Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.823
Filtrar
1.
J Am Heart Assoc ; 13(10): e033998, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38726925

RESUMO

BACKGROUND: The vasoconstrictor effects of angiotensin II via type 1 angiotensin II receptors in vascular smooth muscle cells are well established, but the direct effects of angiotensin II on vascular endothelial cells (VECs) in vivo and the mechanisms how VECs may mitigate angiotensin II-mediated vasoconstriction are not fully understood. The present study aimed to explore the molecular mechanisms and pathophysiological relevance of the direct actions of angiotensin II on VECs in kidney and brain microvessels in vivo. METHODS AND RESULTS: Changes in VEC intracellular calcium ([Ca2+]i) and nitric oxide (NO) production were visualized by intravital multiphoton microscopy of cadherin 5-Salsa6f mice or the endothelial uptake of NO-sensitive dye 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate, respectively. Kidney fibrosis by unilateral ureteral obstruction and Ready-to-use adeno-associated virus expressing Mouse Renin 1 gene (Ren1-AAV) hypertension were used as disease models. Acute systemic angiotensin II injections triggered >4-fold increases in VEC [Ca2+]i in brain and kidney resistance arterioles and capillaries that were blocked by pretreatment with the type 1 angiotensin II receptor inhibitor losartan, but not by the type 2 angiotensin II receptor inhibitor PD123319. VEC responded to acute angiotensin II by increased NO production as indicated by >1.5-fold increase in 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate fluorescence intensity. In mice with kidney fibrosis or hypertension, the angiotensin II-induced VEC [Ca2+]i and NO responses were significantly reduced, which was associated with more robust vasoconstrictions, VEC shedding, and microthrombi formation. CONCLUSIONS: The present study directly visualized angiotensin II-induced increases in VEC [Ca2+]i and NO production that serve to counterbalance agonist-induced vasoconstriction and maintain residual organ blood flow. These direct and endothelium-specific angiotensin II effects were blunted in disease conditions and linked to endothelial dysfunction and the development of vascular pathologies.


Assuntos
Angiotensina II , Encéfalo , Cálcio , Hipertensão , Rim , Microvasos , Óxido Nítrico , Vasoconstrição , Animais , Óxido Nítrico/metabolismo , Angiotensina II/farmacologia , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Hipertensão/tratamento farmacológico , Rim/irrigação sanguínea , Rim/metabolismo , Cálcio/metabolismo , Vasoconstrição/efeitos dos fármacos , Microvasos/metabolismo , Microvasos/efeitos dos fármacos , Microvasos/patologia , Encéfalo/metabolismo , Encéfalo/irrigação sanguínea , Camundongos , Modelos Animais de Doenças , Masculino , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Sinalização do Cálcio/efeitos dos fármacos
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167224, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723872

RESUMO

BACKGROUND: Pentamethylquercetin (PMQ) is a natural polymethyl flavonoid that possesses anti-apoptotic and other biological properties. Abdominal aortic aneurysm (AAA), a fatal vascular disease with a high risk of rupture, is associated with phenotypic switching and apoptosis of medial vascular smooth muscle cells (VSMCs). This study aimed to investigate the protective effects of PMQ on the development of AAA and the underlying mechanism. METHODS: ApoE-/- mice were continuously infused with angiotensin II (Ang II) for 4 weeks to develop the AAA model. Intragastric administration of PMQ was initiated 5 days before Ang II infusion and continued for 4 weeks. In vitro, VSMCs were cultured and pretreated with PMQ, stimulated with Ang II. Real-time PCR, western blotting, and immunofluorescence staining were used to examine the roles and mechanisms of PMQ on the phenotypic switching and apoptosis of VSMCs. RESULTS: PMQ dose-dependently reduced the incidence of Ang II-induced AAA, aneurysm diameter enlargement, elastin degradation, VSMCs phenotypic switching and apoptosis. Furthermore, PMQ also inhibited phenotypic switching and apoptosis in Ang II-stimulated VSMCs. PMQ exerted protective effects by regulating the C/EBPß/PTEN/AKT/GSK-3ß axis. AAV-mediated overexpression of PTEN reduced the therapeutic effects of PMQ in the AAA model mice, suggesting that the effects of PMQ on Ang II-mediated AAA formation were related to the PTEN/AKT/GSK-3ß axis. PMQ inhibited VSMCs phenotypic switching and apoptosis by bounding to C/EBPß at Lys253 with hydrogen bond to regulate C/EBPß nuclear translocation and PTEN/AKT/GSK-3ß axis, thereby inhibiting Ang II-induced AAA formation. CONCLUSIONS: Pentamethylquercetin inhibits angiotensin II-induced abdominal aortic aneurysm formation by bounding to C/EBPß at Lys253. Therefore, PMQ prevents the formation of AAA and reduces the incidence of AAA.


Assuntos
Angiotensina II , Aneurisma da Aorta Abdominal , Apoptose , Músculo Liso Vascular , Quercetina , Animais , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/prevenção & controle , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/tratamento farmacológico , Angiotensina II/farmacologia , Camundongos , Quercetina/análogos & derivados , Quercetina/farmacologia , Apoptose/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Masculino , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Modelos Animais de Doenças , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Endogâmicos C57BL , Glicogênio Sintase Quinase 3 beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Cultivadas , Núcleo Celular/metabolismo , Núcleo Celular/efeitos dos fármacos
3.
An Acad Bras Cienc ; 96(1): e20230971, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38597493

RESUMO

Paraquat (1,1'-dimethyl-4,4'-bipyridyl dichloride) is an herbicide widely used worldwide and officially banned in Brazil in 2020. Kidney lesions frequently occur, leading to acute kidney injury (AKI) due to exacerbated reactive O2 species (ROS) production. However, the consequences of ROS exposure on ionic transport and the regulator local renin-angiotensin-aldosterone system (RAAS) still need to be elucidated at a molecular level. This study evaluated how ROS acutely influences Na+-transporting ATPases and the renal RAAS. Adult male Wistar rats received paraquat (20 mg/kg; ip). After 24 h, we observed body weight loss and elevation of urinary flow and serum creatinine. In the renal cortex, paraquat increased ROS levels, NADPH oxidase and (Na++K+)ATPase activities, angiotensin II-type 1 receptors, tumor necrosis factor-α (TNF-α), and interleukin-6. In the medulla, paraquat increased ROS levels and NADPH oxidase activity but inhibited (Na++K+)ATPase. Paraquat induced opposite effects on the ouabain-resistant Na+-ATPase in the cortex (decrease) and medulla (increase). These alterations, except for increased serum creatinine and renal levels of TNF-α and interleukin-6, were prevented by 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (tempol; 1 mmol/L in drinking water), a stable antioxidant. In summary, after paraquat poisoning, ROS production culminated with impaired medullary function, urinary fluid loss, and disruption of Na+-transporting ATPases and angiotensin II signaling.


Assuntos
Paraquat , Sistema Renina-Angiotensina , Ratos , Animais , Masculino , Espécies Reativas de Oxigênio/metabolismo , Paraquat/metabolismo , Paraquat/farmacologia , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Creatinina/metabolismo , Creatinina/urina , Interleucina-6 , Fator de Necrose Tumoral alfa/metabolismo , Ratos Wistar , Rim , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/farmacologia , Sódio/metabolismo , Sódio/farmacologia , NADPH Oxidases/metabolismo , NADPH Oxidases/farmacologia
4.
Mol Biol Rep ; 51(1): 506, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622341

RESUMO

BACKGROUND: Atrial Fibrillation (AF), a prevalent arrhythmic condition, is intricately associated with atrial fibrosis, a major pathological contributor. Central to the development of atrial fibrosis is myocardial inflammation. This study focuses on Atrial Natriuretic Peptide (ANP) and its role in mitigating atrial fibrosis, aiming to elucidate the specific mechanisms by which ANP exerts its effects, with an emphasis on fibroblast dynamics. METHODS AND RESULTS: The study involved forty Sprague-Dawley rats, divided into four groups: control, Angiotensin II (Ang II), Ang II + ANP, and ANP only. The administration of 1 µg/kg/min Ang II was given to Ang II and Ang II + ANP groups, while both Ang II + ANP and ANP groups received 0.1 µg/kg/min ANP intravenously for a duration of 14 days. Cardiac fibroblasts were used for in vitro validation of the proposed mechanisms. The study observed that rats in the Ang II and Ang II + ANP groups showed an increase in blood pressure and a decrease in body weight, more pronounced in the Ang II group. Diastolic dysfunction, a characteristic of the Ang II group, was alleviated by ANP. Additionally, ANP significantly reduced Ang II-induced atrial fibrosis, myofibroblast proliferation, collagen overexpression, macrophage infiltration, and the elevated expression of Interleukin 6 (IL-6) and Tenascin-C (TN-C). Transcriptomic sequencing indicated enhanced PI3K/Akt signaling in the Ang II group. Furthermore, in vitro studies showed that ANP, along with the PI3K inhibitor LY294002, effectively reduced PI3K/Akt pathway activation and the expression of TN-C, collagen-I, and collagen-III, which were induced by Ang II. CONCLUSIONS: The study demonstrates ANP's potential in inhibiting myocardial inflammation and reducing atrial fibrosis. Notably, ANP's effect in countering atrial fibrosis seems to be mediated through the suppression of the Ang II-induced PI3K/Akt-Tenascin-C signaling pathway. These insights enhance our understanding of AF pathogenesis and position ANP as a potential therapeutic agent for treating atrial fibrosis.


Assuntos
Fibrilação Atrial , Fator Natriurético Atrial , Ratos , Animais , Ratos Sprague-Dawley , Fator Natriurético Atrial/farmacologia , Fator Natriurético Atrial/metabolismo , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases , Tenascina , Fibrilação Atrial/tratamento farmacológico , Angiotensina II/farmacologia , Inflamação/tratamento farmacológico , Colágeno , Fibrose
5.
Hypertension ; 81(6): 1332-1344, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38629290

RESUMO

BACKGROUND: ANG (angiotensin II) elicits dipsogenic and pressor responses via activation of the canonical Gαq (G-protein component of the AT1R [angiotensin type 1 receptor])-mediated AT1R in the subfornical organ. Recently, we demonstrated that ARRB2 (ß-arrestin 2) global knockout mice exhibit a higher preference for salt and exacerbated pressor response to deoxycorticosterone acetate salt. However, whether ARRB2 within selective neuroanatomical nuclei alters physiological responses to ANG is unknown. Therefore, we hypothesized that ARRB2, specifically in the subfornical organ, counterbalances maladaptive dipsogenic and pressor responses to the canonical AT1R signaling. METHODS: Male and female Arrb2FLOX mice received intracerebroventricular injection of either adeno-associated virus (AAV)-Cre-GFP (green fluorescent protein) to induce brain-specific deletion of ARRB2 (Arrb2ICV-Cre). Arrb2FLOX mice receiving ICV-AAV-GFP were used as control (Arrb2ICV-Control). Infection with ICV-AAV-Cre primarily targeted the subfornical organ with few off targets. Fluid intake was evaluated using the 2-bottle choice paradigm with 1 bottle containing water and 1 containing 0.15 mol/L NaCl. RESULTS: Arrb2ICV-Cre mice exhibited a greater pressor response to acute ICV-ANG infusion. At baseline conditions, Arrb2ICV-Cre mice exhibited a significant increase in saline intake compared with controls, resulting in a saline preference. Furthermore, when mice were subjected to water-deprived or sodium-depleted conditions, which would naturally increase endogenous ANG levels, Arrb2ICV-Cre mice exhibited elevated saline intake. CONCLUSIONS: Overall, these data indicate that ARRB2 in selective cardiovascular nuclei in the brain, including the subfornical organ, counterbalances canonical AT1R responses to both exogenous and endogenous ANG. Stimulation of the AT1R/ARRB axis in the brain may represent a novel strategy to treat hypertension.


Assuntos
Pressão Sanguínea , Homeostase , Órgão Subfornical , beta-Arrestina 2 , Animais , Órgão Subfornical/metabolismo , Camundongos , Pressão Sanguínea/fisiologia , Pressão Sanguínea/genética , Masculino , Homeostase/fisiologia , beta-Arrestina 2/metabolismo , beta-Arrestina 2/genética , Feminino , Camundongos Knockout , Angiotensina II/farmacologia , Encéfalo/metabolismo , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo
6.
Biochem Biophys Res Commun ; 715: 149997, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38678782

RESUMO

The immune system is involved in hypertension development with different immune cells reported to have either pro or anti-hypertensive effects. In hypertension, immune cells have been thought to infiltrate blood pressure-regulating organs, resulting in either elevation or reduction of blood pressure. There is controversy over whether macrophages play a detrimental or beneficial role in the development of hypertension, and the few existing studies have yielded conflicting results. This study aimed to determine the effects of angiotensin II (Ang II) salt-induced hypertension on renal immune cells and to determine whether renal macrophages are involved in the induction of hypertension. Hypertension was induced by administration of Ang II and saline for two weeks. The effects of hypertension on kidney immune cells were assessed using flow cytometry. Macrophage infiltration in the kidney was assessed by immunohistochemistry and kidney fibrosis was assessed using trichrome stain and kidney real time-qPCR. Liposome encapsulated clodronate was used to deplete macrophages in C57BL/6J mice and investigate the direct role of macrophages in hypertension induction. Ang II saline mice group developed hypertension, had increased renal macrophages, and had increased expression of Acta2 and Col1a1 and kidney fibrotic areas. Macrophage depletion blunted hypertension development and reduced the expression of Acta2 and Col1a1 in the kidney and kidney fibrotic areas in Ang II saline group. The results of this study demonstrate that macrophages infiltrate the kidneys and increase kidney fibrosis in Ang II salt-induced hypertension, and depletion of macrophages suppresses the development of hypertension and decreases kidney fibrosis. This indicates that macrophages play a direct role in hypertension development. Hence macrophages have a potential to be considered as therapeutic target in hypertension management.


Assuntos
Angiotensina II , Modelos Animais de Doenças , Fibrose , Hipertensão , Rim , Macrófagos , Camundongos Endogâmicos C57BL , Animais , Angiotensina II/farmacologia , Macrófagos/metabolismo , Macrófagos/patologia , Macrófagos/efeitos dos fármacos , Hipertensão/induzido quimicamente , Hipertensão/patologia , Hipertensão/metabolismo , Rim/patologia , Rim/metabolismo , Rim/efeitos dos fármacos , Camundongos , Masculino , Cloreto de Sódio na Dieta/efeitos adversos , Nefropatias/induzido quimicamente , Nefropatias/patologia , Nefropatias/metabolismo , Nefropatias/etiologia , Pressão Sanguínea/efeitos dos fármacos
7.
Eur J Neurosci ; 59(10): 2450-2464, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38480476

RESUMO

Amphetamine (AMPH) exposure induces behavioural and neurochemical sensitization observed in rodents as hyperlocomotion and increased dopamine release in response to a subsequent dose. Brain Angiotensin II modulates dopaminergic neurotransmission through its AT1 receptors (AT1-R), positively regulating striatal dopamine synthesis and release. This work aims to evaluate the AT1-R role in the development and maintenance of AMPH-induced sensitization. Also, the AT1-R involvement in striatal dopamine reuptake was analysed. The sensitization protocol consisted of daily AMPH administration for 5 days and tested 21 days after withdrawal. An AT1-R antagonist, candesartan, was administered before or after AMPH exposure to evaluate the participation of AT1-R in the development and maintenance of sensitization, respectively. Sensitization was evaluated by locomotor activity and c-Fos immunostaining. Changes in dopamine reuptake kinetics were evaluated 1 day after AT1-R blockade withdrawal treatment, with or without the addition of AMPH in vitro. The social interaction test was performed as another behavioural output. Repeated AMPH exposure induced behavioural and neurochemical sensitization, which was prevented and reversed by candesartan. The AT1-R blockade increased the dopamine reuptake kinetics. Neither the AMPH administration nor the AT1-R blockade altered the performance of social interaction. Our results highlight the AT1-R's crucial role in AMPH sensitization. The enhancement of dopamine reuptake kinetics induced by the AT1-R blockade might attenuate the neuroadaptive changes that lead to AMPH sensitization and its self-perpetuation. Therefore, AT1-R is a prominent candidate as a target for pharmacological treatment of pathologies related to dopamine imbalance, including drug addiction and schizophrenia.


Assuntos
Anfetamina , Bloqueadores do Receptor Tipo 1 de Angiotensina II , Angiotensina II , Benzimidazóis , Compostos de Bifenilo , Corpo Estriado , Dopamina , Animais , Anfetamina/farmacologia , Masculino , Dopamina/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Angiotensina II/farmacologia , Compostos de Bifenilo/farmacologia , Benzimidazóis/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Ratos Wistar , Ratos , Receptor Tipo 1 de Angiotensina/metabolismo , Tetrazóis/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Interação Social/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo
8.
Biochem Pharmacol ; 223: 116170, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548245

RESUMO

BACKGROUND: Aortic Aneurysm and Dissection (AAD) are severe cardiovascular conditions with potentially lethal consequences such as aortic rupture. Existing studies suggest that liraglutide, a long-acting glucagon-like peptide receptor (GLP-1R) agonist, offers protective benefits across various cardiovascular diseases. However, the efficacy of liraglutide in mitigating AAD development is yet to be definitively elucidated. METHODS: Ang II (Angiotension II) infusion of APOE-/- mouse model with intraperitoneal injection of liraglutide (200 µg/kg) to study the role of GLP-1R in AAD formation. Bone Marrow Derived Macrophages (BMDM) and Raw264.7 were incubated with LPS, liraglutide, exendin 9-39 or LY294002 alone or in combination. SMC phenotype switching was examined in a macrophage and vascular smooth muscle cell (VSMC) co-culture system. An array of analytical methods, including Western Blot, Immunofluorescence Staining, Enzyme-LinkedImmunosorbent Assay, Real-Time Quantitative Polymerase Chain Reaction, RNA-seq, and so on were employed. RESULTS: Our investigation revealed a significant increase in M1 macrophage polarization and GLP-1R expression in aortas of AD patients and Ang II-induced AAD APOE-/- mice. Administering liraglutide in APOE-/- mice notably reduced Ang II-induced AAD incidence and mortality. It was found that liraglutide inhibits M1 macrophage polarization primarily via GLP-1R activation, and subsequently modulates vascular smooth muscle cell phenotypic switching was the primary mechanism. RNA-Seq and subsequent KEGG enrichment analysis identified CXCL3, regulated by the PI3K/AKT signaling pathway, as a key element in liraglutide's modulation of M1 macrophage polarization. CONCLUSION: Our study found liraglutide exhibits protective effects against AAD by modulating M1 macrophage polarization, suppressing CXCL3 expression through the PI3K/AKT signaling pathway. This makes it a promising therapeutic target for AAD, offering a new avenue in AAD management.


Assuntos
Aneurisma Aórtico , Dissecção Aórtica , Humanos , Camundongos , Animais , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Angiotensina II/farmacologia , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases , Dissecção Aórtica/induzido quimicamente , Dissecção Aórtica/tratamento farmacológico , Dissecção Aórtica/prevenção & controle , Macrófagos , Apolipoproteínas E/genética
9.
P R Health Sci J ; 43(1): 39-45, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38512760

RESUMO

OBJECTIVE: Hypertension is one of the cardiovascular diseases that causes the most mortality, and 95% of the causes are unknown. The aim of the study was to examine the possible correlation of nesfatin-1 levels, adropin levels, claudin-2 immunoreactivity (claudin-2 expression in the renal proximal tubule), and renalase immunoreactivity (renalase expression in the renal proximal tubule) with arterial blood pressure, kidney function, and kidney damage. METHODS: Adult male Sprague Dawley rats were divided into control and hypertension groups (8 per group). Angiotensin II vehicle was given to the control group and angiotensin II (0.7 mg/kg/day) to the hypertension group, both via an osmotic mini pump for 7 days. The animals blood pressures were measured by tail cuff plethysmography on days 1, 3, 5, and 7. On day 7, 24-hour urine, blood, and tissues were collected from the rats. RESULTS: In the hypertension group compared with the control group, there was an increase in systolic blood pressure levels after day 1. While claudin-2 immunoreactivity was reduced in the kidneys, renalase immunoreactivity was increased. There was a decrease in creatinine clearance and an increase in fractional potassium excretion (P < .05). CONCLUSION: Our results showed that claudin-2 and renalase are associated with renal glomerular and tubular dysfunction and may play discrete roles in the pathogenesis of hypertension. We believe that these potential roles warrant further investigation.


Assuntos
Proteínas Sanguíneas , Claudina-2 , Hipertensão , Glomérulos Renais , Túbulos Renais , Monoaminoxidase , Peptídeos , Animais , Masculino , Ratos , Angiotensina II/farmacologia , Pressão Sanguínea , Claudina-2/metabolismo , Hipertensão/fisiopatologia , Monoaminoxidase/metabolismo , Ratos Sprague-Dawley , Proteínas Sanguíneas/metabolismo , Peptídeos/metabolismo , Glomérulos Renais/fisiopatologia , Túbulos Renais/fisiopatologia , Modelos Animais de Doenças
10.
Hypertens Res ; 47(4): 987-997, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38351189

RESUMO

In men, the lower urinary tract comprises the urinary bladder, urethra, and prostate, and its primary functions include urine storage and voiding. Hypertension is a condition that causes multi-organ damage and an age-dependent condition. Hypertension and the renin-angiotensin system activation are associated with the development of lower urinary tract dysfunction. Hypertensive animal models show bladder dysfunction, urethral dysfunction, and prostatic hyperplasia. In the renin-angiotensin system, angiotensin II and the angiotensin II type 1 receptor, which are expressed in the lower urinary tract, have been implicated in the pathogenesis of lower urinary tract dysfunction. Moreover, among the several antihypertensives, renin-angiotensin system inhibitors have proven effective in human and animal models of lower urinary tract dysfunction. This review aimed to elucidate the hitherto known mechanisms underlying the development of lower urinary tract dysfunction in relation to hypertension and the angiotensin II/angiotensin II type 1 receptor axis and the effect of renin-angiotensin system inhibitors on lower urinary tract dysfunction. Possible mechanisms through which hypertension or activation of Ang II/AT1 receptor axis causes LUTD such as bladder dysfunction, urethral dysfunction, and prostatic hyperplasia. LUT: lower urinary tract, LUTD: lower urinary tract dysfunction, AT1: angiotensin II type 1, ACE: angiotensin-converting enzyme.


Assuntos
Hipertensão , Hiperplasia Prostática , Masculino , Animais , Humanos , Bexiga Urinária/metabolismo , Angiotensina II/farmacologia , Receptor Tipo 1 de Angiotensina/metabolismo , Sistema Renina-Angiotensina , Anti-Hipertensivos/farmacologia , Inibidores Enzimáticos/farmacologia
11.
Cell Commun Signal ; 22(1): 118, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347539

RESUMO

BACKGROUND: Disruption of Ca2+ homeostasis after calcium electroporation (CaEP) in tumors has been shown to elicit an enhanced antitumor effect with varying impacts on healthy tissue, such as endothelium. Therefore, our study aimed to determine differences in Ca2+ kinetics and gene expression involved in the regulation of Ca2+ signaling and homeostasis, as well as effects of CaEP on cytoskeleton and adherens junctions of the established endothelial cell lines EA.hy926 and HMEC-1. METHODS: CaEP was performed on EA.hy926 and HMEC-1 cells with increasing Ca2+ concentrations. Viability after CaEP was assessed using Presto Blue, while the effect on cytoskeleton and adherens junctions was evaluated via immunofluorescence staining (F-actin, α-tubulin, VE-cadherin). Differences in intracellular Ca2+ regulation ([Ca2+]i) were determined with spectrofluorometric measurements using Fura-2-AM, exposing cells to DPBS, ionomycin, thapsigargin, ATP, bradykinin, angiotensin II, acetylcholine, LaCl3, and GdCl3. Molecular distinctions were identified by analyzing differentially expressed genes and pathways related to the cytoskeleton and Ca2+ signaling through RNA sequencing. RESULTS: EA.hy926 cells, at increasing Ca2+ concentrations, displayed higher CaEP susceptibility and lower survival than HMEC-1. Immunofluorescence confirmed CaEP-induced, time- and Ca2+-dependent morphological changes in EA.hy926's actin filaments, microtubules, and cell-cell junctions. Spectrofluorometric Ca2+ kinetics showed higher amplitudes in Ca2+ responses in EA.hy926 exposed to buffer, G protein coupled receptor agonists, bradykinin, and angiotensin II compared to HMEC-1. HMEC-1 exhibited significantly higher [Ca2+]i changes after ionomycin exposure, while responses to thapsigargin, ATP, and acetylcholine were similar in both cell lines. ATP without extracellular Ca2+ ions induced a significantly higher [Ca2+]i rise in EA.hy926, suggesting purinergic ionotropic P2X and metabotropic P2Y receptor activation. RNA-sequencing analysis showed significant differences in cytoskeleton- and Ca2+-related gene expression, highlighting upregulation of ORAI2, TRPC1, TRPM2, CNGA3, TRPM6, and downregulation of TRPV4 and TRPC4 in EA.hy926 versus HMEC-1. Moreover, KEGG analysis showed upregulated Ca2+ import and downregulated export genes in EA.hy926. CONCLUSIONS: Our finding show that significant differences in CaEP response and [Ca2+]i regulation exist between EA.hy926 and HMEC-1, which may be attributed to distinct transcriptomic profiles. EA.hy926, compared to HMEC-1, displayed higher susceptibility and sensitivity to [Ca2+]i changes, which may be linked to overexpression of Ca2+-related genes and an inability to mitigate changes in [Ca2+]i. The study offers a bioinformatic basis for selecting EC models based on research objectives.


Assuntos
Acetilcolina , Cálcio , Cálcio/metabolismo , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Angiotensina II/farmacologia , Bradicinina/farmacologia , Ionomicina/metabolismo , Ionomicina/farmacologia , Tapsigargina/metabolismo , Linhagem Celular , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Perfilação da Expressão Gênica , Eletroporação , Trifosfato de Adenosina/metabolismo
12.
Hypertension ; 81(4): 927-935, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38334001

RESUMO

BACKGROUND: High circulating DPP3 (dipeptidyl peptidase 3) has been associated with poor prognosis in critically ill patients with circulatory failure. In such situation, DPP3 could play a pathological role, putatively via an excessive angiotensin peptides cleavage. Our objective was to investigate the hemodynamics changes induced by DPP3 in mice and the relation between the observed effects and renin-angiotensin system modulation. METHODS: Ten-week-old male C57Bl/6J mice were subjected to intravenous injection of purified human DPP3 or an anti-DPP3 antibody (procizumab). Invasive blood pressure and renal blood flow were monitored throughout the experiments. Circulating angiotensin peptides and catecholamines were measured and receptor blocking experiment performed to investigate the underlying mechanisms. RESULTS: DPP3 administration significantly increased renal blood flow, while blood pressure was minimally affected. Conversely, procizumab led to significantly decreased renal blood flow. Angiotensin peptides measurement and an AT1R (angiotensin II receptor type 1) blockade experiment using valsartan demonstrated that the renovascular effect induced by DPP3 is due to reduced AT1R activation via decreased concentrations of circulating angiotensin II, III, and IV. Measurements of circulating catecholamines and an adrenergic receptor blockade by labetalol demonstrated a concomitant catecholamines release that explains blood pressure maintenance upon DPP3 administration. CONCLUSIONS: High circulating DPP3 increases renal blood flow due to reduced AT1R activation via decreased concentrations of circulating angiotensin peptides while blood pressure is maintained by concomitant endogenous catecholamines release.


Assuntos
Hemodinâmica , Peptídeos , Humanos , Masculino , Camundongos , Animais , Peptídeos/farmacologia , Angiotensina II/farmacologia , Catecolaminas , Dipeptidil Peptidases e Tripeptidil Peptidases/farmacologia
13.
Cell Signal ; 117: 111124, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38417633

RESUMO

Overwhelming macrophage M1 polarization induced by malfunction of the renin-angiotensin-aldosterone system (RAAS) initiates inflammatory responses, which play a crucial role in various cardiovascular diseases. However, the underlying regulatory mechanism remains elusive. Here, we identified adaptor protein HIP-55 as a critical regulator of macrophage M1 polarization. The expression of HIP-55 was upregulated in M1 macrophage induced by Ang II. Overexpression of HIP-55 significantly promoted Ang II-induced macrophage M1 polarization, whereas genetic deletion of HIP-55 inhibited the Ang II-induced macrophage M1 polarization. Mechanistically, HIP-55 facilitated activator protein-1 (AP-1) complex activation induced by Ang II via promoting ERK1/2 and JNK phosphorylation. Moreover, blocking AP-1 complex activation can attenuate the function of HIP-55 in macrophage polarization. Collectively, our results reveal the role of HIP-55 in macrophage polarization and provide potential therapeutic insights for cardiovascular diseases associated with RAAS dysfunction.


Assuntos
Doenças Cardiovasculares , Proteínas dos Microfilamentos , Transdução de Sinais , Fator de Transcrição AP-1 , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Doenças Cardiovasculares/metabolismo , Macrófagos/metabolismo , Animais , Camundongos , Proteínas dos Microfilamentos/metabolismo , Domínios de Homologia de src
14.
Eur J Pharmacol ; 971: 176392, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38365107

RESUMO

The excessive elevation of angiotensin II (ANG II) is closely associated with the occurrence and development of aortic dissection (AD)-related acute lung injury (ALI), through its binding to angiotensin II receptor type I (AT1R). MiR-145-5p is a noncoding RNA that can be involved in a variety of cellular physiopathological processes. Transfection with miR-145-5p was found to downregulated the expression of A disintegrin and metalloprotease 17 (ADAM17) and reduced the levels of angiotensin-converting enzyme 2 (ACE2) in lung tissue, while concurrently increasing plasma ACE2 levels in the AD combined with ALI mice. ADAM17 was proved to be a target of miR-145-5p. Transfection with miR-145-5p decreased the shedding of ACE2 and alleviated the inflammatory response induced by ANG II through targeting ADAM17 and inhibiting the AT1R/ADAM17 pathway in A549 cells. In conclusion, our present study demonstrates the role and mechanism of miR-145-5p in alleviating ANG II-induced acute lung injury, providing a new insight into miRNA therapy for reducing lung injury in patients with aortic dissection.


Assuntos
Lesão Pulmonar Aguda , Dissecção Aórtica , MicroRNAs , Humanos , Animais , Camundongos , Enzima de Conversão de Angiotensina 2/genética , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Células Epiteliais Alveolares/metabolismo , Proteína ADAM17/genética , Angiotensina II/farmacologia , Angiotensina II/metabolismo , MicroRNAs/genética , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo
15.
Mol Nutr Food Res ; 68(5): e2300524, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38356052

RESUMO

SCOPE: This study aims to investigate the antihypertensive effect of four chicken muscle-derived angiotensin (Ang)-converting enzymes (ACE)-regulating peptides: Val-Arg-Pro (VRP, ACE inhibition), Leu-Lys-Tyr and Val-Arg-Tyr (LKY and VRY, ACE inhibition and ACE2 upregulation), and Val-Val-His-Pro-Lys-Glu-Ser-Phe (VVHPKESF [V-F], ACE2 upregulation) in spontaneously hypertensive rats. METHODS AND RESULTS: Rats (12-14 weeks old) are grouped: 1) untreated, 2) VRP, 3) LKY, 4) VRY, and 5) V-F. Blood pressure (BP) is monitored using implantable telemetry technology. Over 18-day oral administration of 15 mg kg-1 body weight (BW) per day, only peptide V-F significantly (p < 0.05) reduces BP, decreases circulating Ang II, and increases ACE2 and Ang (1-7) levels, and enhances aortic expressions of ACE2 and Mas receptor (MasR). Peptide V-F also attenuates vascular inflammation (TNFα, MCP-1, IL-1α, IL-15, and cyclooxygenase 2 [COX2]) and vascular oxidative stress (nitrotyrosine). The gastrointestinal (GI)-degraded fragment of peptide V-F, Val-Val-His-Pro-Lys (VVHPK), is also an ACE2-upregulating peptide. Peptides VRP, LKY, and VRY do not reduce BP, possibly due to low bioavailability or other unknown reasons. CONCLUSIONS: Peptide V-F is the first ACE2-upregulating peptide, purified and fractionated from food proteins based on in vitro ACE2 upregulation, that reduces BP associated with the activation of ACE2/Ang (1-7)/MasR axis; the N-terminal moiety VVHPK may be responsible for the antihypertensive effect of V-F.


Assuntos
Enzima de Conversão de Angiotensina 2 , Galinhas , Ratos , Animais , Ratos Endogâmicos SHR , Pressão Sanguínea , Enzima de Conversão de Angiotensina 2/farmacologia , Galinhas/metabolismo , Anti-Hipertensivos/farmacologia , Peptídeos/farmacologia , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/metabolismo , Angiotensina II/farmacologia , Músculos/metabolismo
16.
Sci Rep ; 14(1): 4682, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409185

RESUMO

Malaria can have severe long-term effects. Even after treatment with antimalarial drugs eliminates the parasite, survivors of cerebral malaria may suffer from irreversible brain damage, leading to cognitive deficits. Angiotensin II, a natural human peptide hormone that regulates blood pressure, has been shown to be active against Plasmodium spp., the etiologic agent of malaria. Here, we tested two Ang II derivatives that do not elicit vasoconstriction in mice: VIPF, a linear tetrapeptide, which constitutes part of the hydrophobic portion of Ang II; and Ang II-SS, a disulfide-bridged derivative. The antiplasmodial potential of both peptides was evaluated with two mouse models: an experimental cerebral malaria model and a mouse model of non-cerebral malaria. The latter consisted of BALB/c mice infected with Plasmodium berghei ANKA. The peptides had no effect on mean blood pressure and significantly reduced parasitemia in both mouse models. Both peptides reduced the SHIRPA score, an assay used to assess murine health and behavior. However, only the constrained derivative (Ang II-SS), which was also resistant to proteolytic degradation, significantly increased mouse survival. Here, we show that synthetic peptides derived from Ang II are capable of conferring protection against severe manifestations of malaria in mouse models while overcoming the vasoconstrictive side effects of the parent peptide.


Assuntos
Antimaláricos , Malária Cerebral , Animais , Camundongos , Humanos , Malária Cerebral/tratamento farmacológico , Malária Cerebral/prevenção & controle , Malária Cerebral/parasitologia , Angiotensina II/farmacologia , Angiotensina II/uso terapêutico , Modelos Animais de Doenças , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Plasmodium berghei/fisiologia , Camundongos Endogâmicos C57BL
17.
J Ethnopharmacol ; 323: 117615, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38163560

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Essential hypertension (EH) is one of the important risk factors of cardio-cerebrovascular diseases, and it can significantly increase the incidence and mortality of acute myocardial infarction, cerebral infarction and hemorrhage. Danhong Formula (DHF) was consisting of Radix et Rhizoma Salviae Miltiorrhizae (Salvia miltiorrhiza Bge., Labiatae, Danshen in Chinese) and Flos Carthami (Carthamus tinctorius L., Compositae, Honghua in Chinese) (Plant names have been checked with http://www.the plant list.org on June 28th, 2023) was approved by State Food and Drug Administration of China, that has been used for thousands of years in the treatment of cardiovascular diseases in China with proven safety and efficacy. Though our previous studies have found that DHF improved endothelial dysfunction (ED) and decreased high blood pressure (BP), the underlying mechanisms of its antihypertensive effect still remain unclear. AIM OF THE STUDY: This study investigated whether DHF regulated MicroRNA 24- Phosphatidylinositol 3-Kinase-Serine/Threonine Kinase- Endothelial Nitric Oxide Synthase (miR-24 - PI3K/AKT/eNOS) axis to produce antihypertensive effect and improve endothelial dysfunction. MATERIALS AND METHODS: Firstly, the chemical components of DHF were analyzed by UHPLC-MS. After that, BP was continuously monitored within the 1st, 3rd, and 4th week in SHR to evaluate the antihypertensive effect of DHF intraperitoneal injection. In addition, not only the contents of serum nitric oxide (NO), prostacyclin (PGI2), and angiotensin II (Ang II) were detected, but also the isolated aorta ring experiment was conducted to evaluate the vasomotoricity to evaluate of DHF on improving endothelial dysfunction. Key proteins or mRNA expression associated with miR-24 - PI3K/AKT/eNOS axis in aorta were detected by capillary Western blot, immunohistochemistry or RT-PCR to explore the underlying mechanisms. Index of NO, Ang II PGI2 and key proteins or mRNA expression were also conducted in miR-24-3p over-expression HUVECs model. RESULTS: Compared with SHR control group, DHF (4 mL/kg/day, 2 mL/kg/day, 1 mL/kg/day) treatment significantly reduced high BP in SHR and selectively increased acetylcholine (Ach) induced vasodilation, but not sodium nitroprusside (SNP) in a manner of concentration dependency in isolated aorta ring. DHF (4 mL/kg/day, 1 mL/kg/day) treatment was accompanying an increment of NO and PGI2, and lowering AngII in SHR. Moreover, DHF treatment significantly up-regulated expression of p-PI3K, p-AKT, mTOR, eNOS and p-eNOS, but down-regulated miR-24-3p expression in aorta. Compared with miR-24-3p over-expression HUVECs model group, DHF treatment inhibited miR- 24-3p expression and up-regulated p-PI3K, p-AKT, mTOR and eNOS mRNA expression. Similarly, DHF treatment increased PI3K, AKT, mTOR and eNOS protein expression in HUVECs by Western blot. CONCLUSIONS: These findings suggest that DHF alleviates endothelial dysfunction and reduces high BP in SHR mediated by down-regulating miR-24 via ultimately facilitating up-regulation of PI3K/AKT/eNOS axis. This current study firstly demonstrates a potential direction for antihypertensive mechanism of DHF from microRNA aspect and will promote its clinical applications.


Assuntos
Medicamentos de Ervas Chinesas , Hipertensão , MicroRNAs , Humanos , Fosfatidilinositol 3-Quinase/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Pressão Sanguínea , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Serina-Treonina Quinases , Fosfatidilinositol 3-Quinases/metabolismo , Anti-Hipertensivos , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Hipertensão/tratamento farmacológico , Angiotensina II/farmacologia , Serina-Treonina Quinases TOR , Serina , RNA Mensageiro , Óxido Nítrico/metabolismo
18.
Hypertens Res ; 47(4): 1024-1032, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38238510

RESUMO

C-phycocyanin (CPC) is a photosynthetic protein found in Arthrospira maxima with a nephroprotective and antihypertensive activity that can prevent the development of hemodynamic alterations caused by chronic kidney disease (CKD). However, the complete nutraceutical activities are still unknown. This study aims to determine if the antihypertensive effect of CPC is associated with preventing the impairment of hemodynamic variables through delaying vascular dysfunction. Twenty-four normotensive male Wistar rats were divided into four groups: (1) sham + 4 mL/kg/d vehicle (100 mM of phosphate buffer, PBS) administered by oral gavage (og), (2) sham + 100 mg/kg/d og of CPC, (3) CKD induced by 5/6 nephrectomy (CKD) + vehicle, (4) CKD + CPC. One week after surgery, the CPC treatment began and was administrated daily for four weeks. At the end treatment, animals were euthanized, and their thoracic aorta was used to determine the vascular function and expression of AT1, AT2, and Mas receptors. CKD-induced systemic arterial hypertension (SAH) and vascular dysfunction by reducing the vasorelaxant response of angiotensin 1-7 and increasing the contractile response to angiotensin II. Also, CKD increased the expression of the AT1 and AT2 receptors and reduced the Mas receptor expression. Remarkably, the treatment with CPC prevented SAH, renal function impairment, and vascular dysfunction in the angiotensin system. In conclusion, the antihypertensive activity of CPC is associated with avoiding changes in the expression of AT1, AT2, and Mas receptors, preventing vascular dysfunction development and SAH in rats with CKD.


Assuntos
Hipertensão , Insuficiência Renal Crônica , Ratos , Masculino , Animais , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Ficocianina/farmacologia , Ficocianina/uso terapêutico , Ratos Wistar , Hipertensão/complicações , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Receptor Tipo 1 de Angiotensina , Receptores de Angiotensina , Receptor Tipo 2 de Angiotensina/metabolismo
19.
Food Funct ; 15(4): 2052-2063, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38293823

RESUMO

Green tea polyphenol (-)-Epigallocatechin-3-gallate (EGCG) has been well studied for its biological activities in the prevention of chronic diseases. However, the biological activities of EGCG oxidation-derived polymers remain unclear. Previously, we found that these polymers accumulated in intraperitoneal tissues after intraperitoneal injection and gained an advantage over native EGCG in increasing insulin sensitivity via regulating the renin-angiotensin system (RAS) in type 2 diabetic mice. The present study determined the pro-apoptosis activities and anticancer mechanisms of the EGCG oxidation-derived polymer preparation (the >10 kDa EGCG polymers) in digestive tract cancer cells. Upon incubation of the >10 kDa EGCG polymers with CaCo2 colon cancer cells, these polymers coated the cell surface and regulated multiple components of the RAS in favor of cancer inhibition, including the downregulation of angiotensin-converting enzyme (ACE), angiotensin-II (AngII) and AngII receptor type 1 (AT1R) in the pro-tumor axis, as well as the upregulation of angiotensin-converting enzyme 2 (ACE2) and angiotensin1-7 (Ang(1-7)) in the anti-tumor axis. The treatment also markedly increased angiotensinogen (AGT), which is the precursor of the angiotensin peptides. The regulation of these RAS components occurred prior to apoptosis. Similar pro-apoptotic mechanisms of the >10 kDa EGCG polymers, were also observed in TCA8113 oral cancer cells. The >10 kDa EGCG polymers exhibited compromised activities in scavenging or initiating reactive oxygen species compared to EGCG, but gained a higher reactivity toward sulfhydryl groups, including protein cysteine thiols. We propose that the polymers bind onto the cell surface and regulate multiple RAS components by reacting with the sulfhydryl groups on the ectodomains of transmembrane proteins.


Assuntos
Catequina/análogos & derivados , Diabetes Mellitus Experimental , Neoplasias , Humanos , Camundongos , Animais , Sistema Renina-Angiotensina , Células CACO-2 , Angiotensina II/farmacologia , Apoptose , Trato Gastrointestinal
20.
J Hypertens ; 42(5): 856-872, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38164960

RESUMO

BACKGROUND: Adipose c-Jun NH2-terminal kinase 1/2 (JNK1/2) is a central mediator involved in the development of obesity and its complications. However, the roles of adipose JNK1/2 in hypertension remain elusive. Here we explored the role of adipose JNK1/2 in hypertension. METHODS AND RESULTS: The roles of adipose JNK1/2 in hypertension were investigated by evaluating the impact of adipose JNK1/2 inactivation in both angiotensin II (Ang II)-induced and deoxycorticosterone acetate (DOCA) salt-induced hypertensive mice. Specific inactivation of JNK1/2 in adipocytes significantly alleviates Ang II-induced and DOCA salt-induced hypertension and target organ damage in mice. Interestingly, such beneficial effects are also observed in hypertensive mice after oral administration of JNK1/2 inhibitor SP600125. Mechanistically, adipose JNK1/2 acts on adipocytes to reduce the production of adiponectin (APN), then leads to promote serum and glucocorticoid-regulated kinase 1 (SGK1) phosphorylation and increases epithelial Na + channel α-subunit (ENaCα) expression in both renal cells and adipocytes, respectively, finally exacerbates Na + retention. In addition, chronic treatment of recombinant mouse APN significantly augments the beneficial effects of adipose JNK1/2 inactivation in DOCA salt-induced hypertension. By contrast, the blood pressure-lowering effects of adipose JNK1/2 inactivation are abrogated by adenovirus-mediated SGK1 overexpression in Ang II -treated adipose JNK1/2 inactivation mice. CONCLUSION: Adipose JNK1/2 promotes hypertension and targets organ impairment via fine-tuning the multiorgan crosstalk among adipose tissue, kidney, and blood vessels.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Camundongos , Animais , Angiotensina II/farmacologia , Adiponectina , Acetato de Desoxicorticosterona/efeitos adversos , Desoxicorticosterona/efeitos adversos , Pressão Sanguínea , Obesidade , Acetatos/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA