Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
EMBO Mol Med ; 16(1): 132-157, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177536

RESUMO

Thoracic aortic aneurysm and dissection (TAAD) is a life-threatening condition associated with Marfan syndrome (MFS), a disease caused by fibrillin-1 gene mutations. While various conditions causing TAAD exhibit aortic accumulation of the proteoglycans versican (Vcan) and aggrecan (Acan), it is unclear whether these ECM proteins are involved in aortic disease. Here, we find that Vcan, but not Acan, accumulated in Fbn1C1041G/+ aortas, a mouse model of MFS. Vcan haploinsufficiency protected MFS mice against aortic dilation, and its silencing reverted aortic disease by reducing Nos2 protein expression. Our results suggest that Acan is not an essential contributor to MFS aortopathy. We further demonstrate that Vcan triggers Akt activation and that pharmacological Akt pathway inhibition rapidly regresses aortic dilation and Nos2 expression in MFS mice. Analysis of aortic tissue from MFS human patients revealed accumulation of VCAN and elevated pAKT-S473 staining. Together, these findings reveal that Vcan plays a causative role in MFS aortic disease in vivo by inducing Nos2 via Akt activation and identify Akt signaling pathway components as candidate therapeutic targets.


Assuntos
Aneurisma da Aorta Torácica , Doenças da Aorta , Dissecção Aórtica , Azidas , Desoxiglucose , Síndrome de Marfan , Animais , Humanos , Camundongos , Aneurisma da Aorta Torácica/complicações , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/metabolismo , Doenças da Aorta/complicações , Desoxiglucose/análogos & derivados , Síndrome de Marfan/complicações , Síndrome de Marfan/genética , Síndrome de Marfan/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Versicanas/metabolismo
2.
Biochim Biophys Acta Mol Cell Res ; 1871(3): 119661, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218386

RESUMO

Estrogen receptor 1 (ESR1) has been recently demonstrated as a potential diagnostic biomarker for thoracic aortic aneurysm (TAA). However, its precise role in the progression of TAA remains unclear. In this study, TAA models were established in ApoE-knockout mice and primary mouse vascular smooth muscle cells (VSMCs) through treatment with angiotensin (Ang) II. Our findings revealed a downregulation of ESR1 in Ang II-induced TAA mice and VSMCs. Upregulation of ESR1 mitigated expansion and cell apoptosis in the mouse aorta, reduced pathogenetic transformation of VSMCs, and reduced inflammatory infiltration and oxidative stress both in vitro and in vivo. Furthermore, we identified macrophage migration inhibitory factor (MIF) as a biological target of ESR1. ESR1 bound to the MIF promoter to suppress its transcription. Artificial MIF restoration negated the mitigating effects of ESR1 on TAA. Additionally, we discovered that murine double minute 2 (MDM2) was highly expressed in TAA models and mediated protein degradation of ESR1 through ubiquitination modification. Silencing of MDM2 reduced VSMC dedifferentiation and suppressed oxidative stress. However, these effects were reversed upon further silencing of ESR1. In conclusion, this study demonstrates that MDM2 activates MIF by mediating ESR1 degradation, thus promoting VSMC dedifferentiation and oxidative stress during TAA progression.


Assuntos
Aneurisma da Aorta Torácica , Fatores Inibidores da Migração de Macrófagos , Animais , Camundongos , Músculo Liso Vascular/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo , Desdiferenciação Celular/genética , Receptor alfa de Estrogênio/metabolismo , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/patologia , Estresse Oxidativo
3.
Arterioscler Thromb Vasc Biol ; 43(12): 2285-2297, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37823268

RESUMO

BACKGROUND: Although single-cell RNA-sequencing is commonly applied to dissect the heterogeneity in human tissues, it involves the preparation of single-cell suspensions via cell dissociation, causing loss of spatial information. In this study, we employed high-resolution single-cell transcriptome imaging to reveal rare smooth muscle cell (SMC) types in human thoracic aortic aneurysm (TAA) tissue samples. METHODS: Single-molecule spatial distribution of transcripts from 140 genes was analyzed in fresh-frozen human TAA samples with region and sex-matched controls. In vitro studies and tissue staining were performed to examine human CART prepropeptide (CARTPT) regulation and function. RESULTS: We captured thousands of cells per sample including a spatially distinct CARTPT-expressing SMC subtype enriched in male TAA samples. Immunoassays confirmed human CART (cocaine- and amphetamine-regulated transcript) protein enrichment in male TAA tissue and truncated CARTPT secretion into cell culture medium. Oxidized low-density lipoprotein, a cardiovascular risk factor, induced CARTPT expression, whereas CARTPT overexpression in human aortic SMCs increased the expression of key osteochondrogenic transcription factors and reduced contractile gene expression. Recombinant human CART treatment of human SMCs further confirmed this phenotype. Alizarin red staining revealed calcium deposition in male TAA samples showing similar localization with human CART staining. CONCLUSIONS: Here, we demonstrate the feasibility of single-molecule imaging in uncovering rare SMC subtypes in the diseased human aorta, a difficult tissue to dissociate. We identified a spatially distinct CARTPT-expressing SMC subtype enriched in male human TAA samples. Our functional studies suggest that human CART promotes osteochondrogenic switch of aortic SMCs, potentially leading to medial calcification of the thoracic aorta.


Assuntos
Aneurisma da Aorta Torácica , Calcinose , Humanos , Masculino , Transcriptoma , Aneurisma da Aorta Torácica/metabolismo , Aorta Torácica/metabolismo , Perfilação da Expressão Gênica/métodos , Calcinose/metabolismo , Miócitos de Músculo Liso/metabolismo
4.
Arterioscler Thromb Vasc Biol ; 43(10): 1900-1920, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37589142

RESUMO

BACKGROUND: Thoracic aortic dissection (TAD) is a life-threatening aortic disease without effective medical treatment. Increasing evidence has suggested a role for NE (neutrophil elastase) in vascular diseases. In this study, we aimed at investigating a causal role for NE in TAD and exploring the molecular mechanisms involved. METHODS: ß-aminopropionitrile monofumarate was administrated in mice to induce TAD. NE deficiency mice, pharmacological inhibitor GW311616A, and adeno-associated virus-2-mediated in vivo gene transfer were applied to explore a causal role for NE and associated target gene in TAD formation. Multiple functional assays and biochemical analyses were conducted to unravel the underlying cellular and molecular mechanisms of NE in TAD. RESULTS: NE aortic gene expression and plasma activity was significantly increased during ß-aminopropionitrile monofumarate-induced TAD and in patients with acute TAD. NE deficiency prevents ß-aminopropionitrile monofumarate-induced TAD onset/development, and GW311616A administration ameliorated TAD formation/progression. Decreased levels of neutrophil extracellular traps, inflammatory cells, and MMP (matrix metalloproteinase)-2/9 were observed in NE-deficient mice. TBL1x (F-box-like/WD repeat-containing protein TBL1x) has been identified as a novel substrate and functional downstream target of NE in TAD. Loss-of-function studies revealed that NE mediated inflammatory cell transendothelial migration by modulating TBL1x-LTA4H (leukotriene A4 hydrolase) signaling and that NE regulated smooth muscle cell phenotype modulation under TAD pathological condition by regulating TBL1x-MECP2 (methyl CpG-binding protein 2) signal axis. Further mechanistic studies showed that TBL1x inhibition decreased the binding of TBL1x and HDAC3 (histone deacetylase 3) to MECP2 and LTA4H gene promoters, respectively. Finally, adeno-associated virus-2-mediated Tbl1x gene knockdown in aortic smooth muscle cells confirmed a regulatory role for TBL1x in NE-mediated TAD formation. CONCLUSIONS: We unravel a critical role of NE and its target TBL1x in regulating inflammatory cell migration and smooth muscle cell phenotype modulation in the context of TAD. Our findings suggest that the NE-TBL1x signal axis represents a valuable therapeutic for treating high-risk TAD patients.


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Dissecção da Aorta Torácica , Animais , Humanos , Camundongos , Aminopropionitrilo/toxicidade , Aneurisma da Aorta Torácica/induzido quimicamente , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/metabolismo , Dissecção Aórtica/induzido quimicamente , Dissecção Aórtica/genética , Elastase de Leucócito/genética , Elastase de Leucócito/efeitos adversos
5.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166819, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37499930

RESUMO

BACKGROUND: Thoracic aortic aneurysm and aortic dissection (TAAD) is one of the most fatal cardiovascular diseases. Senkyunolide I (SEI) is a component of traditional Chinese medicine with remarkable anti-inflammatory properties and exhibits remarkable protective effects, but its impact on TAAD remains unclear. Our study aimed to explore the role of SEI in a murine model of TAAD and further explore the immunopharmacological mechanism. METHODS AND MATERIALS: The in vivo model were assessed using echocardiography, gross anatomy, and tissue staining. Western blot and immunofluorescence were performed to evaluate the effects of SEI in vivo and in vitro. A SEI solution injection containing 1 % dimethyl sulfoxide (DMSO) was administered intraperitoneally to the TAAD model group, while a normal saline injection comprising 1 % DMSO was administered to the sham group. RESULTS: SEI prevented TAAD formation induced by BAPN/Ang II and reduced the TAAD incidence in mice. SEI treatment significantly inhibited the degradation of collagen and elastin fibers in the extracellular matrix. Furthermore, it reduced the expression of inflammatory factors in the aortic intima. Western blot analysis revealed that SEI-treated mice showed a significant decrease in apoptosis-related protein levels in the aorta compared with the TAAD group. PI3K, Akt, and mTOR in the SEI treatment group were significantly lower than in the model group. SEI could also attenuate H2O2-induced Human umbilical vein endothelial cells (HUVECs) damage and reverse the decline in migrant cells. The apoptosis of HUVECs was considerably reduced by the SEI treatment. CONCLUSIONS: Conclusively, SEI may alleviate the progression of TAAD by suppressing the PI3K/Akt/NF-κB signaling pathway. The SEI's ability to inhibit inflammation and oxidative stress opens the way to restore the function of endothelial cells and vascular homeostasis, and thus to provide novel and promising options for the treatment of TAAD patients.


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Humanos , Camundongos , Animais , Células Endoteliais/metabolismo , Dimetil Sulfóxido/efeitos adversos , Peróxido de Hidrogênio , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Cultivadas , Aneurisma da Aorta Torácica/metabolismo , Dissecção Aórtica/tratamento farmacológico , Apoptose , Estresse Oxidativo
6.
Front Immunol ; 14: 1087978, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37207221

RESUMO

Background: At present, research on immunogenic cell death (ICD) is mainly associated with cancer therapy. Little is known about the role of ICD in cardiovascular disease, especially in ascending thoracic aortic aneurysms (ATAA). Method: ATAA single-cell RNA (scRNA) sequencing data were analyzed to identify the involved cell types and determine their transcriptomic characteristics. The chi-square test, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, Gene Set Enrichment Analysis (GSEA), and CellChat for cell-to-cell communication analysis from the Gene Expression Omnibus (GEO) database were used. Result: A total of 10 cell types were identified, namely, monocytes, macrophages, CD4 T/NK (CD4+ T cells and natural killer T cells), mast cells, B/Plasma B cells, fibroblasts, endothelial cells, cytotoxic T cells (CD8+ T cells, CTLs), vascular smooth muscle cells (vSMCs), and mature dendritic cells (mDCs). A large number of inflammation-related pathways were present in the GSEA results. A large number of ICD-related pathways were found in the KEGG enrichment analysis of differentially expressed genes in endothelial cells. The number of mDCs and CTLs in the ATAA group was significantly different from that in the control group. A total of 44 pathway networks were obtained, of which 9 were associated with ICD in endothelial cells (CCL, CXCL, ANNEXIN, CD40, IL1, IL6, TNF, IFN-II, GALECTIN). The most important ligand-receptor pair by which endothelial cells act on CD4 T/NK cells, CTLs and mDCs is CXCL12-CXCR4. The most important ligand-receptor pair by which endothelial cells act on monocytes and macrophages is ANXA1-FPR1. The most important ligand-receptor pair by which CD4 T/NK cells and CTLs act on endothelial cells is CCL5-ACKR1. The most important ligand-receptor pair that myeloid cells (macrophages, monocytes and mDCs) act on endothelial cells is CXCL8-ACKR1. Moreover, vSMCs and fibroblasts mainly promote inflammatory responses through the MIF signaling pathway. Conclusion: ICD is present in ATAA and plays an important role in the development of ATAA. The target cells of ICD may be mainly endothelial cells, in which the aortic endothelial cell ACKR1 receptor can not only promote T-cell infiltration through the CCL5 ligand but also promote myeloid cell infiltration through the CXCL8 ligand. ACKR1 and CXCL12 may become target genes for ATAA drug therapy in the future.


Assuntos
Aneurisma da Aorta Torácica , Células Endoteliais , Humanos , Ligantes , Células Endoteliais/metabolismo , Morte Celular Imunogênica , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/metabolismo , Linfócitos T CD8-Positivos/metabolismo
7.
Int Immunopharmacol ; 116: 109759, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36731150

RESUMO

BACKGROUND: Thoracic aortic aneurysm (TAA) is a type of common and serious vascular disease, in which inflammation, apoptosis and oxidative stress are strongly involved in the progression. Cordycepin, a bioactive compound from Cordyceps militaris, exhibits anti-inflammatory and anti-oxidative activities. This study aimed to address the role and mechanism of cordycepin in TAA. METHODS: The thoracic aortas were perivascularly administrated with calcium chloride (CaCl2), and human aortic smooth muscle cells (HASMCs) were incubated with angiotensin II (Ang II) to simulate the TAA model in vivo and in vitro, respectively. The effect and mechanism of cordycepin in TAA were explored by hematoxylin and eosin (HE) staining, immunohistochemistry (IHC), immunofluorescence (IF), western blot, biochemical test, cell counting kit-8 (CCK-8), and terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) assays. RESULTS: Cordycepin improved the CaCl2-induced the aneurysmal alteration and disappearance of normal wavy elastic structures of the aorta tissues, TAA incidence and thoracic aortic diameter in rats, and Ang II-induced the cell viability of HASMCs. Cordycepin reversed the CaCl2-induced the relative protein expression of cleaved caspase 9, cleaved caspase 3, interleukin (IL)-6, tumor necrosis factor (TNF)-α and IL-1ß, and the relative levels of glutathione (GSH), malonaldehyde (MDA) and reactive oxygen species (ROS) in vivo, or Ang II-induced these changes in vitro. Mechanically, cordycepin reduced the relative protein expressions of vascular endothelial growth factor (VEGF), VEGF receptor 2 (VEGFR2), cluster of differentiation 31 (CD31) and endothelial nitric oxide synthase (eNOS) in the Ang II-induced HASMCs. Correspondingly, overexpression of VEGF increased the levels of the indicators involved in apoptosis, inflammation and oxidative stress, which were antagonized with the cordycepin incubation in the Ang II-induced HASMCs. CONCLUSION: Cordycepin inhibited apoptosis, inflammation and oxidative stress of TAA through the inhibition of VEGF.


Assuntos
Aneurisma da Aorta Torácica , Fator A de Crescimento do Endotélio Vascular , Humanos , Ratos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cloreto de Cálcio/efeitos adversos , Cloreto de Cálcio/metabolismo , Aneurisma da Aorta Torácica/tratamento farmacológico , Aneurisma da Aorta Torácica/induzido quimicamente , Aneurisma da Aorta Torácica/metabolismo , Estresse Oxidativo , Apoptose , Interleucina-6/metabolismo , Miócitos de Músculo Liso/metabolismo , Inflamação/metabolismo , Angiotensina II/metabolismo
8.
Biochem Biophys Res Commun ; 643: 175-185, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36621113

RESUMO

BACKGROUND: Thoracic aortic aneurysm (TAA) is a silent but dangerous cardiovascular disease. Understanding molecular mechanisms of TAA on single-cell level might provide new strategies for preventing and treating TAA. METHODS: Single-cell RNA sequencing was performed on control and aneurysmal thoracic aorta to find out specific cell clusters and cell types. Western blot and histological staining were used to verify the findings of single-cell transcriptome analysis. Characteristics of Versican (VCAN) overexpressed myofibroblast was evaluated through bioinformatic methods and experimental validation. RESULTS: A total of 3 control and 8 TAA specimens were used for single-cell transcriptome analysis including 48,128 thoracic aortic cells. Among these cells, we found out a specific cell cluster containing both hallmarks of smooth muscle cell (SMC) and fibroblast. Thus, we defined these cells as myofibroblast. Further single-cell transcriptome analysis identified VCAN as a cellular marker of myofibroblast. Western blot and histological staining revealed that VCAN(+) myofibroblast was significantly increased in TAA specimens compared with control individuals. Differential analysis, functional, pathway enrichment analysis and cell-cell communication analysis demonstrated that VCAN(+) myofibroblast was closely associated with previous reported TAA associated pathological process including SMC proliferation, SMC migration and extracellular matrix (ECM) disruption. Pathway analysis found out significant activation of PI3K-AKT signaling pathway within VCAN(+) myofibroblast, which was further confirmed by experimental validation. CONCLUSIONS: Single-cell RNA sequencing identified VCAN(+) myofibroblast as a typical cellular hallmark of TAA. These cells might participate in the pathogenesis of TAA through activation of PI3K-AKT signaling pathway to link SMC proliferation, SMC migration and ECM disruption.


Assuntos
Aneurisma da Aorta Torácica , Versicanas , Humanos , Versicanas/genética , Versicanas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Miofibroblastos/metabolismo , Análise da Expressão Gênica de Célula Única , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/metabolismo , Aorta Torácica/metabolismo , Transdução de Sinais
9.
Am J Physiol Heart Circ Physiol ; 323(6): H1376-H1387, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36367690

RESUMO

Phospholipase Cε (PLCε) is a phospholipase C isoform with a wide range of physiological functions. It has been implicated in aortic valve disorders, but its role in frequently associated aortic disease remains unclear. To determine the role of PLCε in thoracic aortic aneurysm and dissection (TAAD) we used PLCε-deficient mice, which develop aortic valve insufficiency and exhibit aortic dilation of the ascending thoracic aorta and arch without histopathological evidence of injury. Fourteen days of infusion of Plce1+/+ and Plce1-/- mice with angiotensin II (ANG II), which induces aortic dilation and dissection, led to sudden death secondary to ascending aortic dissection in 43% of Plce1-/- versus 5% of Plce1+/+ mice (P < 0.05). Medial degeneration and TAAD were detected in 80% of Plce1-/- compared with 10% of Plce1+/+ mice (P < 0.05) after 4 days of ANG II. Treatment with ANG II markedly increased PLCε expression within the ascending aortic adventitia. Total RNA sequencing demonstrated marked upregulation of inflammatory and fibrotic pathways mediated by interleukin-1ß, interleukin-6, and tumor necrosis factor-α. In silico analysis of whole exome sequences of 258 patients with type A dissection identified 5 patients with nonsynonymous PLCE1 variants. Our data suggest that PLCε deficiency plays a role in the development of TAAD and aortic insufficiency.NEW & NOTEWORTHY We describe a novel phenotype by which PLCε deficiency predisposes to aortic valve insufficiency and ascending aortic aneurysm, dissection, and sudden death in the setting of ANG II-mediated hypertension. We demonstrate PLCE1 variants in patients with type A aortic dissection and aortic insufficiency, suggesting that PLCE1 may also play a role in human aortic disease. This finding is of very high significance because it has not been previously demonstrated that PLCε directly mediates aortic dissection.


Assuntos
Aneurisma da Aorta Ascendente , Aneurisma da Aorta Torácica , Aneurisma Aórtico , Dissecção Aórtica , Insuficiência da Valva Aórtica , Hipertensão , Humanos , Camundongos , Animais , Insuficiência da Valva Aórtica/genética , Camundongos Endogâmicos C57BL , Aneurisma Aórtico/genética , Aneurisma Aórtico/patologia , Dissecção Aórtica/genética , Angiotensina II , Morte Súbita , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/metabolismo
10.
Annu Rev Genomics Hum Genet ; 23: 223-253, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36044906

RESUMO

Genetic predisposition and risk factors such as hypertension and smoking can instigate the development of thoracic aortic aneurysm (TAA), which can lead to highly lethal aortic wall dissection and/or rupture. Monogenic defects in multiple genes involved in the elastin-contractile unit and the TGFß signaling pathway have been associated with TAA in recent years, along with several genetic modifiers and risk-conferring polymorphisms. Advances in omics technology have also provided significant insights into the processes behind aortic wall degeneration: inflammation, epigenetics, vascular smooth muscle phenotype change and depletion, reactive oxygen species generation, mitochondrial dysfunction, and angiotensin signaling dysregulation. These recent advances and findings might pave the way for a therapy that is capable of stopping and perhaps even reversing aneurysm progression.


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Dissecção Aórtica/genética , Dissecção Aórtica/metabolismo , Animais , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fenótipo
11.
Circulation ; 145(9): 659-674, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35100526

RESUMO

BACKGROUND: The development of thoracic aortic dissection (TAD) is closely related to extracellular matrix degradation and vascular smooth muscle cell (VSMC) transformation from contractile to synthetic type. LGMN (legumain) degrades extracellular matrix components directly or by activating downstream signals. The role of LGMN in VSMC differentiation and the occurrence of TAD remains elusive. METHODS: Microarray datasets concerning vascular dissection or aneurysm were downloaded from the Gene Expression Omnibus database to screen differentially expressed genes. Four-week-old male Lgmn knockout mice (Lgmn-/-), macrophage-specific Lgmn knockout mice (LgmnF/F;LysMCre), and RR-11a-treated C57BL/6 mice were given BAPN (ß-aminopropionitrile monofumarate; 1 g/kg/d) in drinking water for 4 weeks for TAD modeling. RNA sequencing analysis was performed to recapitulate transcriptome profile changes. Cell interaction was examined in macrophage and VSMC coculture system. The reciprocity of macrophage-derived LGMN with integrin αvß3 in VSMCs was tested by coimmunoprecipitation assay and colocalization analyses. RESULTS: Microarray datasets from the Gene Expression Omnibus database indicated upregulated LGMN in aorta from patients with TAD and mice with angiotensin II-induced AAA. Elevated LGMN was evidenced in aorta and sera from patients with TAD and mice with BAPN-induced TAD. BAPN-induced TAD progression was significantly ameliorated in Lgmn-deficient or inhibited mice. Macrophage-specific deletion of Lgmn alleviated BAPN-induced extracellular matrix degradation. Unbiased profiler polymerase chain reaction array and Gene Ontology analysis displayed that LGMN regulated VSMC phenotype transformation. Macrophage-specific deletion of Lgmn ameliorated VSMC phenotypic switch in BAPN-treated mice. Macrophage-derived LGMN inhibited VSMC differentiation in vitro as assessed by macrophages and the VSMC coculture system. Macrophage-derived LGMN bound to integrin αvß3 in VSMCs and blocked integrin αvß3, thereby attenuating Rho GTPase activation, downregulating VSMC differentiation markers and eventually exacerbating TAD development. ROCK (Rho kinase) inhibitor Y-27632 reversed the protective role of LGMN depletion in vascular dissection. CONCLUSIONS: LGMN signaling may be a novel target for the prevention and treatment of TAD.


Assuntos
Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/metabolismo , Dissecção Aórtica/metabolismo , Cisteína Endopeptidases/metabolismo , Integrina alfaVbeta3/metabolismo , Amidas/farmacologia , Dissecção Aórtica/tratamento farmacológico , Dissecção Aórtica/genética , Animais , Aneurisma da Aorta Torácica/tratamento farmacológico , Aneurisma da Aorta Torácica/genética , Cisteína Endopeptidases/genética , Feminino , Humanos , Integrina alfaVbeta3/genética , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Piridinas/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
12.
Ann Vasc Surg ; 82: 377-382, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34933111

RESUMO

Thoracic aortic aneurysm/dissection (TAAD) is a rare cardiovascular disease characterized by acute onset, rapid progression and high morbidity and mortality. One of the crucial factors leading to TAAD is the inflammatory response, which is regulated by many immune cell subgroups, including B cells. Compared with normal aortic tissue, the number of B cells in the aortic tissue of TAAD patients is significantly higher. Activated B cells participate in the vascular immune inflammatory response by producing antibodies and inflammatory factors and activating the complement system. These effects can lead to collagen degradation and aortic wall remodeling, both of which are the main pathologic characteristics of TAAD. Therefore, B cells play a key role in the occurrence and development of TAAD. B cells can be divided into B1 cells, B2 cells and regulatory B cells, which have different mechanisms of action in TAAD. This article will review the role of B cells in TAAD from the perspective of three different subtypes of B cells.


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Dissecção Aórtica/diagnóstico por imagem , Dissecção Aórtica/metabolismo , Dissecção Aórtica/cirurgia , Animais , Aneurisma da Aorta Torácica/diagnóstico por imagem , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/cirurgia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Resultado do Tratamento
13.
Cells ; 10(9)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34572082

RESUMO

Aortic diseases comprise aneurysms, dissections, and several other pathologies. In general, aging is associated with a slow but progressive dilation of the aorta, along with increased stiffness and pulse pressure. The progression of aortic disease is characterized by subclinical development or acute presentation. Recent evidence suggests that inflammation participates causally in different clinical manifestations of aortic diseases. As of yet, diagnostic imaging and surveillance is mainly based on ultrasonography, computed tomography (CT), and magnetic resonance imaging (MRI). Little medical therapy is available so far to prevent or treat the majority of aortic diseases. Endovascular therapy by the introduction of covered stentgrafts provides the main treatment option, although open surgery and implantation of synthetic grafts remain necessary in many situations. Because of the risks associated with surgery, there is a need for identification of pharmaceutical targets interfering with the pathophysiology of aortic remodeling. The participation of innate immunity and inflammasome activation in different cell types is common in aortic diseases. This review will thus focus on inflammasome activities in vascular cells of different chronic and acute aortic diseases and discuss their role in development and progression. We will also identify research gaps and suggest promising therapeutic targets, which may be used for future medical interventions.


Assuntos
Aorta , Doenças da Aorta , Inflamassomos/metabolismo , Aorta/citologia , Aorta/patologia , Aorta/fisiologia , Aneurisma Aórtico/metabolismo , Aneurisma Aórtico/fisiopatologia , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/fisiopatologia , Doenças da Aorta/metabolismo , Doenças da Aorta/fisiopatologia , Proteínas de Ligação a DNA/metabolismo , Sistemas de Liberação de Medicamentos , Células Endoteliais/metabolismo , Humanos , Imuno-Histoquímica , Inflamassomos/fisiologia , Inflamação/metabolismo , Inflamação/fisiopatologia , Interleucina-1beta/metabolismo , Linfócitos/metabolismo , Macrófagos/metabolismo , Miócitos de Músculo Liso/metabolismo , Miofibroblastos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
14.
Am J Hum Genet ; 108(9): 1578-1589, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34265237

RESUMO

Thoracic aortic aneurysm (TAA) is characterized by dilation of the aortic root or ascending/descending aorta. TAA is a heritable disease that can be potentially life threatening. While 10%-20% of TAA cases are caused by rare, pathogenic variants in single genes, the origin of the majority of TAA cases remains unknown. A previous study implicated common variants in FBN1 with TAA disease risk. Here, we report a genome-wide scan of 1,351 TAA-affected individuals and 18,295 control individuals from the Cardiovascular Health Improvement Project and Michigan Genomics Initiative at the University of Michigan. We identified a genome-wide significant association with TAA for variants within the third intron of TCF7L2 following replication with meta-analysis of four additional independent cohorts. Common variants in this locus are the strongest known genetic risk factor for type 2 diabetes. Although evidence indicates the presence of different causal variants for TAA and type 2 diabetes at this locus, we observed an opposite direction of effect. The genetic association for TAA colocalizes with an aortic eQTL of TCF7L2, suggesting a functional relationship. These analyses predict an association of higher expression of TCF7L2 with TAA disease risk. In vitro, we show that upregulation of TCF7L2 is associated with BCL2 repression promoting vascular smooth muscle cell apoptosis, a key driver of TAA disease.


Assuntos
Aneurisma da Aorta Torácica/genética , Diabetes Mellitus Tipo 2/genética , Células Endoteliais/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Locos de Características Quantitativas , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Aorta/metabolismo , Aorta/patologia , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/patologia , Estudos de Casos e Controles , Caspase 3/genética , Caspase 3/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Células Endoteliais/patologia , Regulação da Expressão Gênica , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Íntrons , Michigan , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Mutação , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
15.
Biomolecules ; 11(7)2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202072

RESUMO

BACKGROUND: Previous studies have demonstrated that polymorphisms involved in immune genes can affect the risk, pathogenesis, and outcome of thoracic ascending aortic aneurysms (TAAA). Here, we explored the potential associations of five functional promoter polymorphisms in interleukin-6 (IL-6), IL-1B, IL-1A, IL-18, and Tumor necrosis factor (TNF)A genes with TAAA. METHODS: 144 TAAA patients and 150 age/gender matched controls were typed using KASPar assays. Effects on telomere length and levels of TAAA related histopathological and serological markers were analyzed. RESULTS: Significant associations with TAAA risk were obtained for IL-6 rs1800795G>C and IL-1B rs16944C>T SNPs. In addition, the combined rs1800795C/rs16944T genotype showed a synergic effect on TAAA pathogenesis and outcome. The combined rs1800795C/rs16944T genotype was significantly associated with: (a) higher serum levels of both cytokines and MMP-9 and -2; (b) a significant CD3+CD4+CD8+ CD68+CD20+ cell infiltration in aorta aneurysm tissues; (c) a significant shorter telomere length and alterations in telomerase activity. Finally, it significantly correlated with TAAA aorta tissue alterations, including elastic fragmentation, medial cell apoptosis, cystic medial changes, and MMP-9 levels. CONCLUSIONS: the combined rs1800795C/rs16944T genotype appears to modulate TAAA risk, pathogenesis, and outcome, and consequently can represent a potential predictive and prognostic TAAA biomarker for individual management, implementation of innovative treatments, and selection of the more proper surgical timing and approaches.


Assuntos
Aneurisma da Aorta Torácica/diagnóstico , Aneurisma da Aorta Torácica/genética , Citocinas/genética , Interleucina-1beta/genética , Interleucina-6/genética , Polimorfismo de Nucleotídeo Único/genética , Idoso , Aneurisma da Aorta Torácica/metabolismo , Biomarcadores/metabolismo , Citocinas/metabolismo , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Prognóstico
16.
Exp Cell Res ; 405(2): 112703, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34118251

RESUMO

Thoracic aortic aneurysm and dissection (TAAD) is a life-threatening vascular disease with no effective pharmaceutical therapies currently available. Inflammation plays a key role in the progression of aneurysms. Dexamethasone (DEX), a synthetic glucocorticoid, has showed alleviating effects on cells in vitro from TAAD patients. Here we performed a study aiming at investigating the protective role of DEX in a ß-aminopropionitrile monofumarate (BAPN)-induced TAAD mouse model. DEX (dose: 0.04 mg/kg/day) treatment significantly reduced the aortic diameter and inhibited TAAD formation. DEX reduced infiltration of macrophages and neutrophils, apoptosis of vascular smooth muscle cells (VSMCs), expression of metalloproteinase 2/9, and extracellular matrix degradation in BAPN-treated TAAD mice. Furthermore, DEX therapy downregulated the expression of p-p65 in macrophages and VSMCs, which suggested that DEX might ameliorate BAPN-induced TAAD by suppressing NF-κB signaling. Therefore, DEX therapy attenuates the progression of BAPN-induced TAAD murine model and could be used as an effective adjuvant therapy for treating TAAD.


Assuntos
Aneurisma da Aorta Torácica/tratamento farmacológico , Dissecção Aórtica/tratamento farmacológico , Dexametasona/farmacologia , Miócitos de Músculo Liso/efeitos dos fármacos , Aminopropionitrilo/metabolismo , Dissecção Aórtica/metabolismo , Animais , Aneurisma da Aorta Torácica/metabolismo , Macrófagos/metabolismo , Masculino , Metaloproteinase 2 da Matriz/efeitos dos fármacos , Metaloproteinase 2 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/metabolismo
17.
Eur J Vasc Endovasc Surg ; 60(6): 916-924, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33004280

RESUMO

OBJECTIVE: Thoracic aortic dissection (TAD) is associated with matrix changes, biochemical changes, and inflammatory markers like interleukin-1 beta (IL-1ß). However, the exact mechanism remains unknown. This study aimed to investigate the role of IL-1ß, matrix metalloproteinase (MMP)-2, MMP-9, smooth muscle cell apoptosis, and elastic fibre fracture in the development of TAD in a rat model. METHODS: The TAD rat model was induced by ß-aminopropionitrile (BAPN). TAD was investigated in 112 male Sprague-Dawley rats, which were equally divided into four groups of 28 rats (Control, BAPN, BAPN + IL-1ß, and BAPN + IL-1ß antibody). Systolic blood pressure, survival, and the development of TAD were measured after six weeks. Expression of IL-1ß, MMP-2, and MMP-9 was measured by Western blot. Apoptosis, aortic elastin concentration, and biomechanical characteristics were measured by the TdT mediated dUTP nick end labelling assay, Victoria blue staining, and in vitro testing. RESULTS: During six weeks, the mortality was 0% (0/28) in the control group, 53.6% (15/28) in the BAPN group (p < .001 compared with the control group), 75.0% (21/28) in the BAPN + IL-1ß group (p = .007 compared with the BAPN group), and 35.7% (10/28) in the BAPN + IL-1ß antibody group (p = .023 compared with BAPN group and p < .001 compared with the BAPN + IL-1ß group). IL-1ß treatment deteriorates BAPN induced mortality and aneurysm expansion, which were attenuated by anti-IL-1ß treatment. In BAPN + IL-1ß group, stress and strain parameters were decreased by 13.5%-53.5% and elastin content was decreased by 14%, and IL-1ß, MMP-2, and MMP-9 were expressed higher by 117%, 108%, and 75% when compared with the rats in the BAPN group. Contrarily, in the BAPN + IL-1ß antibody group, the above changes could be completely (strain, elastin content, and expression of MMP-2) or partly (elasticity modulus, stress, and expression of MMP-9) blocked by anti-IL-1ß treatment. CONCLUSION: IL-1ß plays a critical role in TAD formation by altering the expression of MMP-2 and MMP-9, degrading the aortic wall matrix, causing elastic fibre rupture, and changing the stress or strain of the aortic wall. Anti-IL-1ß reduces the later effects and could be one of the molecular targets for prognosis and drug treatment of TAD in the future.


Assuntos
Aneurisma da Aorta Torácica/metabolismo , Dissecção Aórtica/metabolismo , Interleucina-1beta/metabolismo , Aminopropionitrilo , Dissecção Aórtica/induzido quimicamente , Dissecção Aórtica/patologia , Animais , Anticorpos/farmacologia , Aorta Torácica/patologia , Aneurisma da Aorta Torácica/induzido quimicamente , Aneurisma da Aorta Torácica/patologia , Apoptose , Modelos Animais de Doenças , Elastina/metabolismo , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/imunologia , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Ratos , Ratos Sprague-Dawley , Taxa de Sobrevida
18.
Int J Mol Sci ; 21(18)2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961817

RESUMO

Marfan syndrome (MFS) is a connective tissue disease caused by mutations in the FBN1 gene, leading to alterations in the extracellular matrix microfibril assembly and the early formation of thoracic aorta aneurysms (TAAs). Non-genetic TAAs share many clinico-pathological aspects with MFS and deregulation of some microRNAs (miRNAs) has been demonstrated to be involved in the progression of TAA. In this study, 40 patients undergoing elective ascending aorta surgery were enrolled to compare TAA histomorphological features, miRNA profile and related target genes in order to find specific alterations that may explain the earlier and more severe clinical outcomes in MFS patients. Histomorphological, ultrastructural and in vitro studies were performed in order to compare aortic wall features of MFS and non-MFS TAA. MFS displayed greater glycosaminoglycan accumulation and loss/fragmentation of elastic fibers compared to non-MFS TAA. Immunohistochemistry revealed increased CD133+ angiogenic remodeling, greater MMP-2 expression, inflammation and smooth muscle cell (SMC) turnover in MFS TAA. Cultured SMCs from MFS confirmed higher turnover and α-smooth muscle actin expression compared with non-MFS TAA. Moreover, twenty-five miRNAs, including miR-26a, miR-29, miR-143 and miR-145, were found to be downregulated and only miR-632 was upregulated in MFS TAA in vivo. Bioinformatics analysis revealed that some deregulated miRNAs in MFS TAA are implicated in cell proliferation, extracellular matrix structure/function and TGFß signaling. Finally, gene analysis showed 28 upregulated and seven downregulated genes in MFS TAA, some of them belonging to the CDH1/APC and CCNA2/TP53 signaling pathways. Specific miRNA and gene deregulation characterized the aortopathy of MFS and this was associated with increased angiogenic remodeling, likely favoring the early and more severe clinical outcomes, compared to non-MFS TAA. Our findings provide new insights concerning the pathogenetic mechanisms of MFS TAA; further investigation is needed to confirm if these newly identified specific deregulated miRNAs may represent potential therapeutic targets to counteract the rapid progression of MFS aortopathy.


Assuntos
Aneurisma da Aorta Torácica , Regulação da Expressão Gênica , Síndrome de Marfan , MicroRNAs , Músculo Liso Vascular , Miócitos de Músculo Liso , Neovascularização Patológica , Adolescente , Adulto , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/patologia , Feminino , Humanos , Masculino , Síndrome de Marfan/genética , Síndrome de Marfan/metabolismo , Síndrome de Marfan/patologia , MicroRNAs/biossíntese , MicroRNAs/genética , Pessoa de Meia-Idade , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Transdução de Sinais/genética
19.
Interact Cardiovasc Thorac Surg ; 31(2): 239-247, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32706032

RESUMO

OBJECTIVES: The aim of this study was to explore the differential expression profiles of microRNAs (miRNAs) in paraffin-embedded acute aortic dissection (AAD) tissues to find potential biomarkers for this disease. METHODS: A total of 92 paraffin-embedded tissue specimens were collected from 92 patients with AAD who underwent surgical replacement. Among these specimens, 54 had partial normal aortic segments (smooth intima surface, non-atherosclerotic lesions) in proximal crevasse of aorta. Samples of these segments were taken 1 cm away from aortic lesions as the control group, after eliminating the tunica adventitia tissues. miRNA expression profiles were obtained by miRNA microarray analysis. Differentially expressed miRNAs were found by comparing the AAD group with the control group and were verified by fluorescence real-time quantitative polymerase chain reaction and by fluorescence in situ hybridization. RESULTS: A total of 71 differentially expressed miRNAs were detected. Twenty-two were up-regulated and 49 were down-regulated. Four up-regulated miRNAs (hsa-miR-636, hsa-miR-142-3p, hsa-miR-425-3p, hsa-miR-191-3p) were selected for validation by real-time fluorescence quantitative polymerase chain reaction and fluorescence in situ hybridization. In the fluorescence real-time quantitative polymerase chain reaction analysis, only hsa-miR-636 showed a statistically significant difference in the AAD versus control comparison (3.3-fold, P = 0.012). The fluorescence in situ hybridization validation showed that the expression level of hsa-miR-636 was significantly increased in the AAD versus control comparison (P < 0.001), with average optical densities of 61.29 ± 16.83 in the AAD group and 9.30 ± 3.98 in the control group. CONCLUSIONS: Hsa-miR-636 is involved in the pathogenesis of AAD and may be a potential biomarker for this disease.


Assuntos
Aneurisma da Aorta Torácica/metabolismo , Dissecção Aórtica/metabolismo , Regulação para Baixo , MicroRNAs/metabolismo , Inclusão em Parafina/métodos , Regulação para Cima , Dissecção Aórtica/diagnóstico , Aneurisma da Aorta Torácica/diagnóstico , Biomarcadores/metabolismo , Feminino , Humanos , Hibridização in Situ Fluorescente , Masculino , Análise em Microsséries , Pessoa de Meia-Idade
20.
Eur Rev Med Pharmacol Sci ; 24(12): 6949-6954, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32633388

RESUMO

OBJECTIVE: The purpose of this study was to explore the changes in the expressions of micro ribonucleic acid (miR)-22-3p and matrix metalloproteinase-9 (MMP-9) in rats with thoracic aortic aneurysm (TAA) and their significance. MATERIALS AND METHODS: A total of 16 specific pathogen-free Sprague-Dawley female rats were randomly divided into normal group (n=8) and angiotensin II (Ang II) group (n=8). Ang II was perfused using the micro pump in Ang II group, while the same amount of normal saline was perfused in the normal group. After continuous intervention, the tumor formation rate in the thoracic aorta was observed, and the expression of miR-22-3p was detected via Reverse Transcription-Polymerase Chain Reaction (RT-PCR) in both groups. Other 16 rats were selected and randomly divided into agomiR-22-3p group (n=8) and control group (n=8). In the agomiR-22-3p group, agomiR-22 and Ang II were continuously injected via angular vein. In the control group, agomiR negative control was injected, and Ang II was continuously perfused. After intervention for 4 weeks, the tumor formation rate in the thoracic aorta was observed, and the expression of MMP-9 was determined via immunofluorescence and immunohistochemistry in both groups. RESULTS: After intervention for 4 weeks, the expression of miR-22-3p in Ang II group was significantly lower than that in normal group (p<0.05). After drug administration for 4 weeks, agomiR-22-3p group had a lower tumor formation rate (p<0.05) and a lower expression of MMP-9 than the control group (p<0.05). CONCLUSIONS: The expression of miR-22-3p declines in TAA rats, and miR-22-3p can inhibit the expression of MMP-9, thus suppressing the formation of TAA in rats.


Assuntos
Aneurisma da Aorta Torácica/metabolismo , Metaloproteinase 9 da Matriz/genética , MicroRNAs/genética , Angiotensina II/administração & dosagem , Animais , Aneurisma da Aorta Torácica/induzido quimicamente , Aneurisma da Aorta Torácica/patologia , Feminino , Metaloproteinase 9 da Matriz/metabolismo , MicroRNAs/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA