrying non-missense/non-missense genotypes, had lower hepcidin and increased ERFE, EPO, and sTFR compared with the others (missense/missense and missense/non-missense), suggesting a higher rate of ineffective erythropoiesis. We herein investigated the main regulators of systemic iron homeostasis in the largest cohort of PKD patients described so far, opening new perspectives on the molecular basis and therapeutic approaches of this disease.


Assuntos
Anemia Hemolítica Congênita não Esferocítica , Anemia , Eritropoetina , Humanos , Hepcidinas/metabolismo , Ferro/metabolismo , Anemia/tratamento farmacológico , Anemia Hemolítica Congênita não Esferocítica/tratamento farmacológico , Eritropoese/genética , Receptores da Transferrina
11.
Mol Med ; 29(1): 18, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721084

RESUMO

Triosephosphate isomerase (TPI) is best known as a glycolytic enzyme that interconverts the 3-carbon sugars dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P). TPI is an essential enzyme that is required for the catabolism of DHAP and a net yield of ATP from anaerobic glucose metabolism. Loss of TPI function results in the recessive disease TPI Deficiency (TPI Df). Recently, numerous lines of evidence suggest the TPI protein has other functions beyond glycolysis, a phenomenon known as moonlighting or gene sharing. Here we review the numerous functions ascribed to TPI, including recent findings of a nuclear role of TPI implicated in cancer pathogenesis and chemotherapy resistance.


Assuntos
Anemia Hemolítica Congênita não Esferocítica , Erros Inatos do Metabolismo dos Carboidratos , Humanos , Triose-Fosfato Isomerase/genética , Núcleo Celular , Glucose
12.
Transfusion ; 63(1): 257-262, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36349479

RESUMO

BACKGROUND: Pyruvate Kinase (PK) deficiency is the most common enzyme defect of glycolysis, leading to congenital hemolytic anemia, which can occur during the neonatal period. STUDY DESIGN AND METHODS: We report the prenatal management of fetal anemia related to PK deficiency in a family with a severe proband. RESULTS: The couple had a first child born with hydrops, whose PK deficiency was diagnosed at 18 months of life. He was treated with allogeneic bone marrow transplantation. The second child was free from disease. For the third pregnancy, the amniocentesis revealed a PK deficiency. Weekly ultrasound monitoring of the middle cerebral artery velocity allowed the detection of severe fetal anemia. Two intrauterine red blood cell transfusions (IUTs) were performed, raising the fetal hemoglobin from 6.6 to 14.5 g/dl at 28 weeks' gestation and from 8.9 to 15.3 g/dl at 31 weeks. A hematopoietic stem cell allograft was discussed prenatally but not chosen, as it would not have significantly changed the perinatal prognosis. The patient delivered a 2730 g girl at 37 weeks, with hemoglobin of 13.6 g/dl. The child presented with neonatal jaundice treated with phototherapy and received postnatal transfusions. DISCUSSION: When a proband is identified in a family, fetal investigation is warranted, to set up third-trimester ultrasound surveillance and perinatal management. In case of fetal severe anemia of unknown etiology, the workup on fetal blood sampling before IUT should comprise the search for erythrocytes enzymopathies, such as PK deficiency. IUTs allow safer full-term delivery in cases with PK deficiency.


Assuntos
Anemia Hemolítica Congênita não Esferocítica , Anemia , Doenças Fetais , Gravidez , Recém-Nascido , Masculino , Criança , Feminino , Humanos , Piruvato Quinase , Transfusão de Sangue Intrauterina/efeitos adversos , Anemia/etiologia , Anemia/terapia , Anemia Hemolítica Congênita não Esferocítica/complicações , Anemia Hemolítica Congênita não Esferocítica/terapia , Anemia Hemolítica Congênita não Esferocítica/diagnóstico , Doenças Fetais/diagnóstico por imagem , Doenças Fetais/terapia
13.
Lancet Haematol ; 9(10): e724-e732, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35988546

RESUMO

BACKGROUND: Mitapivat, an oral activator of pyruvate kinase (PK) in red blood cells (RBCs), has shown significant improvements in haemoglobin and haemolysis among patients with pyruvate kinase deficiency who were not receiving regular transfusions. We aimed to evaluate the efficacy and safety of mitapivat in adults with pyruvate kinase deficiency receiving regular transfusions. METHODS: ACTIVATE-T was an open-label, single-arm, phase 3 trial conducted in 20 centres across Europe, North America, and Asia. Eligible participants were adults (aged ≥18 years) with a clinical laboratory confirmation of pyruvate kinase deficiency receiving regular transfusions (at least six episodes in the previous year). Participants received oral mitapivat during a 16-week dose-optimisation period (5 mg, 20 mg, 50 mg twice daily) and 24-week fixed-dose period. The primary endpoint was a reduction in transfusion burden (≥33% reduction in number of RBC units transfused during the fixed-dose period, compared with the participant's individual historical transfusion burden, standardised to 24 weeks). Efficacy and safety were assessed in all participants who received at least one dose of mitapivat. This trial is registered with ClinicalTrials.gov, NCT03559699, and is complete. FINDINGS: Between June 26, 2018, and Feb 4, 2020, 27 participants (20 [74%] female and seven [26%] male; 20 [74%] White, three [11%] Asian, and four [15%] not reported) were enrolled and received at least one dose of mitapivat. Median duration of exposure to mitapivat was 40·3 weeks (IQR 40·0-41·3). A reduction in transfusion burden by at least 33% was found in ten (37%) participants (95% CI 19-58; p=0·0002). The most common treatment-emergent adverse events were increase in alanine aminotransferase (ten [37%] participants), headache (ten [37%]), increase in aspartate aminotransferase (five [19%]), fatigue (five [19%]), and nausea (five [19%]). Two grade 3 treatment-emergent adverse events were related to study treatment: joint swelling (one participant [4%]) and an increase in aspartate aminotransferase (one participant [4%]). Three participants had serious treatment-emergent adverse events, none related to the study treatment: increased blood triglycerides, ovarian cyst, and renal colic (each in one participant [4%]). No treatment-related deaths were observed. INTERPRETATION: Mitapivat represents a novel therapy that can reduce transfusion burden in some adults with pyruvate kinase deficiency receiving regular transfusions, and is the first disease-modifying agent approved in this disease. FUNDING: Agios Pharmaceuticals.


Assuntos
Hemoglobinas , Piruvato Quinase , Adolescente , Adulto , Alanina Transaminase , Anemia Hemolítica Congênita não Esferocítica , Aspartato Aminotransferases , Feminino , Humanos , Masculino , Preparações Farmacêuticas , Piperazinas , Piruvato Quinase/deficiência , Erros Inatos do Metabolismo dos Piruvatos , Quinolinas , Resultado do Tratamento , Triglicerídeos
14.
BMC Pediatr ; 22(1): 461, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915427

RESUMO

BACKGROUND: Glucose phosphate isomerase (GPI) deficiency is a rare autosomal recessive disorder that causes hereditary nonspherocytic hemolytic anemia (HNSHA). Homozygous or compound heterozygous mutation of the GPI gene on chromosome 19q13 is the cause of GPI deficiency. Fifty-seven GPI mutations have been reported at the molecular level. CASE PRESENTATION: A 5-month-old boy was presented with repeated episodes of jaundice after birth. He suffered from moderate hemolytic anemia (hemoglobin levels ranging from 62 to 91 g/L) associated with macrocytosis, reticulocytosis, neutropenia, and hyperbilirubinemia. Whole-exome sequencing showed that he has a missense mutation c.301G > A (p.Val101Met) in exon 4 and a frameshift mutation c.812delG (p.Gly271Glufs*131) in exon 10. Mutation p.Gly271Glufs*131 is a novel frameshift null mutation in GPI deficiency. CONCLUSION: In a patient with recurrent jaundice since birth, mutations in the GPI gene associated with HNSHA should be evaluated. The c.812delG (p.Gly271Glufs*131) variant may be a novel mutation of the GPI gene. Compound heterozygous mutations c.301G > A (p.Val101Met) and c.812delG (p.Gly271Glufs*131) are not relevant to neurological impairment.


Assuntos
Anemia Hemolítica Congênita não Esferocítica , Anemia Hemolítica , Erros Inatos do Metabolismo , Anemia Hemolítica/genética , Anemia Hemolítica Congênita não Esferocítica/complicações , Anemia Hemolítica Congênita não Esferocítica/diagnóstico , Anemia Hemolítica Congênita não Esferocítica/genética , China , Glucose-6-Fosfato Isomerase/genética , Homozigoto , Humanos , Lactente , Masculino
16.
Pediatr Blood Cancer ; 69(9): e29837, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35695473

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked genetic disease caused by a pathogenic G6PD mutation. An 8-year-old Chinese male child was investigated because of chronic nonspherocytic hemolytic anemia (CNSHA) associated with hepatosplenomegaly. Genetic analysis unraveled co-inheritance of a hemizygous mutation c.1225C>T (p.Pro409Ser) in G6PD (G6PD Utrecht, previously reported only in The Netherlands) and heterozygote HBB mutation c.316-197C>T (IVS-Ⅱ-654 C>T). Because IVS-Ⅱ-654 C>T on its own does not cause CNSHA, we believe that the clinical manifestations in this patient are essentially due to the G6PD c.1225C>T mutation. The boy gained transfusion independence after splenectomy.


Assuntos
Anemia Hemolítica Congênita não Esferocítica , Deficiência de Glucosefosfato Desidrogenase , Talassemia beta , Anemia Hemolítica Congênita não Esferocítica/complicações , Anemia Hemolítica Congênita não Esferocítica/genética , Criança , Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/complicações , Deficiência de Glucosefosfato Desidrogenase/genética , Humanos , Masculino , Esplenectomia , Talassemia beta/complicações , Talassemia beta/genética , Talassemia beta/cirurgia
17.
Pediatr Blood Cancer ; 69(8): e29696, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35452178

RESUMO

Pyruvate kinase (PK) deficiency is a rare, congenital red blood cell disorder caused by a single gene defect. The spectrum of genotypes, variants, and phenotypes are broad, commonly requiring a multimodal approach including enzyme and genetic testing for accurate and reliable diagnosis. Similarly, management of primary and secondary sequelae of PK deficiency varies, mainly including supportive care with transfusions and surgical interventions to improve symptoms and quality of life. Given the risk of acute and long-term complications of PK deficiency and its treatment, regular monitoring and management of iron burden and organ dysfunction is critical. Therefore, all children and adolescents with PK deficiency should receive regular hematology care with visits at least every 6 months regardless of transfusion status. We continue to learn more about the spectrum of symptoms and complications of PK deficiency and best practice for monitoring and management through registry efforts (NCT03481738). The treatment of PK deficiency has made strides over the last few years with newer disease-modifying therapies being developed and studied, with the potential to change the course of disease in childhood and beyond.


Assuntos
Anemia Hemolítica Congênita não Esferocítica , Erros Inatos do Metabolismo dos Piruvatos , Adolescente , Anemia Hemolítica Congênita não Esferocítica/diagnóstico , Anemia Hemolítica Congênita não Esferocítica/genética , Anemia Hemolítica Congênita não Esferocítica/terapia , Eritrócitos , Humanos , Piruvato Quinase/deficiência , Piruvato Quinase/genética , Erros Inatos do Metabolismo dos Piruvatos/diagnóstico , Erros Inatos do Metabolismo dos Piruvatos/genética , Erros Inatos do Metabolismo dos Piruvatos/terapia , Qualidade de Vida
18.
Blood Adv ; 6(6): 1844-1853, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-34470054

RESUMO

Pyruvate kinase deficiency (PKD) is the most common cause of congenital nonspherocytic hemolytic anemia. Although recognition of the disease spectrum has recently expanded, data describing its impact on health-related quality of life (HRQoL) are limited. In this prospective international cohort of 254 patients (131 adults and 123 children) with PKD, we used validated measures to assess the impact of disease on HRQoL (EuroQol 5-Dimension Questionnaire, Pediatric Quality of Life Inventory Generic Core Scale version 4.0, and Functional Assessment of Cancer Therapy-Anemia) and fatigue (Patient Reported Outcomes Measurement Information System Fatigue and Pediatric Functional Assessment of Chronic Illness Therapy-Fatigue). Significant variability in HRQoL and fatigue was reported for adults and children, although individual scores were stable over a 2-year interval. Although adults who were regularly transfused reported worse HRQoL and fatigue compared with those who were not (EuroQol-visual analog scale, 58 vs 80; P = .01), this difference was not seen in children. Regularly transfused adults reported lower physical, emotional, and functional well-being and more anemia symptoms. HRQoL and fatigue significantly differed in children by genotype, with the worst scores in those with 2 severe PKLR mutations; this difference was not seen in adults. However, iron chelation was associated with significantly worse HRQoL scores in children and adults. Pulmonary hypertension was also associated with significantly worse HRQoL. Additionally, 59% of adults and 35% of children reported that their jaundice upset them, identifying this as an important symptom for consideration. Although current treatments for PKD are limited to supportive care, new therapies are in clinical trials. Understanding the impact of PKD on HRQoL is important to assess the utility of these treatments. This trial was registered at www.clinicaltrials.gov as #NCT02053480.


Assuntos
Anemia Hemolítica Congênita não Esferocítica , Adulto , Anemia Hemolítica Congênita não Esferocítica/complicações , Anemia Hemolítica Congênita não Esferocítica/diagnóstico , Anemia Hemolítica Congênita não Esferocítica/terapia , Criança , Fadiga/etiologia , Humanos , Estudos Prospectivos , Piruvato Quinase/deficiência , Erros Inatos do Metabolismo dos Piruvatos , Qualidade de Vida
19.
Int J Hematol ; 115(2): 255-262, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34704234

RESUMO

Glucose phosphate isomerase (GPI) deficiency is an autosomal recessive condition with mutations in the GPI gene on chromosome 19q13.1. Patients present with congenital non-spherocytic hemolytic anemia, and occasionally intellectual disability. In this study, we describe the clinical, hematological and biochemical parameters in the largest single-center cohort consisting of 17 GPI-deficient cases. Demographic and clinical data were noted, and red cell enzyme activity levels were estimated. Mutation analysis was done by single-stranded-conformation polymorphism, restriction-fragment length polymorphism and Sanger's sequencing of exon 12 of the GPI gene. The male-to-female ratio was 0.7:1, median age at diagnosis was 5.0 years, 82.3% of patients had severe neonatal jaundice, and 13.3% had subtle neurological manifestations. Median Hb and MCV levels were 6.3 g/dl and 130.2 fl. Splenectomized patients required fewer transfusions. Sixteen of 17 patients had the pathogenic c.1040G > A (p.Arg347His) homozygous mutation in exon12 of the GPI gene, and one had the pathogenic c.1414C > T(p.Arg472Cys) homozygous mutation in exon 16. In summary, we report that neonatal jaundice, macrocytosis and high prevalence of p.Arg347His variant were predominant in GPI deficiency with prominent lack of neurological manifestations, and we emphasize the benefits of splenectomy and the need for genetic counseling.


Assuntos
Anemia Hemolítica Congênita não Esferocítica/genética , Glucose-6-Fosfato Isomerase/genética , Mutação Puntual , Anemia Hemolítica Congênita não Esferocítica/terapia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Mutação , Polimorfismo de Fragmento de Restrição , Estudos Retrospectivos
20.
Pediatr Hematol Oncol ; 39(2): 166-173, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34281465

RESUMO

The gold standard for the diagnosis of pyruvate kinase (PK) deficiency, the most frequent red blood cell enzymopathy, is an enzymatic activity assay. However, this assay is rather unreliable in a clinical setting, often leading to misdiagnosis or missed diagnosis. This report presented the cases of two patients diagnosed with PK deficiency using molecular genetic testing, even though conventional laboratory tests, including the PK activity assay, failed to detect any abnormalities. Genetic analysis of the patients and their asymptomatic parents revealed the presence of variants in both alleles of the PKLR gene that were assessed as "likely pathogenic" or "pathogenic" in the form of compound heterozygotes. One of the mutations detected was common in both patients. Our results suggested that genetic testing might be required for the reliable diagnosis of suspected congenital hemolytic anemia cases displaying atypical presentation.


Assuntos
Anemia Hemolítica Congênita não Esferocítica , Erros Inatos do Metabolismo dos Piruvatos , Anemia Hemolítica Congênita não Esferocítica/diagnóstico , Anemia Hemolítica Congênita não Esferocítica/genética , Eritrócitos , Testes Genéticos , Humanos , Biologia Molecular , Mutação , Piruvato Quinase/deficiência , Piruvato Quinase/genética , Erros Inatos do Metabolismo dos Piruvatos/diagnóstico , Erros Inatos do Metabolismo dos Piruvatos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA