Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 69: 103478, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34256345

RESUMO

BACKGROUND: Approximately 40% of human pregnancies are unintended, indicating a need for more acceptable effective contraception methods. New antibody production systems make it possible to manufacture reagent-grade human monoclonal antibodies (mAbs) for clinical use. We used the Nicotiana platform to produce a human antisperm mAb and tested its efficacy for on-demand topical contraception. METHODS: Heavy and light chain variable region DNA sequences of a human IgM antisperm antibody derived from an infertile woman were inserted with human IgG1 constant region sequences into an agrobacterium and transfected into Nicotiana benthamiana. The product, an IgG1 mAb ["Human Contraception Antibody" (HCA)], was purified on Protein A columns, and QC was performed using the LabChip GXII Touch protein characterization system and SEC-HPLC. HCA was tested for antigen specificity by immunofluorescence and western blot assays, antisperm activity by sperm agglutination and complement dependent sperm immobilization assays, and safety in a human vaginal tissue (EpiVaginal™) model. FINDINGS: HCA was obtained at concentrations ranging from 0.4 to 4 mg/ml and consisted of > 90% IgG monomers. The mAb specifically reacted with a glycan epitope on CD52g, a glycoprotein produced in the male reproductive tract and found in abundance on sperm. HCA potently agglutinated sperm under a variety of relevant physiological conditions at concentrations ≥ 6.25 µg/ml, and mediated complement-dependent sperm immobilization at concentrations ≥ 1 µg/ml. HCA and its immune complexes did not induce inflammation in EpiVaginal™ tissue. INTERPRETATION: HCA, an IgG1 mAb with potent sperm agglutination and immobilization activity and a good safety profile, is a promising candidate for female contraception. FUNDING: This research was supported by grants R01 HD095630 and P50HD096957 from the National Institutes of Health.


Assuntos
Anticorpos Monoclonais/imunologia , Antígeno CD52/imunologia , Anticoncepção Imunológica/métodos , Espermatozoides/imunologia , Vacinas Anticoncepcionais/imunologia , Especificidade de Anticorpos , Feminino , Humanos , Masculino
2.
Front Immunol ; 11: 124, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117274

RESUMO

Alemtuzumab was designed to reduce the immunogenicity of the parent CD52-specific rat immunoglobulin. Although originally marketed for use in cancer (Mabcampath®), alemtuzumab is currently licensed and formulated for the treatment of relapsing multiple sclerosis (Lemtrada®). Perhaps due to its history as the first humanized antibody, the potential of immunogenicity of the molecule has been considered inconsequential, and anti-drug antibodies (ADA) responses were similarly reported as being clinically insignificant. Nonetheless, despite humanization and depletion of peripheral T and B cells, alemtuzumab probably generates the highest frequency of binding and neutralizing ADA of all humanized antibodies currently in clinical use, and they occur rapidly in a large majority of people with MS (pwMS) on alemtuzumab treatment. These ADA appear to be an inherent issue of the biology of the molecule-and more importantly, the target-such that avoidance of immunogenicity-related effects has been facilitated by the dosing schedule used in clinical practice. At the population level this enables the drug to work in most pwMS, but in some individuals, as we show here, antibody neutralization appears to be sufficiently severe to reduce efficacy and allow disease breakthrough. It is therefore imperative that efficacy of lymphocyte depletion and the anti-drug response is monitored in people requiring additional cycles of treatment, notably following disease breakthrough. This may help inform whether to re-treat or to switch to another disease-modifying treatment.


Assuntos
Alemtuzumab/imunologia , Anticorpos Monoclonais Humanizados/imunologia , Antígeno CD52/imunologia , Esclerose Múltipla Recidivante-Remitente/imunologia , Animais , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Neutralizantes/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Humanos , Depleção Linfocítica/métodos , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Ratos
3.
Front Immunol ; 11: 626820, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33658999

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by B cell dysregulation and breaks in tolerance that lead to the production of pathogenic autoantibodies. We performed single-cell RNA sequencing of B cells from healthy donors and individuals with SLE which revealed upregulated CD52 expression in SLE patients. We further demonstrate that SLE patients exhibit significantly increased levels of B cell surface CD52 expression and plasma soluble CD52, and levels of soluble CD52 positively correlate with measures of lupus disease activity. Using CD52-deficient JeKo-1 cells, we show that cells lacking surface CD52 expression are hyperresponsive to B cell receptor (BCR) signaling, suggesting an inhibitory role for the surface-bound protein. In healthy donor B cells, antigen-specific BCR-activation initiated CD52 cleavage in a phospholipase C dependent manner, significantly reducing cell surface levels. Experiments with recombinant CD52-Fc showed that soluble CD52 inhibits BCR signaling in a manner partially-dependent on Siglec-10. Moreover, incubation of unstimulated B cells with CD52-Fc resulted in the reduction of surface immunoglobulin and CXCR5. Prolonged incubation of B cells with CD52 resulted in the expansion of IgD+IgMlo anergic B cells. In summary, our findings suggest that CD52 functions as a homeostatic protein on B cells, by inhibiting responses to BCR signaling. Further, our data demonstrate that CD52 is cleaved from the B cell surface upon antigen engagement, and can suppress B cell function in an autocrine and paracrine manner. We propose that increased expression of CD52 by B cells in SLE represents a homeostatic mechanism to suppress B cell hyperactivity.


Assuntos
Autoanticorpos/sangue , Linfócitos B/imunologia , Antígeno CD52/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Receptores de Antígenos de Linfócitos B/metabolismo , Linfócitos B/metabolismo , Antígeno CD52/sangue , Antígeno CD52/metabolismo , Quimiocina CXCL13/metabolismo , Regulação da Expressão Gênica/imunologia , Genes MHC da Classe II/imunologia , Humanos , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/fisiopatologia , RNA-Seq , Receptores CXCR5/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais/imunologia , Análise de Célula Única , Fosfolipases Tipo C/metabolismo
4.
Methods ; 154: 70-76, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30145356

RESUMO

Bispecific antibodies (biAb) targeting two different antigens or two distinct epitopes on the same antigen have demonstrated broad therapeutic utility. CD52 and CD20 are co-expressed on the cell surface of malignant B cells in B-cell non-Hodgkin lymphoma (B-NHL) and chronic lymphocytic leukemia (CLL) and increased expression of both antigens is detected on dividing or recently divided cells ("proliferative fraction") in CLL. The CD52-targeting monoclonal antibody (mAb) alemtuzumab (atz) not only depletes malignant B cells but also healthy CD52+ B and T lymphocytes and monocytes, causing severe immunosuppression. Loss of CD20 can occur in CLL after treatment with rituximab (rtx) and other CD20-targeting mAbs. To broaden the benefit of atz and rtx, we engineered an IgG1-like biAb, atz × rtx scFv-Fc. The Fc fragment of the biAb facilitates purification by Protein A affinity chromatography and supports a longer circulatory half-life. While atz × rtx scFv-Fc retained both antigen binding specificities, it showed superior binding to CD52+CD20+ B cells compared to CD52+CD20- T cells. Moreover, atz × rtx scFv-Fc mediated potent complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC) in vitro and exhibited B-cell depleting but T-cell sparing activities in vivo in a CLL patient-derived xenograft model. B-cell depletion was more pronounced for cells of the proliferative fraction.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Antígenos CD20/imunologia , Antígeno CD52/antagonistas & inibidores , Imunoterapia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Alemtuzumab , Animais , Anticorpos Biespecíficos/farmacologia , Antígenos de Neoplasias/imunologia , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Antígeno CD52/imunologia , Humanos , Fragmentos Fc das Imunoglobulinas , Imunoglobulina G/farmacologia , Imunoglobulina G/uso terapêutico , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/terapia , Camundongos , Rituximab , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Proc Natl Acad Sci U S A ; 115(30): 7783-7788, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29997173

RESUMO

CD52, a glycophosphatidylinositol (GPI)-anchored glycoprotein, is released in a soluble form following T cell activation and binds to the Siglec (sialic acid-binding Ig-like lectin)-10 receptor on T cells to suppress their function. We show that binding of CD52-Fc to Siglec-10 and T cell suppression requires the damage-associated molecular pattern (DAMP) protein, high-mobility group box 1 (HMGB1). CD52-Fc bound specifically to the proinflammatory Box B domain of HMGB1, and this in turn promoted binding of the CD52 N-linked glycan, in α-2,3 sialic acid linkage with galactose, to Siglec-10. Suppression of T cell function was blocked by anti-HMGB1 antibody or the antiinflammatory Box A domain of HMGB1. CD52-Fc induced tyrosine phosphorylation of Siglec-10 and was recovered from T cells complexed with HMGB1 and Siglec-10 in association with SHP1 phosphatase and the T cell receptor (TCR). Thus, soluble CD52 exerts a concerted immunosuppressive effect by first sequestering HMGB1 to nullify its proinflammatory Box B, followed by binding to the inhibitory Siglec-10 receptor, triggering recruitment of SHP1 to the intracellular immunoreceptor tyrosine-based inhibitory motif of Siglec-10 and its interaction with the TCR. This mechanism may contribute to immune-inflammatory homeostasis in pathophysiologic states and underscores the potential of soluble CD52 as a therapeutic agent.


Assuntos
Antígeno CD52/imunologia , Proteína HMGB1/imunologia , Lectinas/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Motivos de Aminoácidos , Anticorpos/farmacologia , Feminino , Proteína HMGB1/antagonistas & inibidores , Humanos , Masculino , Domínios Proteicos , Proteína Tirosina Fosfatase não Receptora Tipo 6/imunologia
6.
Appl Microbiol Biotechnol ; 101(15): 5997-6006, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28512676

RESUMO

The anti-CD52 antibody has already been approved for the treatment of patients with resistant chronic lymphocytic leukemia, relapsing-remitting multiple sclerosis, and has demonstrable efficacy against stem cell transplantation rejection. A CHO cell line expressing a humanized anti-CD52 monoclonal antibody (mAb-TH) was cultivated in both fed-batch and perfusion modes, and then purified. The critical quality attributes of these mAb variants were characterized and the pharmacokinetics (PK) properties were investigated. Results showed that the perfusion culture achieved higher productivity, whereas the fed-batch culture produced more aggregates and acid components. Additionally, the perfusion culture produced similar fucose, more galactose and a higher proportion of sialic acid on the anti-CD52 mAb compared to the fed-batch culture. Furthermore, the perfusion process produced anti-CD52 mAb had higher complement-dependent cytotoxicity (CDC) efficacy than that produced by the fed-batch culture, a result probably linked to its higher galactose content. However, antibody produced by fed-batch and perfusion cultures showed similar PK profiles in vivo. In conclusion, perfusion is a more efficient method than fed-batch process in the production of functional anti-CD52 monoclonal antibody. Product quality variants of anti-CD52 mAb were found in different cell culture processes, which demonstrated different physiochemical and biological activities, but comparable PK properties. Whether these observations apply to all mAbs await further investigation.


Assuntos
Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/farmacocinética , Antígeno CD52/imunologia , Fermentação , Alemtuzumab/imunologia , Animais , Anticorpos Monoclonais Humanizados/biossíntese , Anticorpos Monoclonais Humanizados/química , Técnicas de Cultura Celular por Lotes , Medicamentos Biossimilares , Células CHO , Técnicas de Cultura de Células , Cricetinae , Cricetulus , Humanos , Macaca fascicularis
7.
Inflamm Res ; 66(7): 571-578, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28283679

RESUMO

INTRODUCTION: CD52 (Campath-1 antigen), a glycoprotein of 12 amino acids anchored to glycosylphosphatidylinositol, is widely expressed on the cell surface of immune cells, such as mature lymphocytes, natural killer cells (NK), eosinophils, neutrophils, monocytes/macrophages, and dendritic cells (DCs). The anti-CD52 mAb, alemtuzumab, was used widely in clinics for the treatment of patients such as organ transplantation. In the present manuscript, we will briefly summarize the immunological function of CD52 and discuss the application of anti-CD52 mAb in transplantation settings. FINDINGS: We reviewed studies published until July 2016 to explore the role of CD52 in immune cell function and its implication in organ transplantation. We showed that ligation of cell surface CD52 molecules may offer costimulatory signals for T-cell activation and proliferation. However, soluble CD52 molecules will interact with the inhibitory sialic acid-binding immunoglobulin-like lectin 10 (Siglec10) to significantly inhibit T cell proliferation and activation. Although the physiological and pathological significances of CD52 molecules are still poorly understood, the anti-CD52 mAb, alemtuzumab, was used widely for the treatment of patients with chronic lymphocytic leukemia, autoimmune diseases as well as cell and organ transplantation in clinics. CONCLUSION: Studies clearly showed that CD52 can modulate T-cell activation either by its intracellular signal pathways or by the interaction of soluble CD52 and Siglec-10 expressing on T cells. However, the regulatory functions of CD52 on other immune cell subpopulations in organ transplantation require to be studied in the near future.


Assuntos
Antígeno CD52/imunologia , Transplante de Órgãos , Animais , Humanos , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA