Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Environ Toxicol Chem ; 43(7): 1627-1637, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38837458

RESUMO

Shipping activities are increasing with sea ice receding in the Arctic, leading to higher risks of accidents and oil spills. Because Arctic toxicity data are limited, oil spill risk assessments for the Arctic are challenging to conduct. In the present study, we tested if acute oil toxicity metrics obtained at temperate conditions reflect those at Arctic conditions. The effects of temperature (4 °C, 12 °C, and 20 °C) on the median lethal concentration (LC50) and the critical body residue (CBR) of the temperate invertebrate Gammarus locusta exposed to water accommodated fractions of a fuel oil were determined. Both toxicity metrics decreased with increasing temperature. In addition, data for the temperate G. locusta were compared to data obtained for Arctic Gammarus species at 4 °C. The LC50 for the Arctic Gammarus sp. was a factor of 3 higher than that for the temperate G. locusta at 4 °C, but its CBR was similar, although both the exposure time and concentration were extended to reach lethality. Probably, this was a result of the larger size and higher weight and total lipid content of Arctic gammarids compared to the temperate gammarids. Taken together, the present data support the use of temperate acute oil toxicity data as a basis for assessing risks in the Arctic region, provided that the effects of temperature on oil fate and functional traits (e.g., body size and lipid content) of test species are considered. As such, using the CBR as a toxicity metric is beneficial because it is independent of functional traits, despite its temperature dependency. To the best of our knowledge, the present study is the first to report CBRs for oil. Environ Toxicol Chem 2024;43:1627-1637. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Anfípodes , Poluição por Petróleo , Temperatura , Poluentes Químicos da Água , Animais , Regiões Árticas , Anfípodes/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Petróleo/toxicidade , Dose Letal Mediana
2.
J Toxicol Environ Health A ; 85(2): 71-88, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34496719

RESUMO

Arsenic (As) is a toxic metalloid present in high levels in diverse regions of Argentina. The aim of this study was to determine acute As-mediated toxicity in two different populations of autochthonous Hyalella curvispina amphipods from a reference site (LB) and an agricultural one (FO) within North Patagonia Argentina. Previously, both populations exhibited significant differences in pesticide susceptibility. Lab assays were performed to determine acute lethal concentrations, as well as some biochemical parameters. Lethal concentration (LC50) values obtained after 48 and 96 hr As exposure were not significantly different between these populations, although FO amphipods appeared slightly less susceptible. LC50-48 hr values were 3.33 and 3.92 mg/L As, while LC50-96 hr values were 1.76 and 2.14 mg/L As for LB and FO amphipods. The no observed effect concentration (NOEC) values were 0.5 mg/L As. Cholinesterase (ChE) activity was significantly diminished by As acute exposure (0.5-1.5 mg/L As), indicative of a significant neurotoxic action for this metalloid in both amphipod populations. Activities of catalase (CAT) and glutathione S-transferase (GST) and levels of reduced glutathione (GSH) were differentially altered following As exposure. CAT activity was increased after 96 hr As exposure. GST activity and GSH levels were significantly elevated followed by either a decrease or a return to control values after 96 hr treatment. However, additional studies are necessary to understand the mechanisms underlying the As-mediated oxidative effects in H. curvispina. Our findings suggest that measurement of ChE activity in H. curvispina amphipods might serve as a useful biomarker of As exposure and effect.


Assuntos
Anfípodes/efeitos dos fármacos , Arsênio/toxicidade , Poluentes Químicos da Água/toxicidade , Irrigação Agrícola , Anfípodes/metabolismo , Animais , Antioxidantes/metabolismo , Argentina , Colinesterases/metabolismo , Glutationa/metabolismo , Lagos/química , Dose Letal Mediana
3.
Environ Toxicol Chem ; 39(11): 2256-2268, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32761946

RESUMO

The US Environmental Protection Agency (USEPA) is reviewing the protectiveness of the national ambient water quality criteria (WQC) for nickel (Ni) and zinc (Zn) and compiling toxicity databases to update the WQC. An amphipod (Hyalella azteca) and a unionid mussel (Lampsilis siliquoidea) have shown high sensitivity to Ni and Zn in previous studies. However, there remained uncertainties regarding the influence of test duration (48 vs 96 h) and the presence and absence of food in acute exposures with the amphipod, and there were also concerns about poor control of amphipod growth and reproduction and mussel growth in chronic exposures. We conducted acute 48- and 96-h water-only toxicity tests to evaluate the influence of feeding and test durations on the toxicity of dissolved Ni and Zn to the amphipod; we also used recently refined test methods to conduct chronic Ni and Zn toxicity tests to evaluate the sensitivity of the amphipod (6-wk exposure) and the mussel (4- and 12-wk exposures). The 96-h 50% effect concentrations (EC50s) of 916 µg Ni/L and 99 µg Zn/L from acute amphipod tests without feeding decreased from the 48-h EC50s by 62 and 33%, respectively, whereas the 96-h EC50s of 2732 µg Ni/L and 194 µg Zn/L from the tests with feeding decreased from the 48-h EC50s by 10 and 26%, indicating that the presence or absence of food had apparent implications for the 96-h EC50. Our chronic 6-wk EC20s for the amphipod (4.5 µg Ni/L and 35 µg Zn/L) were 50 to 67% lower than the 6-wk EC20s from previous amphipod tests, and our chronic 4-wk EC20s for the mussel (41 µg Ni/L and 66 µg Zn/L) were similar to or up to 42% lower than the 4-wk EC20s from previous mussel tests. The lower EC20s from the present study likely reflect more accurate estimates of inherent sensitivity to Ni and Zn due to the refined test conditions. Finally, increasing the chronic test duration from 4 to 12 wk substantially increased the toxicity of Zn to the mussel, whereas the 4- and 12-wk Ni effect needs to be re-evaluated to understand the large degree of variation in organism responses observed in the present study. Environ Toxicol Chem 2020;39:2256-2268. © 2020 SETAC.


Assuntos
Anfípodes/efeitos dos fármacos , Bivalves/efeitos dos fármacos , Níquel/toxicidade , Testes de Toxicidade Aguda/métodos , Testes de Toxicidade Crônica/métodos , Poluentes Químicos da Água/toxicidade , Zinco/toxicidade , Anfípodes/crescimento & desenvolvimento , Anfípodes/fisiologia , Animais , Bivalves/fisiologia , Feminino , Larva/efeitos dos fármacos , Larva/fisiologia , Poluentes Químicos da Água/química , Qualidade da Água
4.
Int J Mol Sci ; 21(13)2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630258

RESUMO

We explore the delayed consequences of parental exposure to environmentally relevant cadmium concentrations on the life-history traits throughout generations of the freshwater crustacean Gammarus fossarum. We report the preliminary results obtained during a challenging one-year laboratory experiment in this environmental species and propose the use of population modeling to interpret the changes in offspring life-history traits regarding their potential demographic impacts. The main outcome of this first long-term transgenerational assay is that the exposure of spawners during a single gametogenesis cycle (3 weeks) could result in severe cascading effects on the life-history traits along three unexposed offspring generations (one year). Indeed, we observed a decrease in F1 reproductive success, an early onset of F2 offspring puberty with reduced investment in egg yolk reserves, and finally a decrease in the growth rate of F3 juveniles. However, the analysis of these major transgenerational effects by means of a Lefkovitch matrix population model revealed only weak demographic impacts. Population compensatory processes mitigating the demographic consequences of parental exposure seem to drive the modification of life-history traits in offspring generations. This exploratory study sheds light on the role of population mechanisms involved in the demographic regulation of the delayed effects of environmental toxicity in wild populations.


Assuntos
Anfípodes/efeitos dos fármacos , Cádmio/efeitos adversos , Cádmio/toxicidade , Anfípodes/genética , Anfípodes/fisiologia , Animais , Monitoramento Ambiental/métodos , Poluição Ambiental/efeitos adversos , Dinâmica Populacional , Reprodução/efeitos dos fármacos , Maturidade Sexual/efeitos dos fármacos
5.
Aquat Toxicol ; 224: 105481, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32380301

RESUMO

Modern nano-engineered pesticides have great promise for agriculture due to their extended, low dose release profiles that are intended to increase effectiveness but reduce environmental harm. Whether nanopesticides, including copper (Cu) formulations, cause reduced levels of toxicity to non-target aquatic organisms is unclear but important to assess. Predicting how aquatic species respond to incidental exposure to Cu-based nanopesticides is challenging because of the expected very low concentrations in the environment, and the two forms of exposure that may occur, namely to Cu ions and Cu nanoparticles. We conducted Cu speciation, tissue uptake, and 7-day toxicity laboratory experiments to test how a model estuarine organism, the amphipod Leptocheirus plumulosus, responded to two popular Cu-based nanopesticides, CuPRO and Kocide, and conventional CuCl2. Exposure concentrations ranged from 0 to 2.5 ppm, which were similar to those found in estuarine water located downstream of agricultural fields. Cu dissolution rates were much slower for the nanopesticides than the ionic formula, and Cu body burden in amphipods increased approximately linearly with the nominal exposure concentration. Amphipod survival declined in a normal dose-response manner with no difference among Cu formulations. Growth and movement rates after 7 days revealed no difference among exposure levels when analyzed with conventional statistical methods. By contrast, analysis of respiration rates, inferred from biomass measurements, with a bioenergetic toxicodynamic model indicated potential for population-level effects of exposure to very low-levels of the two nanopesticides, as well as the control contaminant CuCl2. Our results indicate that toxicity assessment of environmental trace pollutant concentrations may go undetected with traditional ecotoxicological tests. We present a process integrating toxicity test results and toxicodynamic modeling that can improve our capacity to detect and predict environmental impacts of very low levels of nanomaterials released into the environment.


Assuntos
Anfípodes/efeitos dos fármacos , Cobre/toxicidade , Estuários , Nanopartículas/toxicidade , Praguicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Anfípodes/química , Animais , Carga Corporal (Radioterapia) , Cobre/análise , Relação Dose-Resposta a Droga , Nanopartículas/análise , Praguicidas/análise , Água do Mar/química , Poluentes Químicos da Água/análise
6.
Aquat Toxicol ; 214: 105244, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31352074

RESUMO

High-throughput proteomics can be performed on animal sentinels for discovering key molecular biomarkers signing the physiological response and adaptation of organisms. Ecotoxicoproteomics is today amenable by means of proteogenomics to small arthropods such as Gammarids which are well known sentinels of aquatic environments. Here, we analysed two regional Gammarus pulex populations to characterize the potential proteome divergence induced in one site by natural bioavailable mono-metallic contamination (cadmium) compared to a non-contaminated site. Two RNAseq-derived protein sequence databases were established previously on male and female individuals sampled from the reference site. Here, individual proteomes were acquired on 10 male and 10 female paired organisms sampled from each site. Proteins involved in protein lipidation, carbohydrate metabolism, proteolysis, innate immunity, oxidative stress response and lipid transport were found more abundant in animals exposed to cadmium, while hemocyanins were found in lower abundance. The intrapopulation proteome variability of long-term exposed G. pulex was inflated relatively to the non-contaminated population. These results show that, while remaining a challenge for such organisms with not yet sequenced genomes, taking into account intrapopulation variability is important to better define the molecular players induced by toxic stress in a comparative field proteomics approach.


Assuntos
Anfípodes/metabolismo , Cádmio/toxicidade , Proteoma/metabolismo , Proteômica , Anfípodes/efeitos dos fármacos , Animais , Análise por Conglomerados , Feminino , Masculino , Análise de Componente Principal , Poluentes Químicos da Água/toxicidade
7.
Environ Sci Pollut Res Int ; 26(21): 21905-21914, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31140088

RESUMO

In this presented study, it was aimed to determine the effects of pesticides on non-target organisms on the freshwater amphipod, Gammarus pulex, by biochemical responses. Acute toxicity value (LC50) in G. pulex of the dimethoate pesticide was determined. The superoxide dismutase (SOD), glutathione S-transferaz (GST), glutathione peroxidase (GPx), and catalase (CAT) activities and malondialdehyde (MDA), glutathione (GSH) levels of the G. pulex organism exposed to the subletal concentrations were analyzed by ELISA for 24 and 96 h. In conclusion, the present study demonstrated the abilities of dimethoate pesticide induce to oxidative stress. The results revealed that MDA, GSH levels SOD, CAT, GPx, and GST activities of G. pulex can be used as an effective biomarkers.


Assuntos
Anfípodes/efeitos dos fármacos , Dimetoato/toxicidade , Enzimas/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Antioxidantes/metabolismo , Ecotoxicologia/métodos , Biomarcadores Ambientais/efeitos dos fármacos , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Praguicidas/toxicidade , Testes de Toxicidade Aguda
8.
Environ Toxicol Pharmacol ; 70: 103191, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31108396

RESUMO

Sublethal effects of water-accommodated fraction (WAF) from crude oil of Neuquén basin, Northern Patagonia-Argentina, were examined on both antioxidant and detoxification system of Hyalella curvispina adults collected in Los Barreales (LB) lake and in an oil-polluted stream (DS). The effects of WAF exposure during 6, 24 and 48 h were evaluated in the glutathione content (GSH) and glutathione S-transferase (GST), catalase (CAT) and cytochrome P450 (CYP450) activities. Populations from DS and LB showed not only different basal GSH content and enzyme activities but also different behavior to WAF exposure. LB population exposed to WAF showed a significant increase in GSH content, CAT and CYP450 activities, compared to control group. DS population presented high basal levels in CAT and CYP activity compared with LB population, but their response to WAF exposure was minor. Amphipods from DS, chronically exposed to hydrocarbons, were adapted to their environment.


Assuntos
Anfípodes/efeitos dos fármacos , Hidrocarbonetos/toxicidade , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Anfípodes/metabolismo , Animais , Catalase/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Água , Poluição Química da Água/efeitos adversos
9.
Sci Total Environ ; 657: 1246-1252, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30677891

RESUMO

Wastewater treatment plant (WWTP) effluents release complex mixtures of organic and inorganic micropollutants, including endocrine disrupting compounds, into receiving water bodies. These substances may cause adverse effects in aquatic communities as well as in ecosystem functions they provide. The aim of this study was to determine the potential impact of secondary treated wastewater released into a small Swiss stream on leaf litter decomposition based on feeding rates of the amphipod shredder Gammarus fossarum measured in situ. Additionally, endocrine disrupting effects downstream of the WWTP were investigated by measuring vitellogenin (vg) induction in male gammarids exposed in situ, as well as estrogen receptor activation using the Yeast Estrogen Screen (YES) involving passive sampler and grab water sample extracts. Extracts were also analysed for 424 organic micropollutants and selected transformation products. Gammarid feeding rate was significantly reduced 100, 200 and 400 m downstream of the WWTP effluent relative to the upstream site. While YES results showed significantly elevated estrogenicity at downstream sites, vg production in male gammarids was not induced. A laboratory experiment, in which gammarids were exposed to WWTP effluent, supported this observation. These results, hence, suggest that treated wastewater released into aquatic ecosystems impairs the ecosystem function of leaf litter decomposition. Vg levels in male gammarids measured by UPLC-MS/MS did, however, not alter.


Assuntos
Anfípodes/efeitos dos fármacos , Anfípodes/fisiologia , Vitelogeninas/metabolismo , Águas Residuárias/toxicidade , Animais , Ingestão de Alimentos/efeitos dos fármacos , Ecotoxicologia/métodos , Biomarcadores Ambientais , Estrogênios/análise , Suíça , Vitelogeninas/análise , Poluentes Químicos da Água/toxicidade , Qualidade da Água
10.
Environ Toxicol Chem ; 37(9): 2340-2349, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29802730

RESUMO

Uranium (U) mining and milling release arsenic (As), nickel (Ni) and U to receiving waters, which accumulate in sediments. The objective of the present study was to investigate if As, Ni, and U concentrations in tissue residue of Hyalella azteca, overlying water, sediment porewater, and solids could predict juvenile and adult survival and growth in conditions similar to lake sediments downstream of U mines and mills. We conducted 14-d static sediment toxicity tests spiked with U, As, and Ni salts. For U, we spiked uranyl nitrate with sodium bicarbonate to limit U precipitation once in contact with circumneutral sediment. The median lethal concentrations for As, Ni, and U of juveniles and adults based on measured concentrations in sediments were 134 and 165 µg/g, 370 and 787 µg/g, and 48 and 214 µg/g, respectively. Adult survival and growth linearly decreased with increasing bioaccumulation. For juveniles, metal accumulation linearly predicted survival. We calculated median lethal body concentrations for juveniles and adults of 5 and 36 µg As/g, 14 and 49 µg Ni/g, and 0.4 and 1.0 µg U/g. The concentrations of As, Ni, and U in tissue residue leading to a 20% decrease in adult growth were 32 µg As/g, 44 µg Ni/g, and 1 µg U/g. Overall, the present study showed that U was the most toxic element, followed by As and Ni; that juveniles were more sensitive to the 3 metals tested than adults; and that threshold body concentrations can support assessment of benthic invertebrate community impairment. Environ Toxicol Chem 2018;37:2340-2349. © 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Assuntos
Anfípodes/metabolismo , Arsênio/toxicidade , Bioensaio/métodos , Sedimentos Geológicos/química , Níquel/toxicidade , Testes de Toxicidade , Urânio/toxicidade , Anfípodes/efeitos dos fármacos , Animais , Dose Letal Mediana , Poluentes Químicos da Água/toxicidade
11.
Environ Toxicol Pharmacol ; 60: 209-215, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29747152

RESUMO

Chemical and toxicological crude oil analysis was performed on water-accommodated fraction of oil (WAF). This study characterized the chemical composition of WAF and its dissipation over a period of 192 h. Acute (96 h) and chronic (14 d) toxicity of WAF were evaluated on Hyalella curvispina from both reference (Los Barreales lake, LB) and hydrocarbon-contaminated (Durán stream, DS) sites. The total hydrocarbon (TPHs) concentration in WAF was 2.18 mg L-1. The dissipation rates of hydrocarbons in WAF showed a first-order kinetics, with half-lives ranging between 65 h-200 h. Amphipods from LB showed acute and chronic LC50 values of 0.33 and 0.018 mg L-1, respectively. Amphipods from DS exposed to pure WAF showed no mortality in either acute or chronic assays. Further biochemical and molecular research is required to determine the mechanisms underlying the resistance to WAF exposure on DS amphipods.


Assuntos
Anfípodes/efeitos dos fármacos , Hidrocarbonetos/análise , Petróleo/análise , Poluentes Químicos da Água/análise , Animais , Monitoramento Ambiental/métodos , Petróleo/toxicidade , Poluição por Petróleo , América do Sul
12.
Environ Toxicol Chem ; 37(6): 1757-1766, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29528149

RESUMO

Currently, risk assessment for oil contamination does not consider behavioral responses of benthos to oil toxicity. Avoidance of oil-contaminated sediment by benthic amphipods, however, may be a highly sensitive endpoint for sublethal effects of commonly used distillate fuels. In the present study, the avoidance behavior of temperate freshwater (Gammarus pulex) and marine (Gammarus locusta) amphipods was tested by allowing them to choose between a reference sediment and a distillate marine grade A (DMA) oil-spiked sediment. Avoidance of DMA-spiked sediment at 1000 mg/kg dry weight was significant within the total exposure time (96 h) in G. pulex and within the first 72 h in G. locusta in 1 of 2 tests. Absence of DMA avoidance at lower concentrations (≤250 mg/kg dry wt) indicates that test species can only detect DMA above these concentrations. However, sensitivity to oil may vary according to the phenology and physiological conditions of the populations involved, such as the species temperature tolerance and reproductive stage. The results suggest that avoidance tests may be used as an alternative to traditional chronic toxicity tests provided that a causal link between avoidance and long-term effects can be established. Environ Toxicol Chem 2018;37:1757-1766. © 2018 SETAC.


Assuntos
Anfípodes/efeitos dos fármacos , Óleos Combustíveis/toxicidade , Sedimentos Geológicos , Poluentes Químicos da Água/toxicidade , Anfípodes/fisiologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Água Doce , Reprodução/efeitos dos fármacos , Água do Mar
13.
Environ Toxicol Chem ; 37(5): 1378-1386, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29315781

RESUMO

The present study presents a bioconcentration model for non-ionic, polar, and ionizable organic compounds in amphipod based on first-order kinetics. Uptake rate constant k1 is modeled as logk1=10.81logKOW + 0.15 (root mean square error [RMSE] = 0.52). Biotransformation rate constant kM is estimated using an existing polyparameter linear free energy relationship model. Respiratory elimination k2 is calculated as modeled k1 over theoretical biota-water partition coefficient Kbiow considering the contributions of lipid, protein, carbohydrate, and water. With negligible contributions of growth and egestion over a typical amphipod bioconcentration experiment, the bioconcentration factor (BCF) is modeled as k1 /(kM + k2 ) (RMSE = 0.68). The proposed model performs well for non-ionic organic compounds (log KOW range = 3.3-7.62) within 1 log-unit error margin. Approximately 12% of the BCFs are underpredicted for polar and ionizable compounds. However, >50% of the estimated k2 values are found to exceed the total depuration rate constants. Analyses suggest that these excessive k2 values and underpredicted BCFs reflect underestimation in Kbiow , which may be improved by incorporating exoskeleton as a relevant partitioning component and refining the membrane-water partitioning model. The immediate needs to build up high-quality experimental kM values, explore the sorptive role of exoskeleton, and investigate the prevalence of k2 overestimation in other bioconcentration models are also identified. The resulting BCF model can support, within its limitations, the ecotoxicological and risk assessment of emerging polar and ionizable organic contaminants in aquatic environments and advance the science of invertebrate bioaccumulation. Environ Toxicol Chem 2018;37:1378-1386. © 2018 SETAC.


Assuntos
Anfípodes/metabolismo , Modelos Biológicos , Compostos Orgânicos/toxicidade , Anfípodes/efeitos dos fármacos , Animais , Biotransformação/efeitos dos fármacos , Ecotoxicologia , Cinética , Poluentes Químicos da Água/toxicidade
14.
Environ Toxicol Chem ; 37(1): 61-69, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28475262

RESUMO

The US Environmental Protection Agency (USEPA) is reviewing the protectiveness of the national ambient water quality criteria (WQC) for aluminum (Al) and compiling a toxicity data set to update the WQC. Freshwater mussels are one of the most imperiled groups of animals in the world, but little is known about their sensitivity to Al. The objective of the present study was to evaluate acute 96-h and chronic 28-d toxicity of Al to a unionid mussel (Lampsilis siliquoidea) and a commonly tested amphipod (Hyalella azteca) at a pH of 6 and water hardness of 100 mg/L as CaCO3 . The acute 50% effect concentration (EC50) for survival of both species was >6200 µg total Al/L. The EC50 was greater than all acute values in the USEPA acute Al data set for freshwater species at a pH range of 5.0 to <6.5 and hardness normalized to 100 mg/L, indicating that the mussel and amphipod were insensitive to Al in acute exposures. The chronic 20% effect concentration (EC20) based on dry weight was 163 µg total Al/L for the mussel and 409 µg total Al/L for the amphipod. Addition of the EC20s to the USEPA chronic Al data set for pH 5.0 to <6.5 would rank the mussel (L. siliquoidea) as the fourth most sensitive species and the amphipod (H. azteca) as the fifth most sensitive species, indicating the 2 species were sensitive to Al in chronic exposures. The USEPA-proposed acute and chronic WQC for Al would adequately protect the mussel and amphipod tested; however, inclusion of the chronic data from the present study and recalculation of the chronic criterion would likely lower the proposed chronic criterion. Environ Toxicol Chem 2018;37:61-69. Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Assuntos
Alumínio/toxicidade , Anfípodes/fisiologia , Bivalves/fisiologia , Poluentes Químicos da Água/toxicidade , Anfípodes/efeitos dos fármacos , Animais , Bivalves/efeitos dos fármacos , Feminino , Água Doce/química , Dureza , Concentração de Íons de Hidrogênio , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica , Água , Qualidade da Água
15.
Arch Environ Contam Toxicol ; 74(3): 414-430, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28687868

RESUMO

Chemical dispersants can be a useful tool to mitigate oil spills. This study examined potential risks to sensitive estuarine species by comparing the toxicity of two dispersants (Corexit® EC9500A and Finasol® OSR 52) individually and in chemically enhanced water-accommodated fractions (CEWAFs) of Louisiana Sweet Crude oil. Acute toxicity thresholds and sublethal biomarker responses were determined in seven species (sheepshead minnow, grass shrimp, mysid, amphipod, polychaete, hard clam, mud snail). Comparing median lethal (LC50) values for the dispersants, Finasol was generally more toxic than Corexit and had greater sublethal toxicity (impaired embryonic hatching, increased lipid peroxidation, decreased acetylcholinesterase activity). The nominal concentration-based mean LC50 for all species tested with Corexit was 150.31 mg/L compared with 43.27 mg/L with Finasol. Comparing the toxicity of the CEWAFs using the nominal concentrations (% CEWAF), Corexit-CEWAFs appeared more toxic than Finasol-CEWAFs; however, when LC50 values were calculated using measured hydrocarbon concentrations, the Finasol-CEWAFs were more toxic. There was greater dispersion efficiency leading to greater hydrocarbon concentrations measured in the Corexit-CEWAF solutions than in equivalent Finasol-CEWAF solutions. The measured concentration-based mean LC50 values for all species tested with Corexit-CEWAF were 261.96 mg/L total extractable hydrocarbons (TEH) and 2.95 mg/L total polycyclic aromatic hydrocarbons (PAH), whereas the mean LC50 values for all species tested with Finasol-CEWAF were 23.19 mg/L TEH and 0.49 mg/L total PAH. Larval life stages were generally more sensitive to dispersants and dispersed oil than adult life stages within a species. These results will help to inform management decisions regarding the use of oil-spill dispersants.


Assuntos
Ecotoxicologia/métodos , Poluentes Químicos da Água/toxicidade , Anfípodes/efeitos dos fármacos , Animais , Crustáceos/efeitos dos fármacos , Cyprinidae/embriologia , Embrião não Mamífero , Estuários , Larva , Louisiana , Compostos Orgânicos/toxicidade , Petróleo , Poluição por Petróleo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Caramujos/efeitos dos fármacos , Testes de Toxicidade/métodos
16.
Ecotoxicol Environ Saf ; 140: 206-213, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28260686

RESUMO

Biomarkers of exposure can be used to identify specific contaminants that are adversely affecting aquatic organisms. However, it remains prohibitively costly to investigate multiple novel biomarkers of exposure in a non-model species, despite the development of next-generation sequencing technology. In this study, we focused on the use of cDNA-amplified fragment length polymorphism (AFLP) as a cost-effective biomarker discovery tool to test whether it could identify biomarkers of exposure in the non-model amphipod species Grandidierella japonica. Loci were identified that were differentially expressed in amphipods exposed to reference chemicals (Cu, Zn, and nicotine) and to an environmental sample (road dust) at sublethal concentrations. Eight loci were shown to respond consistently to nicotine at different concentrations, but not to Cu or Zn. Some of the loci also responded to an environmental road dust sample containing nicotine. These findings suggest that loci identified using cDNA-AFLP could be used as biomarkers of nicotine exposure in environmental samples with complex matrices. Further studies with other organisms and toxicants are needed, but we have demonstrated that the use of cDNA-AFLP to identify biomarkers for ecotoxicological studies of non-model species is at least feasible.


Assuntos
Anfípodes/genética , DNA Complementar/genética , Polimorfismo Genético/genética , Anfípodes/efeitos dos fármacos , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados/métodos , Animais , Biomarcadores/metabolismo , Cobre/toxicidade , Poeira , Exposição Ambiental/efeitos adversos , Loci Gênicos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nicotina/toxicidade , RNA Mensageiro/genética , Meios de Transporte , Zinco/toxicidade
17.
Environ Toxicol Chem ; 36(9): 2436-2443, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28252216

RESUMO

The effects of environmental contaminants on arthropod embryo stages have been poorly investigated in ecotoxicology. Moreover, many of these tests used hatching success as the sole metric, although it is possible to detect many more subtle effects. After a detailed description of embryogenesis in Gammarus fossarum, the present study reports on the sublethal effects of cadmium (Cd) exposure during embryonic development in G. fossarum. Embryos were first directly exposed in multiwell plates throughout the entire embryonic cycle (23 d) to increasing Cd concentrations (0, 1.5, and 3.0 µg/L; 120 embryos/concentration). Then, to assess the representativeness of the gammarid embryo assay performed in multiwell plates, embryos were exposed to similar Cd concentrations through the maternal open brood pouch. Next, to pinpoint sensitive periods of development, embryos were directly exposed to 3.0 µg/L of Cd for shorter periods of time: during gastrulation, organogenesis, and hatching. After hatching, the following parameters were measured in the newborn individuals: 1) body mass; 2) activity of the enzyme phenoloxidase, a key enzyme of the arthropod immune system; and 3) locomotor activity. Phenoloxidase activity was strongly inhibited in newborn individuals of embryos exposed (either in multiwell plates or in the maternal brood pouch) to 3.0 µg/L Cd throughout embryonic development. Furthermore, strong detrimental locomotor effects were observed in newborn individuals of embryos directly exposed to 3.0 µg/L. Exposures for shorter periods of time were not sufficient to induce such effects; no sensitive period could be determined. By bringing new insights into a critical time window of exposure, the gammarid embryo assay could provide a novel and interesting addition to existing bioassays in gammarids. Environ Toxicol Chem 2017;36:2436-2443. © 2017 SETAC.


Assuntos
Anfípodes/efeitos dos fármacos , Cloreto de Cádmio/toxicidade , Poluentes Químicos da Água/toxicidade , Anfípodes/embriologia , Animais , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Testes de Toxicidade/métodos
18.
Environ Toxicol Chem ; 36(9): 2444-2455, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28256740

RESUMO

Toxicity testing with Antarctic species is required for risk assessment of fuel spills in Antarctic coastal waters. The lethal and sublethal (movement behavior) sensitivities of adults and juveniles of the Antarctic amphipod Paramoera walkeri to the water accommodated fractions (WAFs) of 3 fuels were estimated in extended-duration tests at -1 °C to 21 d. Response of P. walkeri for lethal hydrocarbon concentrations was slow, with 50% lethal concentrations (LC50s) first able to be estimated at 7 d for adults exposed to Special Antarctic Blend diesel (SAB), which had the highest hydrocarbon concentrations of the 3 fuel WAFs. Juveniles showed greater response to marine gas oil (MGO) and intermediate residual fuel oil (IFO 180) at longer exposure durations and were most sensitive at 21 d to IFO 180 (LC50 = 12 µg/L). Adults were initially more sensitive than juveniles; at 21 d, however, juveniles were more than twice as sensitive as adults to SAB (LC50 = 153 µg/L and 377 µg/L, respectively). Significant effects on movement behavior were evident at earlier time points and lower concentrations than was mortality in all 3 fuel WAFs, and juveniles were highly sensitive to sublethal effects of MGO. These first estimates of Antarctic amphipod sensitivity to diesel and fuel oils in seawater contribute to the development of ecologically relevant risk assessments for management of hydrocarbon contamination in the region. Environ Toxicol Chem 2017;36:2444-2455. © 2017 SETAC.


Assuntos
Anfípodes/efeitos dos fármacos , Óleos Combustíveis/toxicidade , Poluentes Químicos da Água/toxicidade , Anfípodes/fisiologia , Animais , Regiões Antárticas , Dose Letal Mediana , Água do Mar , Testes de Toxicidade
19.
Arch Environ Contam Toxicol ; 72(2): 189-199, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28040852

RESUMO

Canada's oil sands hold the third largest petroleum reserves worldwide and have experienced rapid economic growth. The oil sands region provides an ideal location for studying local adaptations through reciprocal transplant (RT) because populations within the region have been historically exposed to naturally occurring bitumen. Our objectives were to (1) determine if Hyalella azteca from habitats within the oil sands region exhibited increased tolerance to constituents associated with industrial bitumen extraction compared with H. azteca from habitats outside the region; and (2) determine if any observed tolerance was attributable to local adaptation. Five populations of H. azteca were reciprocally transplanted from reclaimed and reference wetlands: four from local wetlands plus one naïve laboratory population. Survival, toxicity, and behaviour were measured before and after the RT period. Survival varied by population and site. These results show that the differences in responses among populations are likely not attributable to local adaptation and that laboratory populations of H. azteca provide ecologically relevant results when tested in the field.


Assuntos
Anfípodes/efeitos dos fármacos , Hidrocarbonetos/toxicidade , Poluentes Químicos da Água/toxicidade , Adaptação Biológica/efeitos dos fármacos , Alberta , Anfípodes/genética , Animais , Longevidade/efeitos dos fármacos , Campos de Petróleo e Gás , Áreas Alagadas
20.
Chemosphere ; 168: 1365-1374, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27919536

RESUMO

Urban road dust can potentially have adverse effects on ecosystems if it is discharged into receiving waters. This study investigated the causes of highway road dust toxicity by performing sediment toxicity identification evaluation (TIE) tests with an estuarine amphipod, Grandidierella japonica. In addition to metals and polycyclic aromatic hydrocarbons, which are traditionally considered to be the major toxicants in road runoff, we focused on dissolved nicotine as a causative toxicant. The sediment TIE results suggested that organic contaminants contributed to the majority of toxicity, and that the contribution of unionized nicotine to the toxicity was the highest among the chemicals considered. However, additional mortality tests with 48-h pulsed nicotine exposure demonstrated that exposure to nicotine at the same concentration as the baseline level in TIE tests did not cause significant 10-day amphipod mortality. Thus, the road dust toxicity could not be explained only by unionized nicotine, thereby suggesting contributions from joint effects of the measured toxicants and the presence of other unmeasured factors.


Assuntos
Anfípodes/efeitos dos fármacos , Poeira , Poluentes Ambientais/toxicidade , Animais , Poeira/análise , Monitoramento Ambiental , Metais/toxicidade , Nicotina/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA