Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 315
Filtrar
1.
Biomed Pharmacother ; 175: 116680, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703506

RESUMO

Cisplatin (DDP) resistance poses a significant challenge in the treatment of ovarian cancer. Studies have shown that the combination of certain polysaccharides derived from plants with DDP is an effective approach to overcoming drug resistance in some cancers. Angelica sinensis (Oliv.) Diels has been used for centuries in China to treat gynecological ailments. Numerous studies indicate that Angelica sinensis polysaccharide (ASP), an extract from Angelica sinensis, can inhibit various forms of cancer. However, the impact of ASP on ovarian cancer remains unexplored. Through both in vitro and in vivo experiments, our study revealed the capability of ASP to effectively reversing DDP resistance in cisplatin-resistant ovarian cancer cells, while exhibiting acceptable safety profiles in vivo. To elucidate the mechanism underlying drug resistance reversal, we employed RNA-seq analysis and identified GPX4 as a key gene. Considering the role of GPX4 in ferroptosis, we conducted additional research to explore the effects of combining ASP with DDP on SKOV3/DDP cells. In summary, our findings demonstrate that the combination of ASP and DDP effectively suppresses GPX4 expression in SKOV3/DDP cells, thereby reversing their resistance to DDP.


Assuntos
Angelica sinensis , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Ferroptose , Neoplasias Ovarianas , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Polissacarídeos , Cisplatino/farmacologia , Feminino , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Ferroptose/efeitos dos fármacos , Polissacarídeos/farmacologia , Angelica sinensis/química , Linhagem Celular Tumoral , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Animais , Camundongos Nus , Camundongos , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antineoplásicos/farmacologia
2.
Biochem Pharmacol ; 225: 116295, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38762145

RESUMO

Breast cancer (BC) is one of the most common malignant tumors in women. Angelica sinensis polysaccharide (ASP) is one of the main components extracted from the traditional Chinese medicine Angelica sinensis. Research has shown that ASP affects the progression of various cancers by regulating miRNA expression. This study aimed to explore the specific molecular mechanism by which ASP regulates BC progression through miR-3187-3p. After the overexpression or knockdown of miR-3187-3p and PDCH10 in BC cells, the proliferation, migration, invasion, and phenotype of BC cells were evaluated after ASP treatment. Bioinformatics software was used to predict the target genes of miR-3187-3p, and luciferase gene reporter experiments reconfirmed the targeted binding relationship. Subcutaneous tumor formation experiments were conducted in nude mice after the injection of BC cells. Western blot and Ki-67 immunostaining were performed on the tumor tissues. The results indicate that ASP can significantly inhibit the proliferation, migration, and invasion of BC cells. ASP can inhibit the expression of miR-3187-3p in BC cells and upregulate the expression of PDCH10 by inhibiting miR-3187-3p. A regulatory relationship exists between miR-3187-3p and PDCH10. ASP can inhibit the expression of ß-catenin and phosphorylated glycogen synthase kinase-3ß (p-GSK-3ß) proteins through miR-3187-3p/PDCH10 and prevent the occurrence of malignant biological behavior in BC. Overall, this study revealed the potential mechanism by which ASP inhibits the BC process. ASP mediates the Wnt/ß-catenin signaling pathway by affecting the miR-3187-3p/PDCH10 molecular axis, thereby inhibiting the proliferation, migration, invasion, and other malignant biological behaviors of BC cells.


Assuntos
Angelica sinensis , Neoplasias da Mama , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs , Polissacarídeos , Via de Sinalização Wnt , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Feminino , Angelica sinensis/química , Via de Sinalização Wnt/efeitos dos fármacos , Camundongos , Polissacarídeos/farmacologia , Linhagem Celular Tumoral , beta Catenina/metabolismo , beta Catenina/genética , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células MCF-7
3.
Eur J Pharm Sci ; 199: 106794, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38788908

RESUMO

Myocardial fibrosis can induce cardiac dysfunction and remodeling. Great attention has been paid to traditional chinese medicine (TCM) 's effectiveness in treating MF. Radix Angelica sinensis (Oliv.) Diels and Radix Astragalus mongholicus Bunge ultrafiltration extract (RAS-RA), which is a key TCM compound preparation, have high efficacy in regulating inflammation. However, studies on its therapeutic effect on radiation-induced myocardial fibrosis (RIMF) are rare. In this study, RAS-RA had therapeutic efficacy in RIMF and elucidated its mechanism of action. First, we formulated the prediction network that described the relation of RAS-RA with RIMF according to data obtained in different databases. Then, we conducted functional enrichment to investigate the functions and pathways associated with potential RIMF targets for RAS-RA. In vivo experiments were also performed to verify these functions and pathways. Second, small animal ultrasound examinations, H&E staining, Masson staining, transmission electron microscopy, Enzyme-linked immunosorbent assay (ELISA), Western-blotting, Immunohistochemical method and biochemical assays were conducted to investigate the possible key anti-RIMF pathway in RAS-RA. In total, 440 targets were detected in those 21 effective components of RAS-RA; meanwhile, 1,646 RIMF-related disease targets were also discovered. After that, PPI network analysis was conducted to identify 20 key targets based on 215 overlap gene targets. As indicated by the gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis results, inflammation and PI3K/AKT/mTOR pathways might have important effects on the therapeutic effects on RIMF. Molecular docking analysis revealed high binding of effective components to targets (affinity < -6 kcal/mol). Based on experimental verification results, RAS-RA greatly mitigated myocardial fibrosis while recovering the cardiac activity of rats caused by X-rays. According to relevant protein expression profiles, the PI3K/AKT/mTOR pathway was important for anti-fibrosis effect of RAS-RA. Experimental studies showed that RAS-RA improved cardiac function, decreased pathological damage and collagen fiber deposition in cardiac tissues, and improved the mitochondrial structure of the heart of rats. RAS-RA also downregulated TNF-α, IL-6, and IL-1ß levels. Additionally, RAS-RA improved the liver and kidney functions and pathological injury of rat kidney and liver tissues, enhanced liver and kidney functions, and protected the liver and kidneys. RAS-RA also increased PI3K, AKT and mTOR protein levels within cardiac tissues and downregulated α-SMA, Collagen I, and Collagen III. The findings of this study suggested that RAS-RA decreased RIMF by suppressing collagen deposition and inflammatory response by inhibiting the PI3K/AKT/mTOR pathway. Thus, RAS-RA was the potential therapeutic agent used to alleviate RIMF.


Assuntos
Angelica sinensis , Medicamentos de Ervas Chinesas , Fibrose , Farmacologia em Rede , Ratos Sprague-Dawley , Animais , Angelica sinensis/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Masculino , Ratos , Astrágalo/química , Miocárdio/patologia , Miocárdio/metabolismo , Ultrafiltração/métodos , Transdução de Sinais/efeitos dos fármacos , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Serina-Treonina Quinases TOR/metabolismo
4.
Int Immunopharmacol ; 133: 112025, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38677093

RESUMO

Angelica sinensis is a perennial herb widely distributed around the world, and angelica polysaccharide (APS) is a polysaccharide extracted from Angelica sinensis. APS is one of the main active components of Angelica sinensis. A large number of studies have shown that APS has hematopoietic, promoting blood circulation, radiation resistance, lowering blood glucose, enhancing the body immunity and other pharmacological effects in a variety of diseases. However, different extraction methods and extraction sites greatly affect the efficacy of APS. In recent years, with the emerging of new technologies, there are more and more studies on the combined application and structural modification of APS. In order to promote the comprehensive development and in-depth application of APS, this narrative review systematically summarizes the effects of different drying methods and extraction sites on the biological activity of APS, and the application of APS in the treatment of diseases, hoping to provide a scientific basis for the experimental study and clinical application of APS.


Assuntos
Angelica sinensis , Polissacarídeos , Humanos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/uso terapêutico , Animais , Angelica sinensis/química , Angelica/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico
5.
Molecules ; 29(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38338476

RESUMO

The present work aimed to study the feasibility of Angelica sinensis polysaccharide (ASP) as an instinctive liver targeting drug delivery carrier for oridonin (ORI) in the treatment of hepatocellular carcinoma (HCC). ASP was reacted with deoxycholic acid (DOCA) via an esterification reaction to form an ASP-DOCA conjugate. ORI-loaded ASP-DOCA nanoparticles (ORI/ASP-DOCA NPs) were prepared by the thin-film water method, and their size was about 195 nm in aqueous solution. ORI/ASP-DOCA NPs had a drug loading capacity of up to 9.2%. The release of ORI in ORI/ASP-DOCA NPs was pH-dependent, resulting in rapid decomposition and accelerated drug release at acidic pH. ORI/ASP-DOCA NPs significantly enhanced the accumulation of ORI in liver tumors through ASGPR-mediated endocytosis. In vitro results showed that ORI/ASP-DOCA NPs increased cell uptake and apoptosis in HepG2 cells, and in vivo results showed that ORI/ASP-DOCA NPs caused effective tumor suppression in H22 tumor-bearing mice compared with free ORI. In short, ORI/ASP-DOCA NPs might be a simple, feasible, safe and effective ORI nano-drug delivery system that could be used for the targeted delivery and treatment of liver tumors.


Assuntos
Angelica sinensis , Carcinoma Hepatocelular , Acetato de Desoxicorticosterona , Diterpenos do Tipo Caurano , Neoplasias Hepáticas , Nanopartículas , Camundongos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas/química , Portadores de Fármacos/química , Polissacarídeos/uso terapêutico
6.
Int J Biol Macromol ; 256(Pt 2): 128016, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37967601

RESUMO

Iron deficiency anemia (IDA) is a common micronutrient deficiency among pregnant women with deleterious maternal and fetal outcomes. Angelica sinensis polysaccharide (ASP) has been shown to reduce hepcidin expression in IDA rats. However, the role of ASP in the treatment of IDA during pregnancy and its potential mechanisms have not been investigated. Moreover, the effect of ASP on duodenal iron absorption is not clear. The aim of this study was to investigate the preventive efficacy of ASP against IDA during pregnancy and clarify the underlying mechanisms. Our results showed that ASP improved maternal hematological parameters, increased serum iron, maternal tissue iron, and fetal liver iron content, and improved pregnancy outcomes. Additionally, ASP combated oxidative stress caused by iron deficiency by improving the body's antioxidant capacity. Western blot results demonstrated that ASP downregulated hepcidin expression by blocking the BMP6/SMAD4, JAK2/STAT3 and TfR2/HFE signaling pathways, which in turn increased the expression of FPN1 in the liver, spleen, and duodenum and promoted iron cycling in the body. Furthermore, ASP increased the expression of DMT1 and Dcytb in the duodenum, thereby facilitating duodenal iron uptake. Our results suggest that ASP is a potential agent for the prevention and treatment of IDA during pregnancy.


Assuntos
Angelica sinensis , Hepcidinas , Humanos , Gravidez , Ratos , Feminino , Animais , Hepcidinas/metabolismo , Ferro/metabolismo , Angelica sinensis/metabolismo , Ratos Sprague-Dawley , Polissacarídeos/farmacologia
7.
J Ethnopharmacol ; 322: 117621, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38154524

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Angelica Sinensis Radix (ASR) is a commonly used Chinese medicine known for its effects on tonifying blood, promoting blood circulation, and alleviating pain associated with menstrual regulation. Additionally, it has been used in the treatment of vascular cognitive impairment (VCI). The primary pharmacodynamic agent within ASR is volatile oil of Angelica Sinensis Radix (VOASR), which has demonstrated efficacy in combating cognitive impairment, although its mechanism remains unclear. OBJECTIVE: This study aimed to elucidate the potential molecular mechanisms underlying VOASR's improvement of cognitive function in cerebral ischemic mice. METHODS: A model of cerebral ischemic mice was established through unilateral common carotid artery occlusion (UCCAO) surgery, followed by intervention with VOASR. Cognitive function was assessed using the Morris water maze (MWM) test, while RT-qPCR was utilized to measure the differential expression of miR-301a-3p in the hippocampus. To evaluate cognitive function and hippocampal protein differences, wild-type mice and miR-301a-3p knockout mice were subjected to the MWM test and iTRAQ protein profiling. The relationship between miR-301a-3p and potential target genes was validated through a Dual-Luciferase Reporter experiment. RT-qPCR and Western blot were employed to determine the differential expression of Ppp2ca and synaptic plasticity-related proteins in the mouse hippocampus. RESULTS: Intervention with VOASR significantly improved cognitive impairment in cerebral ischemic mice and reduced the expression of miR-301a-3p in the hippocampus. Our findings suggest that miR-301a-3p may regulate cognitive function by targeting Ppp2ca. Furthermore, VOASR intervention led to an increase in the expression of Ppp2ca and synaptic plasticity-related proteins. CONCLUSION: Our study indicates that VOASR may be involved in regulating cognitive function by inhibiting miR-301a-3p, consequently increasing the expression of Ppp2ca and synaptic plasticity proteins. These results provide a new target and direction for the treatment of cognitive dysfunction.


Assuntos
Angelica sinensis , Isquemia Encefálica , MicroRNAs , Óleos Voláteis , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/genética , Cognição
8.
J Ethnopharmacol ; 322: 117626, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38154523

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sophora flavescens Ait.-Angelica sinensis(Oliv.) Diels drug pairing (SA) is a transformed drug pairing from Shengui pill, a traditional Chinese medicine prescription in the ninth volume of Traditional Chinese Medicine classic "Gu Jin Yi Jian", which is famous for clearing heat, moistening dryness, and promoting blood circulation. It is commonly used in the treatment of eczema, a skin condition that causes itching and inflammation. Despite its widespread use, there is still limited research on the mechanism of how SA treats eczema. This paper aims to fill this gap by conducting animal experiments to uncover the mechanism behind SA's therapeutic effects on eczema. Our findings provide a solid foundation for the clinical use of this TCM prescription. AIM OF THE STUDY: The basic purpose of this study is to clarify the therapeutic mechanism of Sophora flavescens-Angelica sinensis (SA) in the treatment and control of eczema. MATERIALS AND METHODS: The chemical compositions of SA were analyzed using HPLC-Q-Orbitrap-MS. In vivo, a mouse model of eczema was created, and the serum levels of TNF-α and IL-1ß were quantified using an enzyme-linked immunosorbent assay (ELISA). Hematoxylin and eosin (HE) staining was performed to assess the pathological state of the mouse skin, and immunohistochemical technique (IHC) was employed to estimate the contents of TNF-α, TLR4, and NF-κB semi-quantitatively. The expression levels of TLR4, MyD88, and NF-κB mRNA were determined through real-time quantitative polymerase chain reaction (qRT-PCR). Western Blotting was utilized to identify the protein levels of TLR4, MyD88, and NF-κB in mouse skin tissue. RESULTS: SA identified 18 active chemicals, some of which were shown in vivo to inhibit the TLR4/MyD88/NF-κB signaling pathway while reducing serum levels of TNF-α and IL-1ß, making them ideal agents for the treatment of eczema. CONCLUSIONS: SA's anti-inflammatory properties are attributed to its ability to reduce serum levels of TNF-α and IL-1ß, likewise inhibit the TLR4/MyD88/NF-κB signaling pathway.


Assuntos
Angelica sinensis , Eczema , Camundongos , Animais , NF-kappa B/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Sophora flavescens , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
Zhongguo Zhong Yao Za Zhi ; 48(22): 6003-6010, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-38114206

RESUMO

Angelicae Sinensis Radix is one of the main Chinese medicinal materials with both medicinal and edible values. It has the functions of tonifying and activating blood, regulating menstruation and relieving pain, and moistening intestines to relieve constipation. It is mainly produced in the southeastern Gansu province, and that produced in Minxian, Gansu is praised for the best quality. The chemical components of Angelicae Sinensis Radix mainly include volatile oils, organic acids, and polysaccharides, which have anti-inflammatory, pain-relieving, anti-tumor, anti-oxidation, immunomodulatory and other pharmacological effects. Therefore, this medicinal material is widely used in clinical practice. By reviewing the relevant literature, this study systematically introduced the research status about the chemical constituents and pharmacological effects of processed Angelicae Sinensis Radix products, aiming to provide a theoretical reference and support for the future research, development, and clinical application of related drugs.


Assuntos
Angelica sinensis , Medicamentos de Ervas Chinesas , Óleos Voláteis , Medicamentos de Ervas Chinesas/farmacologia , Anti-Inflamatórios , Dor
10.
PLoS One ; 18(11): e0293666, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37943817

RESUMO

The primary objective of this study is to uncover novel therapeutic agents for the treatment of Glioblastoma Multiforme (GBM), a highly aggressive form of brain cancer, and Alzheimer's Disease (AD). Given the complexity and resistance associated with both conditions, the study underscores the imperative need for therapeutic alternatives that can traverse the biological intricacies inherent in both neuro-oncological and neurodegenerative disorders. To achieve this, a meticulous, target-based virtual screening was employed on an ensemble of 50 flavonoids and polyphenol derivatives primarily derived from plant sources. The screening focused predominantly on molecular targets pertinent to GBM but also evaluated the potential overlap with neural pathways involved in AD. The study utilized molecular docking and Molecular Dynamic (MD) simulation techniques to analyze the interaction of these compounds with a key biological target, protein tyrosine phosphatase receptor-type Z (PTPRZ). Out of the 50 compounds examined, 10 met our stringent criteria for binding affinity and specificity. Subsequently, the highest value of binding energy was observed for the synergistic binding of luteolin and ferulic acid with the value of -10.5 kcal/mol. Both compounds exhibited inherent neuroprotective properties and demonstrated significant potential as pathway inhibitors in GBM as well as molecular modulators in AD. Drawing upon advanced in-silico cytotoxicity predictions and sophisticated molecular modeling techniques, this study casts a spotlight on the therapeutic capabilities of polyphenols against GBM. Furthermore, our findings suggest that leveraging these compounds could catalyze a much-needed paradigm shift towards more integrative therapeutic approaches that span the breadth of both neuro-oncology and neurodegenerative diseases. The identification of cross-therapeutic potential in flavonoids and polyphenols could drastically broaden the scope of treatment modalities against both fatal diseases.


Assuntos
Angelica sinensis , Cannabis , Glioblastoma , Humanos , Simulação de Acoplamento Molecular , Luteolina/farmacologia , Glioblastoma/tratamento farmacológico , Simulação de Dinâmica Molecular
11.
Medicine (Baltimore) ; 102(46): e36118, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37986355

RESUMO

This study aimed to investigate the angelica sinensis - radix rehmanniae (AR) role in polycystic ovary syndrome (PCOS), employing network pharmacology and molecular docking techniques for active ingredient, targets, and pathway prediction. AR active components were obtained through TCMSP platform and literature search. The related targets of AR and PCOS were obtained through the disease and Swiss Target Prediction databases. An "active ingredient-target" network map was constructed using Cytoscape software, and gene ontology and Kyoto encyclopedia of genes and genomes enrichment analysis was conducted through Hiplot. Finally, Auto Dock Tools software was used to conduct molecular docking between active ingredients and core targets. The main bioactive ingredients of AR in the treatment of PCOS are acteoside, baicalin, caffeic acid, cistanoside F, geniposide, etc. These ingredients involve 10 core targets, such as SRC, HSP90AA1, STAT3, MAPK1, and JUN. The effect of AR on anti-PCOS mainly involves the AGE-RAGE signaling pathway, Relaxin signaling pathway, TNF signaling pathway, and ErbB signaling pathway. Molecular docking results showed that the main active components and key targets of AR could be stably combined. AR can improve hyperandrogen status, regulate glucose homeostasis, and correct lipid metabolism and other physiological processes through multi-component, multi-target, and multi-pathway. Thus, it could play a significant role in PCOS treatment. The results of our study provide a scientific foundation for basic research and clinical applications of AR for the treatment of PCOS.


Assuntos
Angelica sinensis , Medicamentos de Ervas Chinesas , Síndrome do Ovário Policístico , Feminino , Humanos , Farmacologia em Rede , Simulação de Acoplamento Molecular , Síndrome do Ovário Policístico/tratamento farmacológico
12.
Biomed Pharmacother ; 167: 115599, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783150

RESUMO

B-lymphocytopenia among myelosuppression is the most intractable side effect of chemotherapy. Here, we investigated ways to alleviate 5-fluorouracil-caused stress hematopoietic impairment. We found that intraperitoneally injected ASP (Angelica sinensis polysaccharides) (100 mg/kg per day), one main active ingredient of Angelica sinensis, for consecutive 7 days, significantly recovered mouse bone marrow pro-B and pre-B cells, reversed the capacity of CFU-PreB colony forming, thus alleviating B cell reduction in the spleen and peripheral blood, as well as ameliorating immunoglobin from spleen and serum. The mechanism is related to the protective effects of ASP on IL-7 producing cells, including perivascular Leptin+ and CXCL12+ mesenchymal stem and progenitor cells (MSPCs), thus promoting IL-7 production, and activating IL-7R-mediated STAT5, PI3K-AKT signaling, including survival signals and EBF1, PAX5 transcription factor expression. Additionally, ASP's IL-7 promoting effect was demonstrated to be associated with maintaining osteogenesis/adipogenesis balance of MSPCs via the NRF2 antioxidant pathway. Collectively, our findings indicate that ASP reverse stress B-lymphocytopenia via improving Nrf2 signaling, promoting IL-7 production in MSPCs, and subsequently maintaining survival, proliferation, and differentiation of B cell progenitors, which may represent a promising therapeutic strategy.


Assuntos
Angelica sinensis , Linfopenia , Camundongos , Animais , Interleucina-7/farmacologia , Fluoruracila/farmacologia , Fator 2 Relacionado a NF-E2 , Fosfatidilinositol 3-Quinases , Estresse Oxidativo , Células-Tronco , Polissacarídeos/farmacologia
13.
Phytomedicine ; 120: 155013, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37639812

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) leads to persistent anovulation, hyperandrogenism, insulin resistance, and polycystic ovary, and is mainly characterized by menstrual disorders, and reproductive dysfunction. Angelica sinensis (Oliv.) Diels root has been used in many classical formulas of traditional Chinese medicine, and is commonly used to treat various gynecological diseases. PURPOSE: To investigate the protective effect of water extract of A. sinensis root (WEA) on PCOS rats, and the mechanism by RNA sequencing, and 16S rDNA sequencing. METHODS: The PCOS rat model was established by letrozole combined with high-fat diet (gavage; 2 months), and treated with WEA (gavage; 2 g/kg, 4 g/kg or 8 g/kg; 1 month). To evaluate the therapeutic effect of WEA on PCOS rats, vaginal smear, hematoxylin-eosin staining, and biochemical indicators detection were performed. The rat ovarian tissue was analyzed by RNA sequencing, and the results were verified by qRT-PCR, and Western blot. 16S rDNA sequencing was used to analyze the gut microbiota of rats. RESULTS: The results of the vaginal smear, and hematoxylin-eosin staining showed that WEA improved estrous cycle disorder, and ovarian tissue lesions. WEA (4 g/kg or 8 g/kg; 1 months) alleviated hormone disorders, insulin resistance, and dyslipidemia. RNA sequencing showed that WEA intervention significantly changed the expressions of 2756 genes, which were enriched in phosphatidylinositol3-kinase/phosphorylated protein kinase B (PI3K/AKT), peroxisome proliferator-activated receptor (PPAR), mitogen-activated protein kinase (MAPK), AMP-activated protein kinase (AMPK), and insulin signaling pathways. 16S rDNA sequencing found that WEA increased the species diversity of gut microbiota, and regulated the abundance of some microbiota (genus level: Dubosiella, Bifidobacterium, Coriobacteriaceae (UCG-002), and Treponema; species level: Bifidobacterium animalis, Lactobacillus murinus, and Lactobacillus johnsonii). CONCLUSION: WEA regulated hormone, and glycolipid metabolism disorders, thereby relieving the PCOS induced by letrozole combined with high-fat diet. The mechanism was related to the regulation of PI3K/AKT, PPAR, MAPK, AMPK, and insulin signaling pathways in ovarian tissues, and the maintenance of gut microbiota homeostasis. Clarifying the efficacy and mechanism of WEA in alleviating PCOS based on RNA sequencing and 16S rDNA sequencing will guide the more reasonable clinical use of WEA.


Assuntos
Angelica sinensis , Resistência à Insulina , Insulinas , Síndrome do Ovário Policístico , Feminino , Humanos , Animais , Ratos , Síndrome do Ovário Policístico/tratamento farmacológico , Proteínas Quinases Ativadas por AMP , Amarelo de Eosina-(YS) , Hematoxilina , Letrozol , Receptores Ativados por Proliferador de Peroxissomo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , DNA Ribossômico , Análise de Sequência de RNA
14.
Phytother Res ; 37(11): 5407-5417, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37563852

RESUMO

Angelica sinensis polysaccharide (ASP) showed increasingly recognized hepatoprotective effects and lipid regulation. Because polysaccharides are typically degraded into fragments or short-chain fatty acids in the gut, rather than being absorbed in their intact form, it is worth pondering why ASP can regulate hepatic lipid metabolism and protect the liver from damage caused by lipid accumulation. In vivo and in vitro nonalcoholic fatty liver disease (NAFLD) models with lipid accumulation were established to investigate the effect and potential mechanisms of ASP on hepatic fat accumulation. Our results showed that ASP remodeled the composition and abundance of the gut microbiota in high-fat diet-fed mice and increased their levels of propionate (0.92 ± 0.30 × 107 vs. 2.13 ± 0.52 × 107 ) and butyrate (1.83 ± 1.31 × 107 vs. 6.39 ± 1.44 × 107 ). Sodium propionate significantly increased the expression of estrogen-related receptor α (ERRα) in liver cells (400 mM sodium propionate for 2.19-fold increase) and alleviated the progress of NAFLD in methionine-choline-deficient diet model. Taken together, our study demonstrated that ASP can regulate hepatic lipid metabolism via propionate/ERRα pathway and ultimately relieving NAFLD. Our findings demonstrate that ASP can be used as a health care product or food supplement to prevent NAFLD.


Assuntos
Angelica sinensis , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Propionatos , Fígado/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Receptor ERRalfa Relacionado ao Estrogênio
15.
Phytother Res ; 37(11): 5394-5406, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37632225

RESUMO

Osteoarthritis (OA) is a common degenerative joint disease, which is characterized by wear of articular cartilage and narrow joint space, resulting in joint movement disorder. At present, accurate molecular mechanisms and effective interventions are still being explored. Here, we propose that angelica sinensis polysaccharide (ASP) alleviates OA progression by activating peroxisome proliferator-activated receptor gamma (PPARγ). Therapeutic effect of ASP improving mitochondrial metabolism of OA chondrocytes was evaluated in vitro and in vivo, respectively. During cell experiments, the concentration and time response of tert butyl hydroperoxide (TBHP) and ASP were determined by cell viability. Apoptosis was detected by flow cytometry. Mitochondrial metabolism was detected by reactive oxygen species (ROS), mitochondrial membrane potential (MMP), release of cytochrome C, adenosine triphosphate (ATP) production, and superoxide dismutase 2 (SOD2) activity. Expressions of Aggrecan, collagen type II (Col2a1), PPARγ, and SOD2 were detected by qRT-PCR and western blot. In animal experiments, we detected cell apoptosis and target protein expression separately through terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) staining and immunohistochemistry. Pretreatment of ASP significantly activated PPARγ and SOD2 in rat chondrocytes incubated with TBHP, cleared ROS, improved mitochondrial metabolism, increased chondrocytes viability, and alleviated chondrocytes apoptosis. In vivo, the administration of ASP could effectively ameliorate cartilage degeneration in OA rats, promote extracellular matrix synthesis, and decelerate the progress of OA. Our research identifies the role of ASP in mitochondrial metabolism of OA chondrocytes through PPARγ/SOD2/ROS pathways, which provides a new idea for the treatment of OA.


Assuntos
Angelica sinensis , Osteoartrite , Ratos , Animais , Condrócitos , Espécies Reativas de Oxigênio/metabolismo , PPAR gama/metabolismo , Angelica sinensis/química , Osteoartrite/tratamento farmacológico , Antioxidantes/farmacologia , Polissacarídeos/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-37329779

RESUMO

In this study, a high-throughput method for analyzing 300 pesticide residues in Radix Codonopsis and Angelica sinensis was established by liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-TOF/MS) using iron tetroxide loaded graphitized carbon black magnetic nanomaterial (GCB/Fe3O4) as the purification material. It was optimized that saturated salt water and 1 % acetate acetonitrile were used as the extraction solution, then the supernatant was purified with 2 g anhydrous CaCl2 and 300 mg GCB/Fe3O4. As a result, 300 pesticides in Radix Codonopsis and 260 in Angelica sinensis achieved satisfactory results. The limits of quantification of 91 % and 84 % of the pesticides in Radix Codonopsis and Angelica sinensis reached 10 µg/kg, respectively. The matrix-matched standard curves ranging from 10 to 200 µg/kg were established with correlation coefficients (R) above 0.99. The pesticides meeting SANTE/12682/2021 accounted for 91.3 %, 98.3 %, 100.0 % and 83.8 %, 97.3, 100.0 % of the total pesticides added in Radix Codonopsis and Angelica sinensis respectively, which were spiked at 10, 20,100 µg/kg. The technique was applied to screen 20 batches of Radix Codonopsis and Angelica sinensis. Five pesticides were detected, three of which were prohibited according to the Chinese Pharmacopoeia (2020 Edition). The experimental results showed that GCB/Fe3O4 coupled with anhydrous CaCl2 exhibited good adsorption performance and could be used for sample pretreatment of various pesticide residues in Radix Codonopsis and Angelica sinensis. Compared with the reported methods for determining pesticides in traditional Chinese medicine (TCM), the proposed method has the advantage of less time-consuming in the clean-up procedure. Furthermore, as a case study on root TCM, this approach may serve as a reference for other TCM.


Assuntos
Angelica sinensis , Codonopsis , Resíduos de Praguicidas , Praguicidas , Resíduos de Praguicidas/análise , Angelica sinensis/química , Fuligem/análise , Espectrometria de Massas em Tandem/métodos , Cristalização , Cloreto de Cálcio/análise , Praguicidas/análise , Fenômenos Magnéticos
17.
Anal Methods ; 15(17): 2121-2131, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37144343

RESUMO

The safety of traditional Chinese medicine (TCM) has garnered considerable interest worldwide. In this study, a high-throughput method for the determination of 255 pesticide residues in decoctions of Radix Codonopsis and Angelica sinensis was developed using liquid chromatography-time-of-flight/mass spectrometry. The methodological verification demonstrated the accuracy and reliability of this method. The frequently detected pesticides in Radix Codonopsis and Angelica sinensis were determined to build a correlation between pesticide properties and the transfer rate of pesticide residues in their decoctions. Water solubility (WS) with a higher correlation coefficient (R) made a significant contribution to the accuracy of the transfer rate prediction model. The regression equations for Radix Codonopsis and Angelica sinensis were T = 13.64 log WS + 10.56 with a correlation coefficient (R) of 0.8617 and T = 10.66 log WS + 25.48 with a correlation coefficient (R) of 0.8072, respectively. This study provides preliminary data on the potential risk of exposure to pesticide residues in Radix Codonopsis and Angelica sinensis decoctions. Furthermore, as a case study on root TCM, this approach may serve as a model for other TCMs.


Assuntos
Angelica sinensis , Codonopsis , Medicamentos de Ervas Chinesas , Resíduos de Praguicidas , Praguicidas , Angelica sinensis/química , Reprodutibilidade dos Testes , Medicamentos de Ervas Chinesas/química , Cromatografia Líquida , Espectrometria de Massas em Tandem
18.
Pharm Biol ; 61(1): 768-778, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37148130

RESUMO

CONTEXT: 5-Fluorouracil (5-FU)-injured stromal cells may cause chronic bone marrow suppression; however, the underlying mechanism remains unclear. Angelica sinensis polysaccharide (ASP), the main biologically active ingredient of the Chinese herb, Angelica sinensis (Oliv.) Diels (Apiaceae), may enrich the blood and promote antioxidation. OBJECTIVE: This study investigated the protective antioxidative effects of ASP on perivascular mesenchymal progenitors (PMPs) and their interactions with hematopoietic cells. MATERIALS AND METHODS: PMPs were dissociated from C57BL/6 mouse femur and tibia and were subsequently divided into the control, ASP (0.1 g/L), 5-FU (0.025 g/L), and 5-FU + ASP (pre-treatment with 0.1 g/L ASP for 6 h, together with 0.025 g/L 5-FU) then cultured for 48 h. Hematopoietic cells were co-cultured on these feeder layers for 24 h. Cell proliferation, senescence, apoptosis, and oxidative indices were detected, along with stromal osteogenic and adipogenic differentiation potentials. Intercellular and intracellular signaling was analyzed by real-time quantitative reverse transcription polymerase chain reaction and Western blotting. RESULTS: ASP ameliorated the reactive oxygen species production/scavenge balance in PMPs; improved osteogenic differentiation; increased SCF, CXCL12, VLA-4/VCAM-1, ICAM-1/LFA1, and TPO/MPL, Ang-1/Tie-2 gene expression. Further, the ASP-treated feeder layer alleviated hematopoietic cells senescence (from 21.9 ± 1.47 to 12.1 ± 1.13); decreased P53, P21, p-GSK-3ß, ß-catenin and cyclin-D1 protein expression, and increased glycogen synthase kinase (GSK)-3ß protein expression in co-cultured hematopoietic cells. DISCUSSION AND CONCLUSIONS: ASP delayed oxidative stress-induced premature senescence of 5-FU-treated feeder co-cultured hematopoietic cells via down-regulation of overactivated Wnt/ß-catenin signaling. These findings provide a new strategy for alleviating myelosuppressive stress.


Assuntos
Angelica sinensis , Células-Tronco Mesenquimais , Camundongos , Animais , beta Catenina , Glicogênio Sintase Quinase 3 beta , Osteogênese , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Antioxidantes/farmacologia , Via de Sinalização Wnt , Fluoruracila/toxicidade , Polissacarídeos/farmacologia
19.
Biomed Pharmacother ; 162: 114602, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37018993

RESUMO

Angelica Sinensis polysaccharide (ASP), the main active component of Angelica sinensis, possesses antioxidative and anti-apoptotic properties. In this study, we have investigated the antagonistic effect of ASP on 5-FU-induced injury of mouse spleen in vivo and splenocytes in vitro, and its possible mechanism. Our results showed that ASP inhibited 5-FU-induced decreases in spleen weight and organ index in mice, restored the number of peripheral blood leukocytes and lymphocytes, repaired spleen structure disorder and functional impairment, rescued serum IL-2, IL-6, and IFN-γ levels, and relieved 5-FU-induced mitochondrial swelling, reduced the oxidant accumulation including MDA and ROS, whereas increasing the activities of GSH, SOD and CAT. The mechanism may be related to ASP downregulation of Keap1 protein expression thus motivating the nuclear translocation of Nrf2. Furthermore, ASP alleviated the apoptosis of spleens in vivo and splenocytes in vitro, and reactivated PI3K / AKT signalling. In conclusion, the protective effect of ASP on spleens and splenocytes may be related to the reduction of oxidative stress and apoptosis via reactivation of Nrf2 and PI3K/AKT pathways. This study has provided a new protective agent for minimizing the spleen injury caused by 5-FU and a new idea for improving the prognosis of chemotherapy patients.


Assuntos
Angelica sinensis , Camundongos , Animais , Angelica sinensis/química , Proteína 1 Associada a ECH Semelhante a Kelch , Baço , Fluoruracila/farmacologia , Fator 2 Relacionado a NF-E2 , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Estresse Oxidativo , Apoptose , Polissacarídeos/farmacologia
20.
J Microbiol Biotechnol ; 33(6): 806-822, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36908276

RESUMO

In the current study we assessed a new crystallized compound, 5-(1-hydroxybutyl)-4-methoxy-3-methyl-2H-pyran-2-one (C-HMMP), from the endophytic fungus Colletotrichum acutatum residing in the medicinal plant Angelica sinensis for its in vitro antimicrobial, antibiofilm, antioxidant, antimalarial, and anti-proliferative properties. The promising compound was identified as C-HMMP through antimicrobial-guided fraction. The structure of C-HMMP was unambiguously confirmed by 2D NMR and HIRS spectroscopic analysis. Antimicrobial property testing of C-HMMP showed it to be effective against a variety of pathogenic bacteria and fungi with MICs ranging from 3.9 to 31.25 µg/ml. The compound displayed excellent antibiofilm activity against C. albicans, S. aureus, and K. pneumonia. Furthermore, the antimalarial and radical scavenging activities of C-HMMP were clearly dosede-pendent, with IC50 values of 0.15 and 131.2 µg/ml. The anti-proliferative activity of C-HMMP against the HepG-2, HeLa, and MCF-7 cell lines in vitro was investigated by MTT assay, revealing notable anti-proliferative activity with IC50 values of 114.1, 90, and 133.6 µg/ml, respectively. Moreover, C-HMMP successfully targets topoisomerase I and demonstrated beneficial anti-mutagenicity in the Ames test against the reactive carcinogenic mutagen, 2-aminofluorene (2-AF). Finally, the compound inhibited the activity of α-glucosidase and α-amylase with IC50 values of 144.7 and 118.6 µg/ml, respectively. To the best of our knowledge, the identified compound C-HMMP was obtained for the first time from C. acutatum of A. sinensis, and this study demonstrated that C-HMMP has relevant biological significance and could provide better therapeutic targets against disease.


Assuntos
Angelica sinensis , Anti-Infecciosos , Antimaláricos , Colletotrichum , Humanos , Antimaláricos/farmacologia , Staphylococcus aureus , Anti-Infecciosos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA