Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Curr Med Sci ; 44(2): 426-434, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561594

RESUMO

OBJECTIVE: Glucose-6-phosphate isomerase (GPI) deficiency is a rare hereditary nonspherocytic hemolytic anemia caused by GPI gene variants. This disorder exhibits wide heterogeneity in its clinical manifestations and molecular characteristics, often posing challenges for precise diagnoses using conventional methods. To this end, this study aimed to identify the novel variants responsible for GPI deficiency in a Chinese family. METHODS: The clinical manifestations of the patient were summarized and analyzed for GPI deficiency phenotype diagnosis. Novel compound heterozygous variants of the GPI gene, c.174C>A (p.Asn58Lys) and c.1538G>T (p.Trp513Leu), were identified using whole-exome and Sanger sequencing. The AlphaFold program and Chimera software were used to analyze the effects of compound heterozygous variants on GPI structure. RESULTS: By characterizing 53 GPI missense/nonsense variants from previous literature and two novel missense variants identified in this study, we found that most variants were located in exons 3, 4, 12, and 18, with a few localized in exons 8, 9, and 14. This study identified novel compound heterozygous variants associated with GPI deficiency. These pathogenic variants disrupt hydrogen bonds formed by highly conserved GPI amino acids. CONCLUSION: Early family-based sequencing analyses, especially for patients with congenital anemia, can help increase diagnostic accuracy for GPI deficiency, improve child healthcare, and enable genetic counseling.


Assuntos
Anemia Hemolítica Congênita não Esferocítica , Anemia Hemolítica , Criança , Humanos , Glucose-6-Fosfato Isomerase/genética , Glucose-6-Fosfato Isomerase/química , Anemia Hemolítica/genética , Anemia Hemolítica Congênita não Esferocítica/diagnóstico , Anemia Hemolítica Congênita não Esferocítica/genética , Mutação de Sentido Incorreto , Éxons
2.
J Med Case Rep ; 18(1): 130, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38539245

RESUMO

BACKGROUND: Glucose-6-phosphate isomerase deficiency is a rare genetic disorder causing hereditary nonspherocytic hemolytic anemia. It is the second most common glycolytic enzymopathy in red blood cells. About 90 cases are reported worldwide, with symptoms including chronic hemolytic anemia, jaundice, splenomegaly, gallstones, cholecystitis, and in severe cases, neurological impairments, hydrops fetalis, and neonatal death. CASE PRESENTATION: This paper details the case of the first Danish patient diagnosed with glucose-6-phosphate isomerase deficiency. The patient, a 27-year-old white female, suffered from lifelong anemia of unknown origin for decades. Diagnosis was established through whole-genome sequencing, which identified two GPI missense variants: the previously documented variant p.(Thr224Met) and a newly discovered variant p.(Tyr341Cys). The pathogenicity of these variants was verified enzymatically. CONCLUSIONS: Whole-genome sequencing stands as a potent tool for identifying hereditary anemias, ensuring optimal management strategies.


Assuntos
Anemia Hemolítica Congênita não Esferocítica , Anemia Hemolítica , Adulto , Feminino , Humanos , Anemia Hemolítica Congênita não Esferocítica/diagnóstico , Anemia Hemolítica Congênita não Esferocítica/genética , Glucose , Glucose-6-Fosfato Isomerase/genética , Fosfatos
3.
Genet. mol. res. (Online) ; 6(2): 470-475, 2007. graf, ilus
Artigo em Inglês | LILACS | ID: lil-482022

RESUMO

Pyruvate kinase (PK) deficiency is a rare red cell glycolytic enzymopathy. The purpose of the present investigation was to offer prenatal diagnosis for PK deficiency to a couple who had a previous child with severe enzyme deficiency and congenital non-spherocytic hemolytic anemia. PK deficiency was identified in the family by assaying the enzyme activity in red cells. Chorionic villus sampling was performed in an 11-week gestation and the mutation was located in exon 10 of the PKLR gene characterized by polymerase chain reaction and using restriction endonuclease digestion with the MspI enzyme, which was confirmed by DNA sequencing on the ABI 310 DNA sequencer. Both the parents were heterozygous for the 1436G-->A [479 Arg-->His] mutation in exon 10 and the proband was homozygous for this mutation. The fetus was also heterozygous for this mutation and the pregnancy was continued. Prenatal diagnosis allowed the parents with a severely affected child with PK deficiency to have the reproductive choice of having the fetus tested in a subsequent pregnancy.


Assuntos
Humanos , Masculino , Feminino , Gravidez , Anemia Hemolítica Congênita não Esferocítica/diagnóstico , Diagnóstico Pré-Natal/métodos , Mutação , Piruvato Quinase/deficiência , Piruvato Quinase/genética , Anemia Hemolítica Congênita não Esferocítica/genética , Anemia Hemolítica/genética , Análise Mutacional de DNA , Enzimas de Restrição do DNA/metabolismo , Homozigoto , Primeiro Trimestre da Gravidez , Éxons , Índia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA