Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 968
Filtrar
1.
Mol Genet Genomic Med ; 12(3): e2411, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38433559

RESUMO

BACKGROUND: Hemifacial macrosomia (HFM, OMIM 164210) is a complex and highly heterogeneous disease. FORKHEAD BOX I3 (FOXI3) is a susceptibility gene for HFM, and mice with loss of function of Foxi3 did exhibit a phenotype similar to craniofacial dysmorphism. However, the specific pathogenesis of HFM caused by FOXI3 deficiency remains unclear till now. METHOD: In this study, we first constructed a Foxi3 deficiency (Foxi3-/- ) mouse model to verify the craniofacial phenotype of Foxi3-/- mice, and then used RNAseq data for gene differential expression analysis to screen candidate pathogenic genes, and conducted gene expression verification analysis using quantitative real-time PCR. RESULTS: By observing the phenotype of Foxi3-/- mice, we found that craniofacial dysmorphism was present. The results of comprehensive bioinformatics analysis suggested that the craniofacial dysmorphism caused by Foxi3 deficiency may be involved in the PI3K-Akt signaling pathway. Quantitative real-time PCR results showed that the expression of PI3K-Akt signaling pathway-related gene Akt2 was significantly increased in Foxi3-/- mice. CONCLUSION: The craniofacial dysmorphism caused by the deficiency of Foxi3 may be related to the expression of Akt2 and PI3K-Akt signaling pathway. This study laid a foundation for understanding the function of FOXI3 and the pathogenesis and treatment of related craniofacial dysmorphism caused by FOXI3 dysfunction.


Assuntos
Anormalidades Craniofaciais , Anormalidades Musculoesqueléticas , Animais , Camundongos , Biologia Computacional , Anormalidades Craniofaciais/genética , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt/genética
2.
Pediatr Res ; 95(6): 1455-1475, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38347173

RESUMO

Skeletal Class III (SCIII) is among the most challenging craniofacial dysmorphologies to treat. There is, however, a knowledge gap regarding which syndromes share this clinical phenotype. The aims of this study were to: (i) identify the syndromes affected by the SCIII phenotype; (ii) clarify the involvement of maxillary and/or mandibular structures; (iii) explore shared genetic/molecular mechanisms. A two-step strategy was designed: [Step#1] OMIM, MHDD, HPO, GeneReviews and MedGen databases were explored; [Step#2]: Syndromic conditions indexed in [Step#1] were explored in Medline, Pubmed, Scopus, Cochrane Library, WOS and OpenGrey. Eligibility criteria were defined. Individual studies were assessed for risk of bias using the New Ottawa Scale. For quantitative analysis, a meta-analysis was conducted. This scoping review is a hypothesis-generating research. Twenty-two studies met the eligibility criteria. Eight syndromes affected by the SCIII were targeted: Apert syndrome, Crouzon syndrome, achondroplasia, X-linked hypohidrotic ectodermal dysplasia (XLED), tricho-dento-osseous syndrome, cleidocranial dysplasia, Klinefelter and Down syndromes. Despite heterogeneity between studies [p < 0.05], overall effects showed that midface components were affected in Apert and Down Syndromes, lower face in Klinefelter Syndrome and midface and lower face components in XLED. Our review provides new evidence on the craniofacial characteristics of genetically confirmed syndromes exhibiting the SCIII phenotype. Four major regulatory pathways might have a modulatory effect on this phenotype. IMPACT: What does this review add to the existing literature? To date, there is no literature exploring which particular syndromes exhibit mandibular prognathism as a common trait. Through this research, it was possibly to identify the particular syndromes that share the skeletal Class III phenotype (mandibular prognathism) as a common trait highlighting the common genetic and molecular pathways between different syndromes acknowledging their impact in craniofacial development.


Assuntos
Genótipo , Fenótipo , Humanos , Síndrome , Anormalidades Craniofaciais/genética , Má Oclusão Classe III de Angle/genética
3.
PLoS One ; 19(1): e0296328, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38165902

RESUMO

The SET binding protein 1 (SETBP1) gene encodes a transcription factor (TF) involved in various cellular processes. Variants in SETBP1 can result in three different diseases determined by the introduction (germline vs. somatic) and location of the variant. Germline variants cause the ultra-rare pediatric Schinzel Giedion Syndrome (SGS) and SETBP1 haploinsufficiency disorder (SETBP1-HD), characterized by severe multisystemic abnormalities with neurodegeneration or a less severe brain phenotype accompanied by hypotonia and strabismus, respectively. Somatic variants in SETBP1 are associated with hematological malignancies and cancer development in other tissues in adults. To better understand the tissue-specific mechanisms involving SETBP1, we analyzed publicly available RNA-sequencing (RNA-seq) data from the Genotype-Tissue Expression (GTEx) project. We found SETBP1 and its known target genes were widely expressed across 31 adult human tissues. K-means clustering identified three distinct expression patterns of SETBP1 targets across tissues. Functional enrichment analysis (FEA) of each cluster revealed gene sets related to transcriptional regulation, DNA binding, and mitochondrial function. TF activity analysis of SETBP1 and its target TFs revealed tissue-specific TF activity, underscoring the role of tissue context-driven regulation and suggesting its impact in SETBP1-associated disease. In addition to uncovering tissue-specific molecular signatures of SETBP1 expression and TF activity, we provide a Shiny web application to facilitate exploring TF activity across human tissues for 758 TFs. This study provides insight into the landscape of SETBP1 expression and TF activity across 31 non-diseased human tissues and reveals tissue-specific expression and activity of SETBP1 and its targets. In conjunction with the web application we constructed, our framework enables researchers to generate hypotheses related to the role tissue backgrounds play with respect to gene expression and TF activity in different disease contexts.


Assuntos
Proteínas de Transporte , Proteínas Nucleares , Humanos , Anormalidades Múltiplas/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Anormalidades Craniofaciais/genética , Expressão Gênica , Deficiência Intelectual/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
J Med Genet ; 61(5): 490-501, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38296633

RESUMO

INTRODUCTION: KCTD15 encodes an oligomeric BTB domain protein reported to inhibit neural crest formation through repression of Wnt/beta-catenin signalling, as well as transactivation by TFAP2. Heterozygous missense variants in the closely related paralogue KCTD1 cause scalp-ear-nipple syndrome. METHODS: Exome sequencing was performed on a two-generation family affected by a distinctive phenotype comprising a lipomatous frontonasal malformation, anosmia, cutis aplasia of the scalp and/or sparse hair, and congenital heart disease. Identification of a de novo missense substitution within KCTD15 led to targeted sequencing of DNA from a similarly affected sporadic patient, revealing a different missense mutation. Structural and biophysical analyses were performed to assess the effects of both amino acid substitutions on the KCTD15 protein. RESULTS: A heterozygous c.310G>C variant encoding p.(Asp104His) within the BTB domain of KCTD15 was identified in an affected father and daughter and segregated with the phenotype. In the sporadically affected patient, a de novo heterozygous c.263G>A variant encoding p.(Gly88Asp) was present in KCTD15. Both substitutions were found to perturb the pentameric assembly of the BTB domain. A crystal structure of the BTB domain variant p.(Gly88Asp) revealed a closed hexameric assembly, whereas biophysical analyses showed that the p.(Asp104His) substitution resulted in a monomeric BTB domain likely to be partially unfolded at physiological temperatures. CONCLUSION: BTB domain substitutions in KCTD1 and KCTD15 cause clinically overlapping phenotypes involving craniofacial abnormalities and cutis aplasia. The structural analyses demonstrate that missense substitutions act through a dominant negative mechanism by disrupting the higher order structure of the KCTD15 protein complex.


Assuntos
Domínio BTB-POZ , Anormalidades Craniofaciais , Face , Humanos , Anormalidades Múltiplas , Proteínas Correpressoras/genética , Anormalidades Craniofaciais/genética , Displasia Ectodérmica , Face/anormalidades , Mutação de Sentido Incorreto/genética , Síndrome
5.
Clin Genet ; 105(5): 499-509, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38221796

RESUMO

Hao-Fountain syndrome (HAFOUS, OMIM: #616863) is a neurodevelopmental disorder caused by pathogenic variants in the gene USP7 coding for USP7, a protein involved in several crucial cellular homeostatic mechanisms and the recently described MUST complex. The phenotype of HAFOUS is insufficiently understood, yet there is a great need to better understand the spectrum of disease, genotype-phenotype correlations, and disease trajectories. We now present a larger cohort of 32 additional individuals and provide further clinical information about six previously reported individuals. A questionnaire-based study was performed to characterize the phenotype of Hao-Fountain syndrome more clearly, to highlight new traits, and to better distinguish the disease from related neurodevelopmental disorders. In addition to confirming previously described features, we report hyperphagia and increased body weight in a subset of individuals. HAFOUS patients present an increased rate of birth complications, congenital anomalies, and abnormal pain thresholds. Speech impairment emerges as a potential hallmark of Hao-Fountain syndrome. Cognitive testing reports reveal borderline intellectual functioning on average, although some individuals score in the range of intellectual disability. Finally, we created a syndrome-specific severity score. This score neither indicates a sex- nor age-specific difference of clinical severity, yet highlights a more severe outcome when amino acid changes colocalize to the catalytic domain of the USP7 protein.


Assuntos
Anormalidades Múltiplas , Doenças do Desenvolvimento Ósseo , Anormalidades Craniofaciais , Surdez , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Peptidase 7 Específica de Ubiquitina/genética , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Anormalidades Múltiplas/genética , Anormalidades Craniofaciais/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo
6.
Am J Med Genet A ; 194(4): e63488, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38062645

RESUMO

Marshall syndrome is an extremely rare genetic disorder usually diagnosed in infancy with a prevalence of <1 in 1 million. Based on the literature reviewed, this is the first case report to provide a longitudinal history of a child with Marshall syndrome (from birth to age 12.5 years). This longitudinal case report arose in part from desires of this child's parents to share the story of their early fears at her initial diagnosis and compare those to how well she has turned out.


Assuntos
Catarata , Colágeno Tipo XI/deficiência , Anormalidades Craniofaciais , Perda Auditiva Neurossensorial , Osteocondrodisplasias , Humanos , Criança , Feminino , Mutação , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/genética , Anormalidades Craniofaciais/genética , Perda Auditiva Neurossensorial/genética , Síndrome
7.
Am J Med Genet A ; 191(12): 2806-2812, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37724761

RESUMO

Frontonasal dysplasia (FND) refers to a group of rare developmental disorders characterized by abnormal morphology of the craniofacial region. We studied a family manifesting with clinical features typical for FND2 including neurobehavioral abnormalities, hypotrichosis, hypodontia, and facial dysmorphism. Whole-exome sequencing analysis identified a novel heterozygous frameshift insertion in ALX4 (c.985_986insGTGC, p.Pro329Argfs*115), encoding aristaless homeobox 4. This and a previously reported dominant FND2-causing variant are predicted to result in the formation of a similar abnormally elongated protein tail domain. Using a reporter assay, we showed that the elongated ALX4 displays increased activity. ALX4 negatively regulates the Wnt/ß-catenin pathway and accordingly, patient keratinocytes showed altered expression of genes associated with the WNT/ß-catenin pathway, which in turn may underlie ectodermal manifestations in FND2. In conclusion, dominant FND2 with ectodermal dysplasia results from frameshift variants in ALX4 exerting a gain-of-function effect.


Assuntos
Anormalidades Craniofaciais , Displasia Ectodérmica , Humanos , Genes Homeobox , beta Catenina/genética , Face , Anormalidades Craniofaciais/genética , Displasia Ectodérmica/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
8.
Eur J Med Genet ; 66(9): 104809, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37474017

RESUMO

Suleiman-El-Hattab syndrome (SULEHS, OMIM #618950) is an autosomal recessive multisystem developmental disorder characterized by distinctive facial appearance, global developmental delay/intellectual disability, poor expressive speech and happy demeanor. SULEHS is an ultra-rare disorder associated with biallelic loss-of-function variants of the TASP1 gene, and up-to-date, seven patients from five families have been reported in the literature. Loss of TASP1 function has been reported to alter H3K4 histone modifications and expression of TFIIA and HOX transcription factors in the SULEHS phenotype. In this report, a new patient molecularly diagnosed with SULEHS by a novel homozygous c.404-2A > G variant in the TASP1 gene is presented with the long-term follow-up. Although the majority of the patient's clinical characteristics were similar to those of previously reported SULEHS patients, this study was the first to describe some additional anomalies, such as cystic hygroma, increased nuchal thickness, coarctation of the aorta, pulmonary stenosis, pulmonary sequestration anomaly, chronic constipation, encephalomalacia, and aggressive behavior. Because of the remarkable similarities between the clinical features of Baraitser-Winter syndrome (BRWS) and the patient, BRWS was considered the most likely diagnosis before the molecular diagnosis. Network analysis also supported that the interaction of the SULEHS-associated TASP1 gene with the BRWS-associated ACTB and ACTG1 genes through common intermediate molecules. Overall, despite the existence of differences in clinical features, inheritance patterns, and underlying pathophysiology between BRWS and SULEHS, both diseases could be considered in the differential diagnosis due to the high clinical similarities, including the dysmorphic features, growth parameters, neurodevelopmental phenotype, neurological problems, and multisystem involvement. Additionally, this report could contribute to a better understanding of the genotypic and clinical features of SULEHS by describing a novel pathogenic variant and new clinical features, such as prenatal manifestations.


Assuntos
Anormalidades Múltiplas , Anormalidades Craniofaciais , Deficiência Intelectual , Humanos , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/diagnóstico , Seguimentos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Anormalidades Craniofaciais/genética , Fenótipo
9.
Genes Cells ; 28(9): 629-641, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37489294

RESUMO

SE translocation (SET) is a cancer-promoting factor whose expression is upregulated in many cancers. High SET expression positively correlates with a poor cancer prognosis. SETBP1 (SET-binding protein 1/SEB/MRD29), identified as SET-binding protein, is the causative gene of Schinzel-Giedion syndrome, which is characterized by severe intellectual disability and a distorted facial appearance. Mutations in these genetic regions are also observed in some blood cancers, such as myelodysplastic syndromes, and are associated with a poor prognosis. However, the physiological role of SETBP1 and the molecular mechanisms by which the mutations lead to disease progression have not yet been fully elucidated. In this review, we will describe the current epidemiological data on SETBP1 mutations and shed light on the current knowledge about the SET-dependent and -independent functions of SETBP1.


Assuntos
Anormalidades Múltiplas , Anormalidades Craniofaciais , Deficiência Intelectual , Neoplasias , Humanos , Deficiência Intelectual/genética , Mutação , Anormalidades Craniofaciais/genética , Proteínas de Transporte/genética , Proteínas Nucleares/genética
10.
Rev. ADM ; 80(3): 145-150, mayo-jun. 2023. ilus
Artigo em Espanhol | LILACS | ID: biblio-1517954

RESUMO

Los trastornos del desarrollo son aquellos padecimientos que se manifiestan por defectos en la embriogénesis de la región afectada. La cara del ser humano comienza su formación alrededor de la cuarta semana de vida intrauterina y se manifiesta gracias a la fusión de cinco prominencias: dos pares conocidas como maxilar y mandibular, y una impar conocida como frontonasal. Cuando esta fusión no se lleva a cabo de una forma óptima, aparecen numerosas alteraciones del desarrollo como el labio y paladar hendido, y la displasia frontonasal. La displasia frontonasal produce frecuentemente afecciones oculares, nasales y orales. Dentro de las manifestaciones orales destacan una forma atípica de hendidura labial o palatina, afecciones dentales y alteraciones en el crecimiento de la cara. Dada la gran relación que este padecimiento tiene con la cavidad oral resulta importante que el odontólogo conozca la etiología y las características clínicas de este trastorno (AU)


Developmental disorders are those conditions that are manifested by defects in the embryogenesis of the affected region. The human face begins its formation around the fourth week of intrauterine life and is manifested thanks to the fusion of five prominences: two pairs known as maxillary and mandibular and odd one known as frontonasal. When this fusion is not carried out in an optimal way, numerous developmental alterations appear, such as cleft lip and palate and frontonasal dysplasia. Frontonasal dysplasia frequently produces ocular, nasal and oral affections. Among the oral manifestations, and atypical form of clef lip and/or palate, dental affections and alterations in the growth of the face stand out. Given the great relationship that this condition has with the oral cavity, it is important for the dentist to know the etiology and clinical characteristics of this disorder (AU)


Assuntos
Humanos , Masculino , Feminino , Anormalidades Craniofaciais/genética , Disostose Craniofacial , Ossos Faciais/anormalidades , Osso Nasal/anormalidades , Manifestações Bucais , Anormalidades do Olho/genética , Fenda Labial/etiologia , Fissura Palatina/etiologia
11.
Ophthalmic Genet ; 44(4): 366-370, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37133842

RESUMO

BACKGROUND: Traboulsi syndrome is a rare disease clinically characterized by facial dysmorphism, abnormal spontaneous filtering blebs, ectopia lentis (EL) and multiple anterior segment abnormalities. MATERIAL AND METHODS: An 18-year-old female was referred to the Emergency Service of Hospital São Geraldo (HSG) claiming decreased right eye (RE) visual acuity associated with ocular pain that was noticed approximately 2 months earlier. She underwent a complete ophthalmic and physical examination including hands, ankle, wrist and chest X-ray, abdominal ultrasound, echocardiogram and genetic analysis (whole-exome sequencing). RESULTS: The ophthalmic examination revealed a high myopia with spherical equivalent of - 9.50 D and best corrected visual acuity (BCVA) of 20/60 in RE and - 9.25 D with BCVA of 20/30 in the left eye (LE). Slit-lamp examination showed normal conjunctiva in both eyes (BE) and a superior-temporal cystic lesion in RE and nasal in LE; the flat anterior chamber in BE with the transparent crystalline lens touches the central corneal endothelium in the RE. Fundoscopy suggested glaucoma as the cup/disc ratio was 0.7, although the intraocular pressure (IOP) was 10 mmHg in BE without medication. Validation of data from whole exome demonstrated a novel splicing homozygous pathogenic variant (PV) (c.1765-1G>A) of the ASPH gene as well as a heterozygous variant of unknown significance (VUS) of the FBN1 gene (c.6832C>T). CONCLUSION: We here report a novel splice-affecting homozygous pathogenic variant in the ASPH gene that was detected in a Brazilian patient with clinical features of Traboulsi syndrome.


Assuntos
Anormalidades Craniofaciais , Ectopia do Cristalino , Anormalidades do Olho , Fibrilina-1 , Iris , Humanos , Feminino , Adolescente , Ectopia do Cristalino/genética , Anormalidades Craniofaciais/genética , Iris/patologia , Anormalidades do Olho/genética , Doenças Raras , Fibrilina-1/genética , Síndrome de Marfan , Sítios de Splice de RNA , Linhagem , Consanguinidade , Masculino
12.
Fetal Diagn Ther ; 50(2): 92-97, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37062278

RESUMO

INTRODUCTION: Gómez-López-Hernández syndrome (GLHS), also known as cerebello-trigeminal-dermal dysplasia, is an extremely rare neurocutaneous disease, classically described by the triad of rhombencephalosynapsis (RES), bilateral focal alopecia, and trigeminal anesthesia. The clinical and radiographic spectrum of GLHS is now known to be broader, including craniofacial and supratentorial anomalies, as well as neurodevelopmental issues. CASE PRESENTATION: Here, we present a case of antenatally diagnosed GLHS with RES, hydrocephaly, and craniofacial anomalies identified on ultrasound (low-set ears with posterior rotation, hypertelorism, midface hypoplasia, micrognathia, and anteverted nares) which were confirmed by autopsy after termination of pregnancy at 23 weeks of gestation. DISCUSSION: As no known genetic causes have been identified and the classical triad is not applicable to prenatal imaging, prenatal diagnosis of GLHS is based on neuroimaging and the identification of supporting features. In presence of an RES associated with craniofacial abnormalities in prenatal (brachycephaly, turricephaly, low-set ears, midface retrusion, micrognathia), GLHS should be considered as "possible" according to postnatal criteria.


Assuntos
Anormalidades Craniofaciais , Micrognatismo , Feminino , Gravidez , Humanos , Micrognatismo/diagnóstico por imagem , Cerebelo , Anormalidades Craniofaciais/diagnóstico por imagem , Anormalidades Craniofaciais/genética , Alopecia/diagnóstico , Alopecia/genética , Diagnóstico Pré-Natal
13.
Mol Genet Genomic Med ; 11(6): e2177, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37002187

RESUMO

OBJECTIVE: Roberts syndrome (RBS), also known as Roberts-SC phocomelia syndrome, is a rare autosomal recessive developmental disorder caused by mutations in the ESCO2 gene. Cardinal clinical manifestations are pre- and postnatal growth retardation and craniofacial and limb malformations. Here, we report RBS in a Chinese adolescent with novel biallelic ESCO2 variations and complex cerebrovascular diseases. METHODS: Medical history, neurological examinations, neuroimaging, and pathology were collected in the proband and the family. Whole exome sequencing (WES) with copy number variation analysis was performed to screen for genetic variations. RESULTS: The clinical features of the proband were craniofacial and limb malformations together with complex cerebrovascular diseases. She suffered ischemic stroke at 6 years old and died of cerebellar hemorrhage secondary to an aneurysm at 13 years old. Besides, neuroimaging showed the triad of leukoencephalopathy, calcifications, and cysts. Brain histopathology revealed angiomatous changes and perivascular cysts suggesting chronic small cerebral vasculopathy. Whole exome sequencing (WES) identified novel biallelic variations in the ESCO2 gene (c.1220A>T, p.H407L and c.1562delC, p.A521fs). CONCLUSIONS: We describe complex cerebrovascular diseases in Roberts syndrome caused by novel ESCO2 biallelic variations. This case expands not only the cerebral involvement in Roberts syndrome but also the disease spectrum of the neuroimaging triad with leukoencephalopathy, calcifications, and cysts.


Assuntos
Acetiltransferases , Transtornos Cerebrovasculares , Proteínas Cromossômicas não Histona , Anormalidades Craniofaciais , Anormalidades Craniofaciais/complicações , Anormalidades Craniofaciais/genética , Humanos , Feminino , Adolescente , Acetiltransferases/genética , Proteínas Cromossômicas não Histona/genética , População do Leste Asiático , Transtornos Cerebrovasculares/genética
14.
Clin Genet ; 103(4): 383-391, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36645289

RESUMO

The SUZ12 gene encodes a subunit of polycomb repressive complex 2 (PRC2) that is essential for development by silencing the expression of multiple genes. Germline heterozygous variants in SUZ12 have been found in Imagawa-Matsumoto syndrome (IMMAS) characterized by overgrowth and multiple dysmorphic features. Similarly, both EZH2 and EED also encode a subunit of PRC2 each and their pathogenic variants cause Weaver syndrome and Cohen-Gibson syndrome, respectively. Clinical manifestations of these syndromes significantly overlap, although their different prevalence rates have recently been noted: generalized overgrowth, intellectual disability, scoliosis, and excessive loose skin appear to be less prevalent in IMMAS than in the other two syndromes. We could not determine any apparent genotype-phenotype correlation in IMMAS. The phenotype of neurofibromatosis type 1 arising from NF1 deletion was also shown to be modified by the deletion of SUZ12, 560 kb away. This review deepens our understanding of the clinical and genetic characteristics of IMMAS together with other overgrowth syndromes related to PRC2. We also report on a novel IMMAS patient carrying a splicing variant (c.1023+1G>C) in SUZ12. This patient had a milder phenotype than other previously reported IMMAS cases, with no macrocephaly or overgrowth phenotypes, highlighting the clinical variation in IMMAS.


Assuntos
Anormalidades Múltiplas , Anormalidades Craniofaciais , Deficiência Intelectual , Humanos , Anormalidades Múltiplas/genética , Anormalidades Craniofaciais/genética , Deficiência Intelectual/genética , Fenótipo , Complexo Repressor Polycomb 2/genética
15.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36674824

RESUMO

Tks4 is a large scaffold protein in the EGFR signal transduction pathway that is involved in several cellular processes, such as cellular motility, reactive oxygen species-dependent processes, and embryonic development. It is also implicated in a rare developmental disorder, Frank-ter Haar syndrome. Loss of Tks4 resulted in the induction of an EMT-like process, with increased motility and overexpression of EMT markers in colorectal carcinoma cells. In this work, we explored the broader effects of deletion of Tks4 on the gene expression pattern of HCT116 colorectal carcinoma cells by transcriptome sequencing of wild-type and Tks4 knockout (KO) cells. We identified several protein coding genes with altered mRNA levels in the Tks4 KO cell line, as well as a set of long non-coding RNAs, and confirmed these changes with quantitative PCR on a selected set of genes. Our results show a significant perturbation of gene expression upon the deletion of Tks4, suggesting the involvement of different signal transduction pathways over the well-known EGFR signaling.


Assuntos
Neoplasias do Colo , Anormalidades Craniofaciais , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transdução de Sinais/genética , Neoplasias do Colo/genética , Anormalidades Craniofaciais/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Transição Epitelial-Mesenquimal
16.
Eur J Med Genet ; 66(3): 104715, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36708876

RESUMO

Craniofacial dysmorphism, skeletal anomalies, and impaired intellectual development syndrome-1 (CFSMR1; OMIM#213980) is a rare autosomal recessive disorder characterized by the clinical triad of developmental delay and/or intellectual disability, a typical facial gestalt with brachycephaly, highly-arched bushy eyebrows, synophrys, hypertelorism, wide nasal bridge, and short nose, as well as multiple vertebrae and rib malformations, such as bifid and fused ribs and abnormal vertebral segmentation and fusion. Biallelic loss-of-function variants in TMCO1 cause CFSMR1. We report on two unrelated Egyptian patients with a phenotype suggestive of CFSMR. Single whole-exome sequencing in patient 1 and Sanger sequencing of TMCO1 in patient 2 revealed the same homozygous TMCO1 nonsense variant c.187C > T/p.(Arg63*) in both affected individuals; patients' healthy parents were heterozygous carriers of the variant. Congenital hearing loss in patients 1 and 2 is an occasional finding in individuals affected by CFSMR. Camptodactyly and syndactyly, which were noted in patient 2, have not or rarely been reported in CFSMR. Review of the literature revealed a total of 30 individuals with the clinically recognizable and unique phenotype of CFSMR1, including the patients reported here, who all carried biallelic TMCO1 variants. Six different TMCO1 variants have been reported in the 30 patients from 14 families, comprising three nonsense, two 2-bp deletions, and a splice donor site variant. All disease-associated TMCO1 variants likely represent null alleles resulting in absence of the encoded protein. TMCO1 has been proposed to act as a Ca2+ channel, while other data revealed TMCO1 as a mitochondrial protein and a component of the translocon at the endoplasmic reticulum, a cellular machinery important for the biogenesis of multi-pass membrane proteins. RAB5IF/C20orf24 has recently been identified as causative gene for craniofacial dysmorphism, skeletal anomalies, and impaired intellectual development syndrome-2 (CFSMR2; OMIM#616994). Heterodimerization of RAB5IF/C20orf24 and TMCO1 and their interdependence may suggest a pathophysiological role of ER-mitochondria interaction underlying CFSMR.


Assuntos
Anormalidades Múltiplas , Anormalidades Craniofaciais , Deficiência Intelectual , Anormalidades Musculoesqueléticas , Humanos , Anormalidades Múltiplas/genética , Canais de Cálcio/genética , Anormalidades Craniofaciais/genética , Deficiência Intelectual/genética , Anormalidades Musculoesqueléticas/genética , Fenótipo
17.
Am J Med Genet A ; 191(1): 120-129, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36271830

RESUMO

Subtelomeric 19p13.3 deletions have been associated with diverse anatomical and developmental phenotypes. A recent study of eight patients with subtelomeric interstitial 19p13.3 microdeletions at 0.3-1.4 Mb (hg 19) showed associations with growth restrictions, skeletal deformities, craniofacial anomalies, congenital heart defects, renal malformations, hernias, immune system deficits, fine and gross motor delays, speech delays, and developmental and learning delays. The authors defined two small regions of overlap containing four and 11 genes, respectively, with potential haploinsufficiency. Here, we present a new case with a de novo 184 kb deletion containing eight genes, three of which fall into the second previously identified small region of overlap, reducing the shared region to 46 kb. Phenotypic traits include most of the core findings in the previously reported cases but not growth restrictions, craniofacial anomalies, renal malformation, and learning disability. A closer look at the speech and motor delays reveals apraxic speech and discoordination in the fine and gross motor domain, consistent with cerebellar involvement across motor systems. Findings are consistent with a role of AZU1 in the observed immune deficiencies and PTBP1 in the observed skeletal, abdominal, speech, language, motor, and sensory traits. This case thus contributes to a more nuanced understanding of the subtelomeric 19p13.3 deletion region.


Assuntos
Anormalidades Craniofaciais , Deficiência Intelectual , Transtornos do Desenvolvimento da Linguagem , Humanos , Deleção Cromossômica , Fala , Fenótipo , Transtornos do Desenvolvimento da Linguagem/genética , Telômero , Anormalidades Craniofaciais/genética , Deficiência Intelectual/genética , Ribonucleoproteínas Nucleares Heterogêneas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética
18.
J Craniofac Surg ; 34(1): e25-e28, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35949010

RESUMO

Birk-Barel intellectual disability dimorphism syndrome, also referred to as KCNK9 imprinting syndrome, is an exceedingly rare condition described in under 20 cases that presents with intellectual disability, hypotonia, scoliosis, dysphonia, dysphagia, and craniofacial dysmorphic features. The condition follows an autosomal dominant pattern of inheritance in the maternally expressed KCNK9 gene on chromosome 8. Due to the complexity of presentation, patients with Birk-Barel syndrome are optimally managed by a multidisciplinary team including a craniofacial surgeon. Previously described craniofacial dysmorphic features include micrognathia, cleft palate, dolichocephaly, broad nasal tip, and broad philtrum, among others. Here the authors describe a genetically confirmed case that has been managed in our institution's multidisciplinary cleft and craniofacial clinic. The authors aim to discuss Birk-Barel syndrome for a surgical and craniofacial audience with considerations for operative management in the context of a multidisciplinary team.


Assuntos
Anormalidades Craniofaciais , Deficiência Intelectual , Canais de Potássio de Domínios Poros em Tandem , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/cirurgia , Caracteres Sexuais , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/cirurgia , Hipotonia Muscular/genética , Síndrome , Canais de Potássio de Domínios Poros em Tandem/genética
19.
Artigo em Inglês | MEDLINE | ID: mdl-36396593

RESUMO

Oculodentodigital dysplasia (ODDD; MIM #164200), a rare genetic disorder characterized by abnormal craniofacial, dental, ocular, and digital features, is caused by mutations in GJA1 (gap junction alpha-1) gene and inherited in an autosomal dominant pattern. However, an autosomal recessive pattern is also reported. Here we described 2 families with members affected by ODDD. In the first family, the c.752G>C (p.S251T) and c.848C>T (p.P283L) heterozygous missense mutations and the c.825C>T (p.T275T) silent mutation were identified in the proband, which showed mild ODDD phenotypes, and in his mother, which displayed hemolytic anemia and thrombocytopenia. In the second family, the patients displayed typical features of ODDD, and Sanger sequencing identified a novel homozygous c.604C>T (p.R202C) missense mutation, whereas the parents carried the mutation. Together, these findings suggest that homozygous mutation in GJA1 induces a more severe ODDD phenotype, though interfamilial phenotype variability was observed, whereas compound heterozygous mutations in GJA1 cause a mild phenotype.


Assuntos
Anormalidades Craniofaciais , Anormalidades Dentárias , Humanos , Conexina 43/genética , Anormalidades Craniofaciais/genética , Mutação , Anormalidades Dentárias/genética
20.
J Neural Transm (Vienna) ; 129(11): 1387-1391, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36205783

RESUMO

Symptoms of obsessive-compulsive disorder (OCD) may rarely occur in the context of genetic syndromes. So far, an association between obsessive-compulsive symptoms (OCS) and ACTG1-associated Baraitser-Winter cerebrofrontofacial syndrome has not been described as yet. A thoroughly phenotyped patient with OCS and ACTG1-associated Baraitser-Winter cerebrofrontofacial syndrome is presented. The 25-year-old male patient was admitted to in-patient psychiatric care due to OCD. A whole-exome sequencing analysis was initiated as the patient also showed an autistic personality structure, below average intelligence measures, craniofacial dysmorphia signs, sensorineural hearing loss, and sinus cavernoma as well as subtle cardiac and ophthalmological alterations. The diagnosis of Baraitser-Winter cerebrofrontofacial syndrome type 2 was confirmed by the detection of a heterozygous likely pathogenic variant in the ACTG1 gene [c.1003C > T; p.(Arg335Cys), ACMG class 4]. The automated analysis of magnetic resonance imaging (MRI) revealed changes in the orbitofrontal, parietal, and occipital cortex of both sides and in the right mesiotemporal cortex. Electroencephalography (EEG) revealed intermittent rhythmic delta activity in the occipital and right temporal areas. Right mesiotemporal MRI and EEG alterations could be caused by a small brain parenchymal defect with hemosiderin deposits after a cavernomectomy. This paradigmatic case provides evidence of syndromic OCS in ACTG1-associated Baraitser-Winter cerebrofrontofacial syndrome. The MRI findings are compatible with a dysfunction of the cortico-striato-thalamo-cortical loops involved in OCD. If a common pathophysiology is confirmed in future studies, corresponding patients with Baraitser-Winter cerebrofrontofacial syndrome type 2 should be screened for OCS. The association may also contribute to a better understanding of OCD pathophysiology.


Assuntos
Anormalidades Craniofaciais , Transtorno Obsessivo-Compulsivo , Anormalidades Múltiplas , Actinas , Adulto , Anormalidades Craniofaciais/diagnóstico , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/patologia , Epilepsia , Fácies , Hemossiderina , Humanos , Deficiência Intelectual , Lisencefalia , Masculino , Transtorno Obsessivo-Compulsivo/diagnóstico , Transtorno Obsessivo-Compulsivo/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA