RESUMO
Diamond Blackfan Anemia (DBA) is a rare macrocytic red blood cell aplasia that usually presents within the first year of life. The vast majority of patients carry a mutation in one of approximately 20 genes that results in ribosomal insufficiency with the most significant clinical manifestations being anemia and a predisposition to cancers. Nemo-like Kinase (NLK) is hyperactivated in the erythroid progenitors of DBA patients and inhibition of this kinase improves erythropoiesis, but how NLK contributes to the pathogenesis of the disease is unknown. Here we report that activated NLK suppresses the critical upregulation of mitochondrial biogenesis required in early erythropoiesis. During normal erythropoiesis, mTORC1 facilitates the translational upregulation of Transcription factor A, mitochondrial (TFAM), and Prohibin 2 (PHB2) to increase mitochondrial biogenesis. In our models of DBA, active NLK phosphorylates the regulatory component of mTORC1, thereby suppressing mTORC1 activity and preventing mTORC1-mediated TFAM and PHB2 upregulation and subsequent mitochondrial biogenesis. Improvement of erythropoiesis that accompanies NLK inhibition is negated when TFAM and PHB2 upregulation is prevented. These data demonstrate that a significant contribution of NLK on the pathogenesis of DBA is through loss of mitochondrial biogenesis.
Assuntos
Anemia de Diamond-Blackfan , Eritropoese , Alvo Mecanístico do Complexo 1 de Rapamicina , Mitocôndrias , Biogênese de Organelas , Proibitinas , Proteínas Serina-Treonina Quinases , Anemia de Diamond-Blackfan/metabolismo , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/patologia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Animais , Camundongos , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosforilação , Proteínas MitocondriaisRESUMO
Diamond-Blackfan Anemia (DBA) is an inherited bone marrow failure syndrome that is associated with anemia, congenital anomalies, and cancer predisposition. It is categorized as a ribosomopathy, because more than 80% or patients have haploinsufficiency of either a small or large subunit-associated ribosomal protein (RP). The erythroid pathology is due predominantly to a block and delay in early committed erythropoiesis with reduced megakaryocyte/erythroid progenitors (MEPs). To understand the molecular pathways leading to pathogenesis of DBA, we performed RNA sequencing on mRNA and miRNA from RPS19-deficient human hematopoietic stem and progenitor cells (HSPCs) and compared existing database documenting transcript fluctuations across stages of early normal erythropoiesis. We determined the chromatin regulator, SATB1 was prematurely downregulated through the coordinated action of upregulated miR-34 and miR-30 during differentiation in ribosomal insufficiency. Restoration of SATB1 rescued MEP expansion, leading to a modest improvement in erythroid and megakaryocyte expansion in RPS19 insufficiency. However, SATB1 expression did not affect expansion of committed erythroid progenitors, indicating ribosomal insufficiency affects multiple stages during erythroid differentiation.
Assuntos
Anemia de Diamond-Blackfan , Eritropoese , Proteínas de Ligação à Região de Interação com a Matriz , MicroRNAs , Anemia de Diamond-Blackfan/patologia , Regulação para Baixo , Eritropoese/genética , Células-Tronco Hematopoéticas , Humanos , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Megacariócitos/citologia , MicroRNAs/genética , Proteínas RibossômicasRESUMO
Nemo-like kinase (NLK) is a member of the mitogen-activated protein kinase family of kinases and shares a highly conserved kinase domain with other mitogen-activated protein kinase family members. The activation of NLK contributes to the pathogenesis of Diamond-Blackfan anemia (DBA), reducing c-myb expression and mechanistic target of rapamycin activity, and is therefore a potential therapeutic target. Unlike other anemias, the hematopoietic effects of DBA are largely restricted to the erythroid lineage. Mutations in ribosomal genes induce ribosomal insufficiency and reduced protein translation, dramatically impacting early erythropoiesis in the bone marrow of patients with DBA. We sought to identify compounds that suppress NLK and increases erythropoiesis in ribosomal insufficiency. We report that the active component of ginseng, ginsenoside Rb1, suppresses NLK expression and improves erythropoiesis in in vitro models of DBA. Ginsenoside Rb1-mediated suppression of NLK occurs through the upregulation of miR-208, which binds to the 3'-UTR of NLK mRNA and targets it for degradation. We also compare ginsenoside Rb1-mediated upregulation of miR-208 with metformin-mediated upregulation of miR-26. We conclude that targeting NLK expression through miRNA binding of the unique 3'-UTR is a viable alternative to the challenges of developing small-molecule inhibitors to target the highly conserved kinase domain of this specific kinase.
Assuntos
Anemia de Diamond-Blackfan/patologia , Eritropoese/efeitos dos fármacos , Ginsenosídeos/farmacologia , Panax/química , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , Regiões 3' não Traduzidas , Animais , HumanosRESUMO
Diamond-Blackfan anemia (DBA) is a congenital erythroid hypoplasia caused by a functional haploinsufficiency of genes coding for ribosomal proteins. Among these genes, the ribosomal protein S19 (RPS19) gene is the most frequently mutated. Previously, a mouse model deficient in RPS19 was developed by our laboratory, which recapitulates the hematopoietic disease phenotype by manifesting pathologic features and clinical symptoms of DBA. Characterization of this model revealed that chronic RPS19 deficiency leads to exhaustion of hematopoietic stem cells and subsequent bone marrow (BM) failure. In this study, we evaluated a nonmyeloablative conditioning protocol for BM transplants in RPS19-deficient mice by transplanting wild-type BM cells to RPS19-deficient recipients given no conditioning or sublethal doses of irradiation before transplant. We describe full correction of the hematopoietic phenotype in mice given sublethal doses of irradiation, as well as in animals completely devoid of any preceding irradiation. In comparison, wild-type animals receiving the same preconditioning regimen and number of transplanted cells exhibited significantly lower engraftment levels. Thus, robust engraftment and repopulation of transplanted cells can be achieved in reduced-intensity conditioned RPS19-deficient recipients. As gene therapy studies with autologous gene-corrected hematopoietic stem cells are emerging, we propose the results described here can guide determination of the level of conditioning for such a protocol in RPS19-deficient DBA. On the basis of our findings, a relatively mild conditioning strategy would plausibly be sufficient to achieve sufficient levels of engraftment and clinical success.
Assuntos
Anemia de Diamond-Blackfan/metabolismo , Transplante de Medula Óssea , Aloenxertos , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/patologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Proteínas Ribossômicas/deficiência , Proteínas Ribossômicas/metabolismo , Condicionamento Pré-TransplanteRESUMO
Diamond Blackfan Anemia (DBA) is a congenital macrocytic anemia associated with ribosomal protein haploinsufficiency. Ribosomal dysfunction delays globin synthesis, resulting in excess toxic free heme in erythroid progenitors, early differentiation arrest, and pure red cell aplasia. In this study, DBA induced pluripotent stem cell (iPSC) lines were generated from blood mononuclear cells of DBA patients with inactivating mutations in RPS19 and subjected to hematopoietic differentiation to model disease phenotypes. In vitro differentiated hematopoietic cells were used to investigate whether eltrombopag, an FDA-approved mimetic of thrombopoietin with robust intracellular iron chelating properties, could rescue erythropoiesis in DBA by restricting the labile iron pool (LIP) derived from excessive free heme. DBA iPSCs exhibited RPS19 haploinsufficiency, reduction in the 40S/60S ribosomal subunit ratio and early erythroid differentiation arrest in the absence of eltrombopag, compared to control isogenic iPSCs established by CRISPR/Cas9-mediated correction of the RPS19 point mutation. Notably, differentiation of DBA iPSCs in the presence of eltrombopag markedly improved erythroid maturation. Consistent with a molecular mechanism based on intracellular iron chelation, we observed that deferasirox, a clinically licensed iron chelator able to permeate into cells, also enhanced erythropoiesis in our DBA iPSC model. In contrast, erythroid maturation did not improve substantially in DBA iPSC differentiation cultures supplemented with deferoxamine, a clinically available iron chelator that poorly accesses LIP within cellular compartments. These findings identify eltrombopag as a promising new therapeutic to improve anemia in DBA.
Assuntos
Anemia de Diamond-Blackfan/tratamento farmacológico , Anemia de Diamond-Blackfan/patologia , Benzoatos/uso terapêutico , Diferenciação Celular , Células Eritroides/patologia , Hidrazinas/uso terapêutico , Células-Tronco Pluripotentes Induzidas/patologia , Modelos Biológicos , Pirazóis/uso terapêutico , Anemia de Diamond-Blackfan/genética , Animais , Sequência de Bases , Benzoatos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Células Eritroides/efeitos dos fármacos , Eritropoese , Humanos , Hidrazinas/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Espaço Intracelular/metabolismo , Ferro/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação/genética , Pirazóis/farmacologiaRESUMO
Proteins belonging to the universal ribosomal protein (rp) uS19 family are constituents of small ribosomal subunits, and their conserved globular parts are involved in the formation of the head of these subunits. The eukaryotic rp uS19 (previously known as S15) comprises a C-terminal extension that has no homology in the bacterial counterparts. This extension is directly implicated in the formation of the ribosomal decoding site and thereby affects translational fidelity in a manner that has no analogy in bacterial ribosomes. Another eukaryote-specific feature of rp uS19 is its essential participance in the 40S subunit maturation due to the interactions with the subunit assembly factors required for the nuclear exit of pre-40S particles. Beyond properties related to the translation machinery, eukaryotic rp uS19 has an extra-ribosomal function concerned with its direct involvement in the regulation of the activity of an important tumor suppressor p53 in the Mdm2/Mdmx-p53 pathway. Mutations in the RPS15 gene encoding rp uS19 are linked to diseases (Diamond Blackfan anemia, chronic lymphocytic leukemia and Parkinson's disease) caused either by defects in the ribosome biogenesis or disturbances in the functioning of ribosomes containing mutant rp uS19, likely due to the changed translational fidelity. Here, we review currently available data on the involvement of rp uS19 in the operation of the translational machinery and in the maturation of 40S subunits, on its extra-ribosomal function, and on relationships between mutations in the RPS15 gene and certain human diseases.
Assuntos
Anemia de Diamond-Blackfan/patologia , Leucemia Linfocítica Crônica de Células B/patologia , Doença de Parkinson/patologia , Biossíntese de Proteínas , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Anemia de Diamond-Blackfan/etiologia , Animais , Humanos , Leucemia Linfocítica Crônica de Células B/etiologia , Doença de Parkinson/etiologia , Proteínas Ribossômicas/genética , Ribossomos/genéticaRESUMO
Cytopenias are common among neonates in neonatal intensive care units (NICU). Although, bone marrow aspirations (BMAs) are often performed as part of diagnostic workup, but trephine bone marrow biopsies (BMBs) have not been reported from living neonates. BMB is indispensable to accurately assess the cellularity and architecture. There is paucity of literature regarding the technique of BMB in neonates. In this report, for the first time, we describe trephine BMB from posterior superior iliac crest (PSIC) using 18-gauge BMA needle in six living neonates admitted to NICU where BMB findings helped in understanding the underlying mechanism and diagnosis of cytopenias.
Assuntos
Biópsia/métodos , Medula Óssea/patologia , Doenças Hematológicas/diagnóstico , Anemia/diagnóstico , Anemia/patologia , Anemia de Diamond-Blackfan/diagnóstico , Anemia de Diamond-Blackfan/patologia , Doenças Hematológicas/patologia , Humanos , Lactente , Pancitopenia/diagnóstico , Pancitopenia/patologia , Trombocitopenia/diagnóstico , Trombocitopenia/patologiaAssuntos
Anemia de Diamond-Blackfan/terapia , Anemia Falciforme/terapia , Cateterismo Venoso Central/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Síndrome de Horner/etiologia , Leucemia Mielomonocítica Juvenil/terapia , Adolescente , Anemia de Diamond-Blackfan/patologia , Anemia Falciforme/patologia , Síndrome de Horner/patologia , Humanos , Leucemia Mielomonocítica Juvenil/patologia , PrognósticoRESUMO
OBJECTIVE: In this study, clinico-hematological, genetic and outcome profile of children with BMF was evaluated to delineate the underlying genotype and phenotype. DESIGN: Cases were evaluated as two groups: Group 1 (n = 56; DBA-23, FA-18, DC-2, UBMFS-13) included children with suspected IBMFS based on clinical phenotype and accessible lab investigations and Group 2 (n = 53) included children with IAA treated with IST. Targeted NGS was carried out in a subset of these children (n = 42) and supplemented with WES wherever required. RESULTS: We identified causative mutation in overall 15 of 27 tested children (55.5%) in group 1 and 2 of 15 tested children (13.3%) in group 2. In DBA, a mutation was noted in 50% cases with involvement of RPS 19 (75%) and RPL5 (25%) genes. Phenotypic abnormalities were present in 69.5% and response to steroids in 68.4% of cases at a median follow up of 33 months. In children with IAA, overall response (complete + partial) was present in 51% at a median follow up of 23 months. The 3-year OS and FFS for the cohort of IAA were 68% and 48% respectively. Targeted sequencing could also pick up germline mutations in 50% of UBMFS cases and nearly 19% of IAA cases.
Assuntos
Transtornos da Insuficiência da Medula Óssea/genética , Anemia Aplástica/genética , Anemia Aplástica/patologia , Anemia Aplástica/terapia , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/patologia , Anemia de Diamond-Blackfan/terapia , Transtornos da Insuficiência da Medula Óssea/patologia , Transtornos da Insuficiência da Medula Óssea/terapia , Criança , Pré-Escolar , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunossupressores/uso terapêutico , Lactente , Recém-Nascido , Masculino , Mutação , Sequenciamento do ExomaRESUMO
Molecular pathophysiology of Diamond-Blackfan anemia (DBA) involves disrupted erythroid-lineage proliferation, differentiation and apoptosis; with the activation of p53 considered as a key component. Recently, oxidative stress was proposed to play an important role in DBA pathophysiology as well. CRISPR/Cas9-created Rpl5- and Rps19-deficient murine erythroleukemia (MEL) cells and DBA patients' samples were used to evaluate proinflammatory cytokines, oxidative stress, DNA damage and DNA damage response. We demonstrated that the antioxidant defense capacity of Rp-mutant cells is insufficient to meet the greater reactive oxygen species (ROS) production which leads to oxidative DNA damage, cellular senescence and activation of DNA damage response signaling in the developing erythroblasts and altered characteristics of mature erythrocytes. We also showed that the disturbed balance between ROS formation and antioxidant defense is accompanied by the upregulation of proinflammatory cytokines. Finally, the alterations detected in the membrane of DBA erythrocytes may cause their enhanced recognition and destruction by reticuloendothelial macrophages, especially during infections. We propose that the extent of oxidative stress and the ability to activate antioxidant defense systems may contribute to high heterogeneity of clinical symptoms and response to therapy observed in DBA patients.
Assuntos
Anemia de Diamond-Blackfan/patologia , Dano ao DNA , Eritrócitos/patologia , Mediadores da Inflamação/metabolismo , Inflamação/patologia , Estresse Oxidativo , Adulto , Anemia de Diamond-Blackfan/imunologia , Anemia de Diamond-Blackfan/metabolismo , Animais , Estudos de Casos e Controles , Criança , Eritrócitos/metabolismo , Feminino , Seguimentos , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Prognóstico , Adulto JovemRESUMO
Maintenance of the cellular homeostasis is firmly linked with protein synthesis. Therefore, it is tightly controlled at multiple levels. An advancement in quantitative techniques, mainly over the last decade, shed new light on the regulation of protein production, which pointed the ribosome as a new player. Ribosomes are macromolecular machines that synthesize polypeptide chains using mRNA as a template. The enormous complexity of ribosomes provides many possibilities of changes in their composition and consecutively in their target specificity. However, it is not clear how this specialization is enforced by the cell and which stimuli provoke that diversity. This review presents an overview of currently available knowledge about ribosome heterogeneity, focusing on changes in protein composition, and their role in the control of translation specificity. Importantly, besides the potential advantage of ribosome-mediated regulation of protein synthesis, its failure can play a crucial role in disease development.
Assuntos
Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , RNA Mensageiro/genética , Proteínas Ribossômicas/genética , Ribossomos/genética , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/metabolismo , Anemia de Diamond-Blackfan/patologia , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Heterogeneidade Genética , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Plantas/genética , Plantas/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/classificação , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Esquizofrenia/patologiaRESUMO
BACKGROUND: Diamond-Blackfan anemia (DBA) is an inherited bone marrow failure syndrome characterized by anemia, short stature, congenital anomalies, and cancer predisposition. Most cases are due to mutations in genes encoding ribosomal proteins (RP) leading to RP haploinsufficiency. Effective treatments for the anemia of DBA include chronic red cell transfusions, long-term corticosteroid therapy, or hematopoietic stem cell transplantation. In a small patient series and in animal models, there have been hematologic responses to L-leucine with amelioration of anemia. The study objectives of this clinical trial were to determine feasibility, safety, and efficacy of L-leucine in transfusion-dependent patients with DBA. PROCEDURE: Patients ≥2 years of age received L-leucine 700 mg/m2 orally three times daily for nine months to determine a hematologic response and any improvement in growth (NCT01362595). RESULTS: This multicenter, phase I/II study enrolled 55 subjects; 43 were evaluable. There were 21 males; the median age at enrollment was 10.4 years (range, 2.5-46.1 years). No significant adverse events were attributable to L-leucine. Two subjects had a complete erythroid response and five had a partial response. Nine of 25, and 11 of 25, subjects experienced a positive weight and height percentile change, respectively, at the end of therapy. CONCLUSIONS: L-leucine is safe, resulted in an erythroid response in 16% of subjects with DBA, and led to an increase in weight and linear growth velocity in 36% and 44% of evaluable subjects, respectively. Further studies will be critical to understand the role of L-leucine in the management of patients with DBA.
Assuntos
Anemia de Diamond-Blackfan/terapia , Transfusão de Sangue/métodos , Leucina/uso terapêutico , Adolescente , Adulto , Anemia de Diamond-Blackfan/patologia , Criança , Pré-Escolar , Terapia Combinada , Estudos de Viabilidade , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Prognóstico , Adulto JovemRESUMO
Diamond Blackfan Anemia (DBA) is a congenital bone marrow failure syndrome associated with ribosomal gene mutations that lead to ribosomal insufficiency. DBA is characterized by anemia, congenital anomalies, and cancer predisposition. Treatment for DBA is associated with significant morbidity. Here, we report the identification of Nemo-like kinase (NLK) as a potential target for DBA therapy. To identify new DBA targets, we screen for small molecules that increase erythroid expansion in mouse models of DBA. This screen identified a compound that inhibits NLK. Chemical and genetic inhibition of NLK increases erythroid expansion in mouse and human progenitors, including bone marrow cells from DBA patients. In DBA models and patient samples, aberrant NLK activation is initiated at the Megakaryocyte/Erythroid Progenitor (MEP) stage of differentiation and is not observed in non-erythroid hematopoietic lineages or healthy erythroblasts. We propose that NLK mediates aberrant erythropoiesis in DBA and is a potential target for therapy.
Assuntos
Anemia de Diamond-Blackfan/patologia , Células-Tronco Hematopoéticas/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Anemia de Diamond-Blackfan/dietoterapia , Anemia de Diamond-Blackfan/genética , Animais , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células , Células Cultivadas , Dioxóis/farmacologia , Dioxóis/uso terapêutico , Modelos Animais de Doenças , Eritropoese/efeitos dos fármacos , Eritropoese/genética , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Cultura Primária de Células , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Quinolinas/farmacologia , Quinolinas/uso terapêutico , RNA Interferente Pequeno/metabolismo , Proteínas Ribossômicas/genéticaRESUMO
Despite the effective clinical use of steroids for the treatment of Diamond Blackfan anemia (DBA), the mechanisms through which glucocorticoids regulate human erythropoiesis remain poorly understood. We report that the sensitivity of erythroid differentiation to dexamethasone is dependent on the developmental origin of human CD34+ progenitor cells, specifically increasing the expansion of CD34+ progenitors from peripheral blood (PB) but not cord blood (CB). Dexamethasone treatment of erythroid-differentiated PB, but not CB, CD34+ progenitors resulted in the expansion of a newly defined CD34+CD36+CD71hiCD105med immature colony-forming unit-erythroid (CFU-E) population. Furthermore, proteomics analyses revealed the induction of distinct proteins in dexamethasone-treated PB and CB erythroid progenitors. Dexamethasone treatment of PB progenitors resulted in the specific upregulation of p57Kip2, a Cip/Kip cyclin-dependent kinase inhibitor, and we identified this induction as critical; shRNA-mediated downregulation of p57Kip2, but not the related p27Kip1, significantly attenuated the impact of dexamethasone on erythroid differentiation and inhibited the expansion of the immature CFU-E subset. Notably, in the context of DBA, we found that steroid resistance was associated with dysregulated p57Kip2 expression. Altogether, these data identify a unique glucocorticoid-responsive human erythroid progenitor and provide new insights into glucocorticoid-based therapeutic strategies for the treatment of patients with DBA.
Assuntos
Anemia de Diamond-Blackfan/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/biossíntese , Dexametasona/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Células Precursoras Eritroides/metabolismo , Regulação para Cima/efeitos dos fármacos , Adulto , Anemia de Diamond-Blackfan/tratamento farmacológico , Anemia de Diamond-Blackfan/patologia , Antígenos CD/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/biossíntese , Células Precursoras Eritroides/patologia , Feminino , Humanos , MasculinoRESUMO
Variants in ribosomal protein (RP) genes drive Diamond-Blackfan anemia (DBA), a bone marrow failure syndrome that can also predispose individuals to cancer. Inherited and sporadic RP gene variants are also linked to a variety of phenotypes, including malignancy, in individuals with no anemia. Here we report an individual diagnosed with DBA carrying a variant in the 5'UTR of RPL9 (uL6). Additionally, we report two individuals from a family with multiple cancer incidences carrying a RPL9 missense variant. Analysis of cells from these individuals reveals that despite the variants both driving pre-rRNA processing defects and 80S monosome reduction, the downstream effects are remarkably different. Cells carrying the 5'UTR variant stabilize TP53 and impair the growth and differentiation of erythroid cells. In contrast, ribosomes incorporating the missense variant erroneously read through UAG and UGA stop codons of mRNAs. Metabolic profiles of cells carrying the 5'UTR variant reveal an increased metabolism of amino acids and a switch from glycolysis to gluconeogenesis while those of cells carrying the missense variant reveal a depletion of nucleotide pools. These findings indicate that variants in the same RP gene can drive similar ribosome biogenesis defects yet still have markedly different downstream consequences and clinical impacts.
Assuntos
Anemia de Diamond-Blackfan/genética , Processamento Pós-Transcricional do RNA/genética , Proteínas Ribossômicas/genética , Ribossomos/genética , Regiões 5' não Traduzidas/genética , Adolescente , Adulto , Anemia de Diamond-Blackfan/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Criança , Células Eritroides , Feminino , Humanos , Masculino , Mutação/genética , Precursores de RNA/genética , RNA Mensageiro/genética , Sequenciamento do ExomaRESUMO
Diamond-Blackfan anaemia (DBA) is a rare bone marrow failure syndrome characterised by anaemia, congenital anomalies and cancer predisposition. Although infections are the second leading cause of mortality in non-transplanted patients, immune function is largely unexplored. We identified quantitative deficits in serum immunoglobulins and/or circulating T, natural killer and B lymphocytes in 59 of 107 unselected patients (55·1%) attending our centre over a 7-year period. Immune abnormalities were independent of ribosomal protein genotype and arose in both steroid-treated and steroid-untreated patients. In summary, these data highlight the high prevalence and spectrum of infections and immune defects in DBA.
Assuntos
Anemia de Diamond-Blackfan , Genótipo , Imunidade Celular , Imunidade Humoral , Adolescente , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/imunologia , Anemia de Diamond-Blackfan/mortalidade , Anemia de Diamond-Blackfan/patologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/imunologia , Reino Unido/epidemiologiaRESUMO
Diamond-Blackfan anemia (DBA) is a bone marrow failure syndrome caused by mutations in ribosomal protein genes. Pathogenic mechanisms are poorly understood but involve severely reduced proliferation of erythroid precursors. Because current DBA therapies are ineffective and associated with severe side effects, disease-specific therapies are urgently needed. We hypothesized that druggable molecular pathways underlying the defect can be revealed through phenotypic small-molecule screens. Accordingly, a screening assay was developed using c-kit+ fetal liver erythroid progenitors from a doxycycline-inducible DBA mouse model. The addition of doxycycline to the culture medium induces the phenotype and reduces proliferation to <10% of normal, such that rescue of proliferation can be used as a simple readout for screening. Here, we describe the assay rationale and efforts toward validation of a microtiter plate-compatible assay and its application in a pilot screen of 3871 annotated compounds. Ten hits demonstrated concentration-dependent activity, and we report a brief follow-up of one of these compounds. In conclusion, we established a robust scalable assay for screening molecules that rescue erythropoiesis in DBA.
Assuntos
Anemia de Diamond-Blackfan/tratamento farmacológico , Fenótipo , Anemia de Diamond-Blackfan/patologia , Animais , Transplante de Medula Óssea , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Doxiciclina/farmacologia , Doxiciclina/uso terapêutico , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Diamond-Blackfan anaemia (DBA) is a rare inherited marrow failure disorder, characterized by hypoplastic anaemia, congenital anomalies and a predisposition to cancer as a result of ribosomal dysfunction. Historically, treatment is based on glucocorticoids and/or blood transfusions, which is accompanied by significant toxicity and long-term sequelae. Currently, stem cell transplantation is the only curative option for the haematological DBA phenotype. Whereas this procedure has been quite successful in the last decade in selected patients, novel therapies and biological insights are still warranted to improve clinical care for all DBA patients. In addition to paediatric haematologists, other physicians (e.g. endocrinologist, gynaecologist) should ideally be involved in the care of this chronic condition from an early age, to improve lifelong management of haematological and non-haematological symptoms, and screen for DBA-associated malignancies. Here we provide an overview of current knowledge and recommendations for the day-to-day care of DBA patients.
Assuntos
Anemia de Diamond-Blackfan/terapia , Transfusão de Sangue , Glucocorticoides/uso terapêutico , Transplante de Células-Tronco Hematopoéticas , Adolescente , Aloenxertos , Anemia de Diamond-Blackfan/metabolismo , Anemia de Diamond-Blackfan/patologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , MasculinoRESUMO
Diamond-Blackfan anemia (DBA) is a severe congenital hypoplastic anemia caused by mutation in a ribosomal protein gene. Major clinical issues concern the optimal management of patients resistant to steroids, the first-line therapy. Hematopoietic stem cell transplantation is indicated in young patients with an HLA-matched unaffected sibling donor, and recent results with matched unrelated donor transplants indicate that these patients also do well. When neither steroids nor a transplant is possible red cell transfusions are required, and iron loading is rapid in some DBA patients, so effective chelation is vital. Also discussed are novel treatments under investigation for DBA.
Assuntos
Anemia de Diamond-Blackfan , Transfusão de Eritrócitos , Transplante de Células-Tronco Hematopoéticas , Mutação , Doadores de Tecidos , Aloenxertos , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/metabolismo , Anemia de Diamond-Blackfan/patologia , Anemia de Diamond-Blackfan/terapia , Humanos , IrmãosRESUMO
Blood cell formation is classically thought to occur through a hierarchical differentiation process, although recent studies have shown that lineage commitment may occur earlier in hematopoietic stem and progenitor cells (HSPCs). The relevance to human blood diseases and the underlying regulation of these refined models remain poorly understood. By studying a genetic blood disorder, Diamond-Blackfan anemia (DBA), where the majority of mutations affect ribosomal proteins and the erythroid lineage is selectively perturbed, we are able to gain mechanistic insight into how lineage commitment is programmed normally and disrupted in disease. We show that in DBA, the pool of available ribosomes is limited, while ribosome composition remains constant. Surprisingly, this global reduction in ribosome levels more profoundly alters translation of a select subset of transcripts. We show how the reduced translation of select transcripts in HSPCs can impair erythroid lineage commitment, illuminating a regulatory role for ribosome levels in cellular differentiation.